商空间的粒化关键技术及问题求解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术、物联网技术以及智能终端等技术的不断发展,人类社会的数据种类与规模呈爆炸式增长,积累的数据规模不断扩大,结构日趋复杂。如何从海量数据中获取有效信息已成为人工智能重要的研究课题之一。其中,部分数据具有明确的结构特征,如线性结构、树型结构和网状结构。然而,大部分数据没有明确的结构,即无结构数据。在有结构数据中,网状结构信息尤为复杂,如何准确表述其结构信息,并依据结构信息进行问题求解是网状结构问题研究的难点。同样,针对无结构问题,如何挖掘其潜在的结构信息对问题求解具有重要的现实指导意义。
     粒计算理论利用人类处理复杂问题时的结构化求解思想,采用由粗到细、不断求精的多粒度分析法,可以降低计算复杂度,提高求解精度。粒计算理论被认为符合人类认知的重要特征,改变了传统的求解观念,对复杂问题的求解具有重要的意义,在智能计算、机器发现、数据挖掘和图像处理等领域有着广泛的应用前景。目前,粒计算理论主要有基于模糊逻辑的粒计算理论、基于粗糙集的粒计算理论和基于商空间的粒计算理论等,其中商空间理论以论域、属性和结构三元组(X,f,T)描述问题,更强调结构的重要性。商空间理论引入结构这一重要特征,但并没有提供具体可用的算法用以获取结构信息,和应用结构信息进行的粒化和粒的计算。获取或利用结构信息进行问题求解的粒化关键技术和问题求解方法是本文的研究核心。
     本文基于商空间理论获取问题的结构信息,给出网状结构及无结构问题的粒化关键技术和粒的计算方法。首先,本文针对节点间序关系明确的网状结构问题给出了基于二元关系的粒化技术及其求解方法。其次,针对节点间仅有连通关系的网络给出了基于聚类分析的粒化技术及其求解方法。最后,针对无结构问题给出了基于二元关系的多层粒化技术及求解方法。
     本文的主要研究工作概括如下:
     1.研究商空间理论的粒化关键技术及求解方法;
     针对网状结构和无结构问题,本文着重研究了依据问题自身的结构信息,如何利用商空间理论进行合理粒化,再根据粒化结果选择相应的多粒度模型进行求解。本文针对具体问题给出了商空间理论的粒化关键技术和求解方法,为商空间理论的实际应用提供了指导。
     2.研究节点间序关系明确的网状结构问题的关系粒化及求解方法;
     针对节点间序关系明确的网状结构问题,定义保序性与或图将网状结构转换为与或图表示,将节点间的序关系转化为明确的与或图中的与/或关系。本文设计了网状问题求解算法(NPSOG),根据与或图中节点的与/或关系进行粒化,采用多粒度模型进行求解。模拟实验验证了NPSOG算法大大降低了问题求解的时间和空间复杂度。
     3.研究节点问仅有连通关系的网络问题的聚类粒化及求解方法;
     针对节点间不具有序关系的网络问题,因网络结构的聚类特性,定义聚类粒化操作,并给出粒化系数作为阈值,通过粒化系数控制粒化操作,将网络的粒化结果视为对网络的社团划分。本文设计了基于聚类粒化的社团发现算法(CGCDA),选取4组基准数据和一组实际移动基站频点设置数据进行实验,与人工和其他算法的对比结果表明了CGCDA算法的优势。
     4.研究无结构问题的多层粒化及求解方法。
     针对无结构问题,基于商空间理论的分层递阶思想挖掘出数据集潜在的结构信息,作者采用基于二元关系的多层粒化技术提取问题的本质特征,层层抽象、层层递进。本文首先设计了分层递阶覆盖算法(HCA),以覆盖算法(CA)为基础粒化算法构造基本粒,定义类别相关性矩阵上的模糊等价关系R实现多层粒化,并按获取的分层递阶结构进行求解。实验表明HCA算法不仅简化了问题的复杂度,而且提升了原基础粒化算法的求解精度。进一步地,根据问题求解过程的实际需求,在定义了两种粒度变换操作的基础上,即粒度分解和粒度合成,本文设计了基于商空间粒度变换的多层粒化求解算法(GTMSA),将分层递阶结构调整成最佳粒度结构。实验对比结果表明分层递阶结构调整的必要性和有效性。
In recent years, with the fast development of the internet technologies, internet of Things, intelligent terminal and so on, the scale and variety of data in society are growing in an explosive way. The data scale is expanding everyday and the structure of data is increasingly complex. A main research field of artificial intelligence is how to obtain available information from magnanimity data. Part of the data has definite structure, such as linear structure, tree structure and netted structure. But majority of the data is unstructured, named as unstructured data. For structured data, netted structure is particularly complicated. There are challenges that how accurately to describe structure information of the netted structural problem and how to solve the problem based on this information. For unstructured problem, how to mine underlying structure information also has great guiding significance to solve this kind of problems.
     Granular Computing Theory solves problems in the same manner as human deal with complex problems based on structure information. This theory utilizes multi-granular analysis method that is from coarse to fine, from fuzzy to accurate. It has lower complexity and higher precision. Granular Computing Theory is regarded as agreeable with the feature of human cognitive which is not agree with traditional solving methods. It is of great significance for solving complex problems and with wide application in computational intelligence, machine discovery, data mining, and image processing, and so on. At present, Granular Computing Theory mainly includes Fuzzy Set theory, Rough Sets Theory and Quotient Space Theory, etc. Quotient Space Theory emphasizes the significance of problem's structure and describes a problem with a triple(X,f,T), where X is a domain,f is an attribute function and T is the structure of the elements in the domain.In Quotient Space Theory, the methods that how to obtain structure information and how to do granulation and computing after granulation based on that information are not defined. So the key technologies that solve different structural problems based on structure information are the core of this dissertation.
     In this dissertation, structure information of the problem is obtained based on Quotient Space Theory. Moreover, key technologies of granulation and computing methods after granulation are defined based on problem's structure information to solve netted structural problems and unstructured problems. Firstly, author defines granulation technology and computing method based on binary relation for netted structural problems in which order relationships are clear among nodes. Secondly, cluster analysis granulation technology and computing method is given for network in which nodes only have connected relation. Finally, for unstructured problems, multilayer granulation technology and computing method based on binary relation is proposed.
     The dissertation includes:
     1. Key technologies of granulation and computing methods after granulation based on Quotient Space Theory are analyzed.
     For netted structural problems and unstructured problems, this dissertation discusses how to define granulation technologies according to structure information of the problem. Then, the corresponding multi-granular model is built based on Quotient Space Theory. The key technologies of granulation and computing methods given for concrete problems are the guidelines for the application of Quotient Space Theory.
     2. The technology of granulation and computing method based on binary relation is given for netted structural problems in which order relationships are clear among nodes.
     For this kind of problems, the Ordered AND/OR Graph is defined to transform netted structure to and/or graph. These order relationships are transformed to and/or relationships in the graph. In this dissertation, the Netted Problem Solving method based on Ordered and/or Graph (NPSOG) is proposed. The problem is granulated by and/or relationship. Then, the problem is computed in multi-granular spaces. Experiments show that NPSOG greatly reduces the time complexity and space complexity.
     3. The technology of granulation and computing method based on cluster analysis is given for network in which nodes only have connected relation.
     In this dissertation, the technology of granulation based on cluster analysis is defined according to the cluster property of network. The granulation is control by a threshold named as granulation coefficient. The result of granulation of the whole network is viewed as the community partitioning of network. So the Community Detection Algorithm based on Clustering Granulation (CGCDA) is proposed in this dissertation. Experiments on four Benchmark datasets and a practical datasets show that CGCPA has an advantage over other community detection algorithms.
     4. The multi-layers granulation technology and computing method is given for unstructured problems.
     For unstructured problems, the hierarchical method based on Quotient Space Theory is given to extract the underling structure information. The multilayer granulation technology based on binary relation is proposed to abstract the essential characteristics of the unstructured problem. Hierarchical covering algorithm (HCA) is proposed which uses Covering Algorithm (CA) as basic granulation method to construct basic granules. Then author defines fuzzy equivalence relation R on categories similarity matrix which is from basic granules. The problem is granulated into multilayer according to R. Experiments on MNIST and LR datasets show that HCA simplifies the complexity of problem and improves the precision of basic granulation method (CA). Furthermore, the granulation result can be adjusted by granular transform of Quotient space theory based on real requirements of the problem. Two granular transform operations are defined:granular composition and granular synthesis. Multi-granulation Solving Algorithm based on Granular Transform of quotient space theory (GTMSA) is given to obtain best granulation result. Results of experiments show that the adjustment of initial hierarchical structure is necessary and efficacious.
引文
[1]Committee on the Analysis of Massive Data, etc. Frontiers in Massive Data Analysis[M]. Washington, D.C.:The National Academies Press,2013.
    [2]李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域—大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657.
    [3]Zadeh L A. Fuzzy Sets and Information Granulation, Advances in Fuzzy Set Theory and Applications[M]. Gupta M,R K,1979.
    [4]张燕平,罗斌,姚一豫等.商空间与粒计算一结构化问题求解理论与方法[M].北京:科学出版社,2010:1-114.
    [5]Yao Y Y. Relational interpretations of neighborhood operators and rough set approximation operators[J]. Information sciences,1998,111(1):239-259.
    [6]钱宇华.复杂数据的粒化机理与数据建模[D].太原:山西大学,2011.
    [7]Pawlak Z. Rough sets:Teoretical aspects of reasoning about data[M]. The Netherlands:Kluwer Academic Publishers,1991:1-168.
    [8]Pawlak z., Skowron A. Rudiments of rough sets[J]. Information Sciences,2007, 177:3-27.
    [9]Kryszkiewicz M. Rough set approach to incomplete information systems [J]. Information Sciences,1998,112:39-49.
    [10]Kryszkiewicz M. Rule in incomplete information systems[J]. Information Sciences,1999,113:271-292.
    [11]Liang J. Y., Shi Z. Z., Li D. Y, Wierman M.J. The information entropy, rough entropy and knowledge granulation in incomplete information system[J]. International Journal of general Systems,2006,35(6):641-654.
    [12]Lin T.Y. Neighborhood systems and relational database[C]//Proceedings of the 16th ACM annual conference on computer science, Altanta,1988:725-728.
    [13]Lin T.Y. Neighborhood systems and approximation in database and knowledge base systems[C]//Proceedings of the 4th international symposium on methodologies of intelligent systems, Charlotte,1989:75-86.
    [14]Hu Q. H., Yu D. R., Xie Z. X. Neighborhood classifiers[J]. Expert Systems with Applications,2008,34(2):866-876.
    [15]Guha S., Rastogi R., Shim K. CURE:an efficient clustering algorithm for large databases[C]//Proceedings of the ACM SIGMOD Conference, Scattle,1998:73-84.
    [16]Guha S., Rastogi R., Shim K. ROCK:a robust clustering algorithm for categorical attributes[C]. Proceedings of the 15th ICDE, Sydney,1999:512-521.
    [17]Karypis G., Han E. H., Kumar V. CHAMELEON:A hierarchical clustering algorithm using dynamic modeling[J]. IEEE Computer,1999,32(8):68-75.
    [18]Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise[C]//Proceedings of 4th International Conference on Knowledge Discovery and Data Mining (KDD-98), New York,1998:58-65.
    [19]Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data for data mining applications[M]. ACM,1998:94-105.
    [20]Wang W, Yang J, Muntz R. STING+:An approach to active spatial data mining[C]//Proceedings of the 15th International Conference on on Data Engineering, Sydney,1999:116-125.
    [21]Hobbs J R. Granularity[C]//In Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles,1985:432-435.
    [22]Yao Y Y. Three perspectives of granular computing[J]. Journal of Nanchang Institute of Technology,2006,25(2):16-21.
    [23]Zadeh L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy sets and systems,1997,90(2):111-127.
    [24]Pawlak Z. Rough sets[J]. International Journal of Computer and Information Science,1982,11(5):341-356.
    [25]Pawlak Z. Granularity of knowledge, indiscernibility and rough sets[C]// Proceedings of the IEEE International Conference on Fuzzy Systems, New York, 1998:106-110.
    [26]张钹,张铃.问题求解理论及应用[M].北京:清华大学出版社,1990.
    [27]张铃,张钹.问题求解理论及应用——商空间粒度计算理论及应用[M].北京:清华大学出版社,2007.
    [28]张铃,张钹.商空间理论与粒度计算[C]//第三届中国Rough集与软计算机学术研讨会(CRSSC'03).重庆,2003:1-3.
    [29]Lin T Y. Granular computing on binary relations I:data mining and neighborhood systems[J]. Rough sets in knowledge discovery,1998,1:107-121.
    [30]Yao Yi-yu. Granular computing for data mining[C]//Proceedings of SPIE Conference on Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security, Dasarathy,2006:1-12.
    [31]Yao Yi-yu, Yao Jing-tao. Granular computing as a basis for consistent classification problems[C]//PAKDD 2002 Workshop entitled towards foundation of Data Mining, Taipei,2002,5(2):101-106.
    [32]Yao Yi-yu. Granular computing:basic issues and possible solutiongs[C]// Proceedings of the 5th Joint Conference on Information Sciences, Kaohsiung, 2000:186-189.
    [33]苗夺谦,王国胤,刘清.粒计算:过去,未来和展望[M].北京:科学出版社,2007:1-98.
    [34]Zadeh L A. Fuzzy logic=computing with words[J]. IEEE Transactions on Fuzzy Systems,1996,4(2):103-111.
    [35]Zaheh L A. Some reflections on information granulation and its contrility in granular computing, computing with words, the computational theory of perceptions and preciseated natural language[C]//Lin T Y, Yao Y Y, Zadeh L A,Eds. Data Mining, Rough Sets and Granular Computing. Wurzburg:Physica-Verlag,2002:3-22.
    [36]Zaheh L A. The roles of fuzzy logic and soft computing in the conception, design and deployment of intelligent systems[C]//nwana H S, Azarmi N,Eds. Software Agents and Soft computing:Towards Enhancing Machine Intelligence, Concepts and Applications. Berlin Heidelberg:Springer,1997:183-190.
    [37]Yager R R, Filev D.. Operations for granular computing:mixing words and numbers[C]//Proceedings of the FUZZ-IEEE World Congress on Computational Intelligence, Anchorage,1998,1:123-128.
    [38]Yao J. T.and Yao Y. Y. Induction of classification rules By granular computing[C]//Proceedings of the 3rd International Conference on Rough Sets Current Trends Computing, Chengdu,2002:331-338.
    [39]苗夺谦,徐菲菲,姚一豫,魏莱.粒计算的集合论描述[J].计算机学报,35(2),2012:315-363.
    [40]王国胤,张清华.不同知识粒度下粗糙集的不确定性研究[J].计算机学报,31(9),2008:1588-1598.
    [41]LiangJ. Y.,WangF.,Dang C. Y, and Qian Y. H.. An efficient rough feature selection algorithm with a multi-granulation view[J]. Int. J. Approx.Reason.,53(6), 2012:912-926.
    [42]Yuhua Qian, Jiye Liang, Witold Pedrycz, Chuangyin Dang. An Efficient Accelerator for Attribute Reduction from Incomplete Data in Rough Set Framework[J], Pattern Recognition,744,2011:1658-1670.
    [43]蒙祖强,史忠植.不完备信息系统中基于相容粒度计算的知识获取方法[J].计算机研究与发展,45,2008:264-267.
    [44]LiuQ., SunH., and WangY. Granulations based on semantics of rough logical formulas and its reasoning[C]//Proceedings of the International Conference on Rough Sets Fuzzy Sets Data Mining, Granular Computing, Canada:Toronto,2007:419-426.
    [45]折延宏,王国俊.粒计算的一种覆盖模型[J].软件学报,21(11),2010:2782-2789.
    [46]Clementi. Cecilia. Coarse-grained models of protein folding:toy models or predictive tools?[J]. Current opinion in structural biology,18(1),2008:10-15.
    [47]Liau C J. A Summary and Update of Social Networks and Granular Computing[C]//2010 IEEE International Conference on Granular Computing, USA: San Jose,2010:30-31.
    [48]Ronald R.Yager.. Intelligent Social Network Analysis Using Granular Computing[J]. International Journal of Intelligent Systems,23,2008:1197-1220.
    [49]陈含爽,候中怀,辛厚文.复杂网络上动力学过程的多尺度粗粒化方法的发展[C]//第五届全国复杂网络学术会议论文(摘要)汇集,青岛,2011.
    [50]Hanshuang Chen, Zhonghuai Hou,Houwen Xin, Yijing YAN. Statistically consistent coarse-grained simulations for critical phenomena in complex networks[J]. PHYSICAL REVIEW E,82(1),2010:011107.
    [51]Chen Juan, Lu Jun-an, Lu Xiaofei, Wu Xiaoqun, ChenGuanrong. Spectral coarse graining of complex clustered networks[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(11):3036-3045.
    [52]GfellerD., De Los Rios P.. Spectral coarse graining and synchronization in oscillator networks[J]. Physical Review Letter,2008,100(17):174104.
    [53]Yao YY. A partition model of granular computing[C]//Transactions on Rough Sets I. Berlin Heidelberg:Springer,2004:232-253.
    [54]Pedrycz W. Granular Computing:Analysis and Design of Intelligent Systems[M]. Boca Raton:CRC Press,2013.
    [55]李道国,苗夺谦,张红云.粒度计算的理论,模型与方法[J].复旦学报(自然科学版),2004,43(5):837-841.
    [56]王飞跃.词计算和语言动力学系统的计算理论框架[J].模式识别与人工智能, 2001,14(4):377-384.
    [57]YaoY. Y. A note on definability and approximations[C]//Transactions on rough sets VII. Springer Berlin Heidelberg,2007:274-282.
    [58]Lin T Y, Liu Q. Rough approximate operators:axiomatic rough set theory[M], Rough Sets, Fuzzy Sets and Knowledge Discovery. London:Springer,1994:256-260.
    [59]祝峰,何华灿.粗集的公理化[J].计算机学报,2000,23(3):330-333.
    [60]Yao Y Y. On generalizing rough set theory[M], Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Berlin Heidelberg:Springer,2003:44-51.
    [61]王国胤,张清华,胡军.粒计算研究综述[J].智能系统学报,2008,2(6):8-26.
    [62]Polkowski L, Skowron A. Rough-neuro computing[C]//Rough Sets and Current Trends in Computing. Berlin Heidelberg:Springer,2001:57-64.
    [63]Peters J F, Szczuka M S. Rough neurocomputing:a survey of basic models of neurocomputation[C]//Rough Sets and Current Trends in Computing. Berlin Heidelberg:Springer,2002:308-315.
    [64]Ma J M, Zhang W X, Li T J. A covering model of granular computing[C]// Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Guozhou,2005,3:1625-1630.
    [65]胡峰,黄海,王国胤等.不完备信息系统的粒计算方法[J].小型微型计算机系统,2005,26(8):1335-1339.
    [66]张清华,王国胤,刘显全.基于最大粒的规则获取算法[J].模式识别与人工智能,2012,25(3):388-396.
    [67]Li H, Jin H, Zhang D. Application of quotient space theory in cases organization[C]//Intelligent Information Technology Application Workshops, International Symposium on IEEE,2008:975-978.
    [68]王文军.基于模糊商空间理论的文本聚类研究[J].科技情报开发与经济,2007,17(6):181-182.
    [69]刘仁金.基于商空间的纹理图像分割研究[D].合肥:安徽大学,2005.
    [70]刘岩,李友一,陈占军等.基于商空间理论的模糊控制在航空相机中的应用[J].南京航空航天大学学报,2006,38(B07):88-90.
    [71]张持健,李旸,张铃.商空间理论(粒度计算方法)实现高精度模糊控制[J].计算机工程与应用,2004,40(11):37-39.
    [72]陈洁,张燕平,张铃.模糊商空间在数据挖掘中的应用[J].计算机科学,2008, 35(8A):241-243,254.
    [73]何富贵.商空间理论在网络路径分析中研究[D].合肥:安徽大学,2011.
    [74]张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776.
    [75]陈洁,何富贵,张燕平,张铃.基于商空间理论的智能计算模型[J].中国人工智能学会通讯,2011,5:9.
    [76]George Eliot. Brief History of Crossword Puzzles, from: http://crosswordtoumament.com/,1996-01-01/2014-03-01.
    [77]柯长青,欧阳晓莹.基于元胞自动机模型的城市空间变化模拟研究进展[J].南京大学学报(自然科学),2006,42(1):103-110.
    [78]何富贵,张燕平,张铃.基于社团为粒度的网络分割方法[J].南京大学学报(自然科学),2010,46(5):511-519.
    [79]刘蕴,冯穗力.基于广义纳什讨价还价解的资源分配方法[J].电路与系统学报,2012,17(6):21-26.
    [80]祁红志,徐惠益.机电产品面向拆卸与回收的设计理论与方法[J].现代制造工程,2007,6(6):134-138.
    [81]蒋鸿玲,刘一伟,范钦赞.基于树形网状结构的柔性BOM的设计和实现[J].计算机工程与设计,2011,32(11):3682-3686.
    [82]CohenD., JeavonsP., and GyssensM.. A unified theory of structural tractability for constraint satisfication problems[J]. Journal of Computer and System Science.2008, 74(5):721-743.
    [83]GottlobG., LeoneN. and ScarcelloR. A comparison of structural CSP decomposition methods[J]. Artificial Intelligence,2000,124(2):243-282.
    [84]GottlobG., LeoneN. and ScarcelloR. Hypertree decompositions and tractable queries[J]. Journal of Computer and System Sciences,2002,64(3):579-627.
    [85]周翔,邵志清.顺序图与状态图的递归语义一致性研究[J].计算机科学,2010,37(8):172-174,223.
    [86]DechterR.. Constraint Processing[M]. San Francisco:Elsevier Science,2003:1-25.
    [87]AptK.. Principles of Constraint Programming[M]. Cambridge:Cambridge University Press,2003:9-10.
    [88]HookerN.J.. Logic, optimization and constraint programming[J]. Informs Journal on Computing,2002,14(4):295-321.
    [89]GeorgeL.R. Artificial Intelligence:Structures and Strategies for Complex Problem Solving(Sixth Edition) [M]. London:Pearson Education,2009:1-798.
    [90]朴志会.160填字游戏玩遍英语四级[M].吉林:北方妇女儿童出版社,2010:1-260.
    [91]WattsD.J., StrogatzS.H.. Collective dynamic of small-world' networks[J]. Nature, 1998,393:440-442.
    [92]BarabasiA. L., Albert R.. Emergence of scaling in random networks[J]. Science, 1999,286(10):509-512.
    [93]GirvanM., Newman M. E. J.. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences,2002, 99(12):7821-7826.
    [94]Qing Song, Xiao fan Wang. Efficient routing on lager road networks using hierarchical communities[J]. IEEE Transactions on Intelligent Transportation Systems, 2011,12(3):132-140.
    [95]KhanS. U., Ahmad I.. Comparison and analysis of ten static heuristics-based Internet data replication techniques[J]. Journal of Parallel and Distributed1 Computing, 2008,68(2):113-136.
    [96]ReddyK. P., KitsuregawaM., SreekanthP., and Rao S. S.. In DNIS'02: Proceedings of the Second International Workshop on Databases in Networked Information Systems, London:Springer-Verlag,2009:188-200.
    [97]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [98]WuA. Y, Garland M., and Han J.. In KDD'04:Pro-ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, New York,2004:719-724.
    [99]PerkinsC. E.. Ad Hoc Networking[M], Upper Saddle River(New Jersey): Addison-Wesley,2001.
    [100]Steenstrup M.. Cluster-Based Networks[M], USA:Addison Wesley, chapter 4, 2001:75-138.
    [101]王艳群.静息态脑功能网络的构建及社团结构分析研究[D].太原:太原理工大学,2012.
    [102]NewmanM. E. J., Girvan M.. Finding and evaluating community structure in networks[J]. Physical Review E,2004,69(2):026113-1.
    [103]NewmanM. E. J.. Fast algorithm for detecting community structure in networks[J]. Physical Review E,2004; 69(6):5.
    [104]ClausetA.. Finding local community structure in networks[J]. Physical Review E, 2005,72(2):1-7.
    [105]RaghavanU., AlbertR. AndKumaraS.. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E,2007,76(3): 036106-1.
    [106]骆志刚,丁凡,蒋晓舟等.复杂网络社团发现算法研究新进展[J].国防科技大学学报,2011,33(1):47-52.
    [107]FortunatoS.. Community detection in graphs[J]. Physics Reports,2010,486(3): 75-174.
    [108]解,汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12.
    [109]LancichinettiA., FortunatoS.. Community detection algorithms:a comparative analysis[J]. Physical review E,2009,80(5):056117.
    [110]Von Luxburg U. A tutorial on spectral clustering[J]. Statistics and computing, 2007,17(4):395-416.
    [111]BezdekJ. C.. Pattern recognition with fuzzy objective function algorithms[M]. Kluwer Academic Publishers,1981.
    [112]KaufimanL., RousseeuwP. J.. Finding groups in data:an introduction to cluster analysis[M]. John Wiley & Sons,2009.
    [113]HansenP., Jaumard B.. Cluster analysis and mathematical programming[J]. Mathematical programming,1997,79(1-3):191-215.
    [114]MacQueenJ.. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Berkeley,1967,1(281-297):14.
    [115]JoseA., Ravi S. and SambathM.. Brain Tumor Segmentation Using K-Means Clustering And Fuzzy C-Means Algorithms And Its Area Calculation[J]. Brain,2014, 2(3).
    [116]ChenN., Xu Z. and XiaM.. Hierarchical hesitant fuzzy K-means clustering algorithm[J]. Applied Mathematics-A Journal of Chinese Universities,2014,29(1): 1-17.
    [117]TungA., Hou J. and Han J.. Spatial clustering in the presence of obstacles[C]// 2001. Proceedings of the 17th International Conference on Data Engineering, Washington, DC,2001:359-367.
    [118]MichaelJ. B., HansF. K.. Comment on" clustering by passing messages between data points"[J][J]. Science,2008,319:726c-727c.
    [119]ChaturvediA., Green P. E. and Caroll J. D.. K-modes clustering[J]. Journal of Classification,2001,18(1):35-55.
    [120]GanG., Wu J. and Yang Z.. A genetic fuzzy k-Modes algorithm for clustering categorical data[J]. Expert Systems with Applications,2009,36(2):1615-1620.
    [121]KaufmanL., Rousseeuw P. J.. Agglomerative nesting (program AGNES) in finding groups in data:an introduction to cluster analysis. Hoboken[J].1990:199-252.
    [122]StruyfA., Hubert M. and Rousseeuw P. J.. Integrating robust clustering techniques in S-PLUS[J]. Computational Statistics & Data Analysis,1997,26(1): 17-37.
    [123]戴美泰,吴志忠,邵世祥等.GSM移动通信网络优化[M],北京:人民邮电出版社,2003.
    [124]HarteL., Bromley B. and David M.. Introduction to GSM:Physical Channels, Logical Channels, Network Functions, and Operation[M], ALTHOS,2008.
    [125]米杰,黄东军.基于中国邮路问题的移动基站切换链路测方法研究[J].企业技术开发,2011,29(7):6-8.
    [126]王博岩,卢肖,陈洁,张燕平.基于精英遗传算法的GSM网络频点优化设计[J].计算机技术与发展,2013,2:23-27.
    [127]BengioY.. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning,2(1),1-127. Also published as a book. Now Publishers,2009.
    [128]GreenG.P., Bean J. C. and Peterson D. J.. Deep Learning in Intermediate Microeconomics:Using Scaffolding Assignments to Teach Theory and Promote Transfer[J]. The Journal of Economic Education,2013,44(2):142-157.
    [129]DengL., Li J., Huang J. T., et al. Recent advances in deep learning for speech research at Microsoft[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Canada:Vancouver, 2013:8604-8608.
    [130]KeF., Chavez A. F.. Promoting Inclusive, Deep Learning in Online Contexts[M], Web-Based Teaching and Learning across Culture and Age. Springer New York,2013: 143-154.
    [131]ChenB., Polatkan G., Sapiro G., et al. Deep Learning with Hierarchical Convolutional Factor Analysis[J]. Transactions on Pattern Analysis and Machine Intelligence,2013,8:1887-1901.
    [132]HintonG. E., Osindero S. and Teh T. W.. A fast learning algorithm for deep belief nets[J]. Neural computation,2006,18(7):1527-1554.
    [133]VincentP., Larochelle H., Bengio Y., et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning, Finland:Helsinki,2008:1096-1103.
    [134]LeCunY, Kavukcuoglu K. and Farabet C. Convolutional networks and applications in vision[C]//Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS),France:Paris,2010:253-256.
    [135]BengioY., Courville A.. Deep Learning of Representations[M], Handbook on Neural Information Processing. Springer Berlin Heidelberg,2013:1-28.
    [136]张铃,张钹.M—P神经元模型的几何意义及其应用[J].软件学报,1998,9(5):334-338.
    [137]赵姝.计算智能及其在气象信息分析中的应用[D].合肥:安徽大学,2007.
    [138]QiuD. H., Li Y, Li H., et al. An Approach to Detecting Clusters from Weighted Bidirected Graphs[J]. Journal of Chinese Computer Systems,2012,33(7):1568-1571.
    [139]The MNIST dataset is available at http://yann.lecun.com/exdb/mnist/, 2012-02-13/2014-03-01.
    [140]FreyP. W., Slate D. J.. Letter recognition using Holland-style adaptive classifiers[J]. Machine Learning,1991,6(2):161-182.
    [141]申中华,潘永惠,王士同.有监督的局部保留投影降维算法[J].模式识别与人工智能,2008,21(2):233-239.
    [142]周亮,晏立.基于原型抽象和分类价值量的决策树算法[J].计算机应用研究,2010,27(8):2899-2901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700