基于小波变换的电力系统无功功率测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代信息技术及电力工业的飞速发展,电力系统中的电源及负荷种类变得越来越多,新能源的利用如风力发电、太阳能发电等新的能源系统和一些新型的智能化的电力变换设备的大量使用,以及系统中的一些变流和补偿调节装置越来越复杂,电力系统中的非线性特征变得越来越明显,大量的非线性负荷在电力系统中的使用使得电力网络所提供的电压电流波形的畸变越来越严重。电力网络的不对称和负荷非线性特征及电力网络的谐波污染变得越来越明显,同时电力网络还可能会受到一些随机信号的干扰,如电磁辐射和一些电力设备在运行中所产生的随机性、非平稳性的一些干扰信号,这样一些随机信号和频率分布很广的谐波信号在实际系统中要对其进行准确测量难度很大。
     很多的科技人员在随机信号检测及谐波分析中进行了大量研究,出现了很多关于信号检测及谐波处理的文献。解决电力系统中各种新型的电力设备和非线性负荷对电网的污染及电力网络电能质量分析成了当前电力系统研究的热点。如电力系统中电能质量分析、谐波分析补偿装置的研制、无功功率检测与补偿、电力滤波器的设计等研究方向在当前获得了很大发展。如以瞬时无功功率理论为基础的电力系统无功功率的检测和补偿作为当前的研究热点之一在电网谐波电流检测中获得了广泛应用。目前电力系统关于无功功率的检测的精度不是很高,这种现状特别是对电力系统的检测控制造成了很大影响,在电力系统中有功功率和无功功率准确检测是进行无功调节的基础,检测精度的高低直接影响着控制的效果,同时随着电力市场的发展,电价的高低不仅仅只是考虑有功功率,现在很多系统开始把无功功率考虑在内,所以有功功率和无功功率准确检测也是电力系统电能计量和计费的基础。
     电力系统信号处理中涌现了大量的理论,传统的信号处理及分析方法表现出了很大的局限性。随着信号处理技术的发展,傅里叶变换开始获得了广泛应用,采用傅里叶变换分析信号所得的频谱特性成为了目前电力谐波检测和功率测量的基本理论依据,在很大程度上解决了检测精度的问题。但傅里叶变换在实际工程应用中也存在很大的问题,由于在电力系统中可能会遇到复杂的随机信号,采用傅里叶变换对信号进行分解时在一定条件下会产生频谱泄露、频谱混叠和栅栏效应等现象。同时采用傅里叶变换对信号分解时,是将信号按基波频率分解成为基频整数倍的谐波,而实际信号中可能存在频率不为基波整数倍的间谐波,这会导致分析计算的结果与实际不相吻合。同时傅里叶变换将一个周期信号分解成为正弦和余弦函数的叠加,这种算法的运算量很大,实际信号分析中会占用大量的处理器时间,导致实时性变差。信号处理中较优秀的时频分析方法一般是按照频带分割的思想来处理的,通过算法和滤波器将信号分解成几个不同的频带,这样不仅满足了信号频率分割的要求,还可以根据信号分解的时频要求调整算法复杂度,和傅里叶变换相比计算量也不大,能够适应信号处理的精度要求和实时性的要求。
     以傅里叶变换为基础的信号处理方式及传统的有功无功功率理论在仪器仪表及检测领域得到了广泛应用,在目前日益复杂的电力负载和电力新能源设备的系统中,这些理论方法和基于这些理论的测量仪表逐渐变得捉襟见肘,对电力系统中出现的大量随机非平稳信号,它们的分析结论可能和实际相差很远,信号的检测精度越来越差,不能应对目前越来越复杂的电力系统信号,有时甚至会得出错误的结论。因此必须要寻找更优秀的时频分析理论来对电力系统的信号进行分析。
     小波变换作为一种较新的时频分析方法受到了很多学者的重视,开始在很多领域表现出了它的生命力,除了在语音图像处理领域获得应用以外,它还在电力系统暂态信号的分析中获得了应用。利用小波变换可以准确地分析随机信号的特征,如暂态谐波信号的突变时刻,突变时段及暂态信号的幅度和频率成分,能够非常精确地分析暂态信号的局部特征,同时还能分析计算随机信号的统计特征,在信号分解中具有优良的分频特性,可以将信号中的稳态分量和暂态分量有效地分离出来。
     小波变换作为基于频域功率信号和按频带分解信号的理论,在电力网络信号分析及处理中具有很大的意义,利用它进行谐波分析及无功功率检测不仅是电力系统中及电能计量的需要,而且分析和计算的结果也是无功检测与无功补偿的基础。本文在研究电力系统无功功率测量理论和小波变换理论及算法的基础上进行了以下的一些研究工作:
     (1)分析了目前广泛使用的各种无功功率理论和几种常用的无功功率测量算法,并根据信号处理及滤波器设计理论对目前使用的各种功率理论和算法的优势和不足进行了对比研究。对傅里叶变换在信号分解中存在的优缺点进行论述,指出了其具有的实用范围及不足,对于非平稳信号等信号变化剧烈的情况时,傅里叶变换固定的时频窗函数不能适应此类信号的分析和计算,并提出了改进的方向。在对无功功率的时域和频域分析方法进行探讨的过程中,重点分析了国内外几个专家学者对无功功率不同的定义及具体的在平稳周期信号下的功率分解和测量的理论,同时也分析了在信号为畸变条件下实用的各种功率理论并论述了各种功率理论和算法的实际物理意义及其适用范围。
     (2)研究了含有多频谐波信号的非正弦电路的无功功率理论及其无功功率测量算法,在对各种无功功率测量算法进行研究的基础上,根据Budeanu关于非正弦电路的无功功率定义提出了基于希尔伯特变换的无功功率测量算法,该算法通过设计一个希尔伯特数字滤波器来实现数字信号的相移,就可以采用有功功率的计算理论来计算无功功率。这种通过采用移相滤波和功率计算的无功检测算法适合于含有谐波信号分析计算,对于含有多频谐波的非正弦电路是非常实用的。本文结合滤波器设计理论所设计的希尔伯特数字滤波器具有优秀的相移特性,能够在很大的频率范围内实现精确的相移并且具有优越的频率响应特性,这样高精度的相移能够大幅提高信号谐波分解能力和功率测量准确度。
     (3)重点研究了时频信号处理中经常运用的连续小波变换、离散小波变换等几种高性能的信号处理变换方法,分析了连续小波变换、离散小波变换的时频分解特性。指出了傅里叶变换方法在信号时频分解方面的局限,论述了小波变换相对于傅里叶变换性能方面的提升。在对各种小波分析方法进行研究的基础上,根据实际系统中信号的特点提出了小波函数的构造方法。同时对各种不同类型的小波函数滤波器进行了对比研究,如Dmeyer小波、不同阶次的DB小波等对信号进行处理时的不同特点。对分解的结果进行了对比,论述了不同的小波函数分解信号的误差及产生的原因,同时给出了提高信号分解精度的方法。并采用构造的小波滤波器把信号分解到各个不同频率的子频带中,重构则恰好为一个逆过程,然后在各个不同的子频带中分别对信号进行分析和计算,由此得到信号的有效值、功率等相关参数。针对目前电力系统中存在的非线性、非平稳暂态信号等也提出了分析检测方法,提取信号的特征,并推导了几种基于小波滤波器理论的电力系统无功功率测量算法。
     (4)分析研究了离散小波函数的构造及其正交镜像滤波器组的选取对信号分解、谐波分析及无功功率检测的影响,在对电力系统实际信号分析的基础上,结合已有的小波函数和小波滤波器设计理论,构造了全新的频域局部性好的正交小波函数,该正交小波函数能够实现信号的高精度分频和测量,能提高各个子频带的测量准确度,同时系统地研究了离散小波变换多相滤波器组测量有功及无功的整体结构和方案,并验证了小波分析所具有时域和频域双重分辨率,所设计的正交小波函数在信号分解时的无功测量算法有很好的频带谐波提取效果及功率检测精度。
     (5)对基于小波变换的异步电机转矩测试仪进行了研究设计,采用构造的小波滤波器对异步电机的输入电压电流进行分解计算,由此计算出电机的有功和无功。采用红外测速装置测试出电机的转速,再结合异步电机的动态方程推导出了转矩的观测公式,在此基础上测量出异步电机的转矩。
     (6)对离散小波变换及构造的正交镜像滤波器组存在的混叠问题进行了研究,对小波变换中导致小波混叠的实质原因进行了分析,重点探讨了小波滤波器组的幅频特性和由幅频特性所导致的小波分解幅度相位方面的误差。并采用具体的小波函数的幅频特性图说明了小波混叠现象及混叠对检测的影响,并结合正交镜像滤波器理论分析计算了混叠分量的大小,在此基础上提出了具体的混叠抑制方法,采用计算出的混叠分量去补偿实际的分解结果。在对小波变换的频率特性及能量泄漏问题了研究的基础上提出了解决泄露及保证检测精度的小波函数选用原则,在构造小波函数时分析了小波分解滤波器序列长度和能量泄漏之间的关系,并结合滤波器的幅频特性提出了消除小波混叠及提高检测精度的小波滤波器选取方法,消除了采用传统小波滤波器可能带来的混叠现象和检测误差。
With the rapid development of modern information technology and electric power industry, power system, power supply and load types have become more and more. New energy sources such as wind power, solar power and other new energy systems and some new intelligent equipment are used in power system. The extensive use of conversion device, as well as the system flow and compensate for some of the variable adjustment device is become more complex, nonlinear characteristics of power system has become increasingly clearly, a large number of non-linear loads in power system and the use of electric power network provided by the voltage and current waveform distortion are getting worse. Asymmetry of power network and load characteristics and power networks, non-linear harmonic pollution has become increasingly serious, while the power network also may be subject to some random signal interference, such as electromagnetic radiation, and some electrical equipment in operation generated stochastic, non-stationary nature of some of the interference signal, and the random signal and the frequency distribution of a wide harmonic signal in the system are very difficult to be measured accurately.
     Many scientist and technician have undertaken extensive research in the random signal detection and harmonic analysis, there has been a lot of literature about signal detection and harmonic processing. Solving the power quality pollution in a variety of new electrical equipment, non-linear load on the grid power system and power network analysis has become hot in the current power system research. Such as the power quality analysis, harmonic analysis of compensation device research and development, testing and compensation of reactive power, power filter design, research has achieved great development. As in the instantaneous reactive power theory-based power system reactive power detection and compensation as one of the current research focus harmonic detection gained wider application. The reactive power detection of power system is not accurate currently, this situation especially for the detection and control of power system had a significant impact in the power system, The accurate detection of active power and reactive power is not only the base of reactive power regulation, but also has a direct impact on the level of precision of detection control. At the same time with the electricity market development, electricity prices not only take into account the level of active power, but also the reactive power is taken into account in the system, so the accurate detection active and reactive power of power system is the base of energy metering and billing.
     A large number of theories have emerged in power system signal processing, the traditional signal processing and analysis methods have significant limitations. With the development of signal processing, Fourier transform have began to gain a wide range of applications, Fourier transform spectral characteristics analysis obtained the fundamental theoretical basis of the current electricity power harmonics detection and measurement, and solved the detection accuracy problems. But the applications of the Fourier transform in practical engineering have also encountered problems, because the power system may experience a complex random signals, using Fourier transform signal decomposition under certain conditions, will produce spectral leakage, spectrum aliasing and phenomena such as fence effect. At the same time Fourier transform is to decompose the signal according to fundamental frequency as an integer multiple of fundamental frequency harmonics, while the actual signal may exist the fundamental frequency is not an integer multiple of the inter-harmonics, which will lead to analysis results of the calculation does not correspond with reality. At the same time Fourier transform decompose signal into the superposition of sine and cosine functions and this algorithm has a large computational complexity, the actual signal analysis will occupy a lot of processor time, resulting in real-time variation. The more excellent time-frequency signal processing and analysis methods are generally decompose signal according to band division, through algorithms and filters decompose the signal into several different frequency bands, so that not only meets the requirements of the signal frequency division and also be according to the signal decomposition of time-frequency and revise the complexity of the algorithm, Compared with Fourier transform, it can adapt to the accuracy of signal processing requirements and real-time requirements and has little computation.
     Signal processing method based on Fourier transform and the traditional active, reactive power theory have been widely applied in the field of instrumentation and testing. In the system of increasingly complex power load and new energy power equipment, these theoretical approaches and measuring instruments based on these theories have become increasingly stretched, due to a lot of random non-stationary signals appeared in power system, the analysis and practical conclusion may be far from actuality, the signal detection accuracy is getting worse and can not cope with increasing complexity of the power system signals currently, and sometimes even come to the wrong conclusions. So it must find better time-frequency analysis theory for power system signal analysis.
     Wavelet transform as a relatively new method of time-frequency analysis is received attention by many scholars and it began to show its vitality in many areas. In addition to the field of image and voice access processing, it is also applied in the transient signal analysis of power system, with Wavelet transform, we can accurately analyze the characteristics of random signals, such as the transient moment of harmonic signal mutations, mutation moment and transient signal amplitude and frequency components, it also can analyze the local transient signal characteristics and calculate the statistical characteristics of random signals very precisely. It has excellent characteristics of sub frequency signal decomposition, and can separate the steady-state signal and transient signal effectively.
     Wavelet transform is a theory based on frequency domain of power signal and on band decomposition of signal, it is of great significance in signal analysis and processing in power grid. Using it for harmonic analysis and reactive power detection is not only the needs of power system and the electric energy metering, but its analysis and calculation results will also be the basis of reactive detection and reactive power compensation. This paper studies power system reactive power measurement theory, wavelet transform theory and algorithm based on the following research work:
     (1) Analyzed the widely used reactive power theory currently and several commonly used in reactive power measurement algorithm, comparatively studied the advantages and disadvantages of the power theories and algorithms based on signal processing and filter design theory. Discussed the advantages and disadvantages of Fourier transform in signal decomposition, pointed out its application scope and practical lack, In the situation of signals such as non-stationary signals and rapid change signals, Fourier transform has a fixed time-frequency window function and can not meet the demand of such signal analysis and calculation, at the same time proposed directions for improvement. In the explore process of time domain and frequency domain analysis methods of reactive power mearsurement, focused on analyzing several domestic, foreign experts, scholars on the different definitions of reactive power and the specified the stable periodic signal power decomposition and measurement theory. Analyzed the practical power theories under the conditions of the signal distortion and discussed a variety of power theory, algorithms, real physical significance and specified the scope of application.
     (2) Studied reactive power theory and reactive power measurement algorithm of non-sinusoidal circuit containing multi-frequency harmonic signal, through the analysis of the variety of reactive power measurement algorithm, proposed the reactive power measurement algorithm based on the reactive power definition of Budeanu non-sinusoidal circuit and based on Hilbert transform, which achieved the digital signals phase shift through a Hilbert digital filter, So it can calculate the reactive power with the active power theoretical calculation. This phase shift through the use of filtering and calculation of reactive power detection algorithm is suitable to the signal analysis and calculation which containing the harmonic signal, it is very practical for the non-sinusoidal circuit containing the multi-frequency harmonics. In this paper, filter design theory, digital filter designed by Hilbert phase shift with excellent features, have a large frequency range to achieve accurate phase shift and has a superior frequency response characteristics, such high-precision phase-shifting can substantially increase the capacity of signal harmonics decomposition and power measurement accuracy.
     (3) Focused on continuous wavelet transform, discrete wavelet transform and several high-performance signal processing method in the time-frequency signal processing. Analyzed the continuous wavelet transform, discrete wavelet transform time-frequency decomposition characteristics. Pointed out the limitations of Fourier transform method in time-frequency decomposition and the performance improvement is discussed about wavelet transform Compare to the Fourier transform. based on the analysis of a variety of wavelet transform and the signal characteristics of actual system we constructed the wavelet function. At the same time we researched various types of wavelet function filters compatively, such as Dmeyer wavelet, DB wavelet of different levels such as the signal processing of the different characteristics. The decomposition results were compared, and the errors and their causes are discussed by different wavelet decomposition, at the same time found the way to improve the accuracy of signal decomposition. And using the constructed wavelet filter to decompose the signal into different frequency sub-bands, the reconstruction is just a reverse process, and then the signal analysis and calculation is performed in different sub-bands respectively, got the effective value, power and other related parameters of the signal. Made an analysis of detection methods to extract signal features in the current power system by presence of non-linear, non-stationary transient signals, and derived several reactive power measurement algorithm of power system based on wavelet filter.
     (4) Analysis of the construction of discrete wavelet functions and their selection of quadrature mirror filter banks for signal decomposition, harmonic analysis and detection of reactive power impact on power system based on the actual signal analysis, combined with the existing wavelet function and wavelet filter design theory, constructed a new frequency-domain partial good orthogonal wavelet function, the orthogonal wavelet function is able to achieve high-precision sub-band signals and measurement of various sub-bands, which can improve measurement accuracy. At the same time systematically studied the overall structure and programs of the active and reactive power measurement based on discrete wavelet transform polyphase filter, and verified that the wavelet analysis has a dual time-domain and frequency domain resolution, the orthogonal wavelet function algorithm designed has a very good band harmonic extraction and power detection accuracy in the signal decomposition at the reactive power measurement.
     (5) Studied and designed the induction motor torque tester based on Wavelet transform, Analyzed and calculated the input voltage and current of induction motors by the constructed wavelet filter, therefore calculated the motor active and reactive power. Tested the motor rotate speed by infrared gun device, derived motor torque observations formula combined with the dynamic equations of induction motor, and measured the induction motor's torque.
     (6) Studied the existing aliasing of the discrete wavelet transform and the quadrature mirror filter bank structure conducted a, analyzed the real causes of the wavelet aliasing caused in wavelet transform, focused discused the wavelet filter amplitude-frequency characteristics and amplitude, phase errors caused by amplitude-frequency characteristics of the wavelet decomposition. Used specific wavelet function of the amplitude-frequency characteristic diagram to illustrate the wavelet-aliasing, and aliasing effects on the detection, calculated the aliasing component combined with theoretical analysis of quadrature mirror filters, and promoted the specific aliasing suppression method, using the calculated result to compensate the aliasing of the actual decomposition. Promote the wavelet function selection principle to solve detection leaks and to ensure the accuracy by the frequency characteristics of wavelet transform and the energy leakage. Analyzed the relationship between the wavelet decomposition filter sequence length and the energy leakage suggested at the wavelet function construction, promoted the wavelet filter selection method of the elimination of wavelet-aliasing and to improve detection accuracy combined with the filter amplitude-frequency characteristic, eliminated the aliasing and testing errors of traditional wavelet filter.
引文
[1]唐向宏,李齐良.时频分析与小波变换[M].北京:科学出版社,2007.
    [2]陈涵,刘会金,李大路.噪声情况下的时变间谐波谱估计[J].中国电机工程学报,2009,29(19):105-110.
    [3]周念成,谭桂华,何建森.基于统计方法的电网谐波状态估计误差分析[J].电工技术学报,2009,24(6):109-114.
    [4]刘承员,粟渊恺,刘桂英.基于小波变换模极大值与奇异点的短时电压变动实时检测[J].电力科学与技术学报,2009,24(1):81-87.
    [5]王婉秋,杨松.结构故障诊断中的小波分解层数选取方法研究[J].强度与环境,2009,36(4):34-41.
    [6]Cirrincione,M. Pucci,M. Vitale,G. Miraoui,A. Current Harmonic Compensation by a Single-Phase Shunt Active Power Filter Controlled by Adaptive Neural Filtering. [J]. IEEE Transactions on Industrial Electronics,2009,56(8):3128-3143.
    [7]Sarkar,A. Sengupta,S. Design and implementation of a novel power factor monitoring unit using discrete wavelet transform.[J]. Science, Measurement & Technology,2009,3(1):2-12.
    [8]Sainz,L. Caro,M. Caro,E. Analytical Study of the Series Resonance in Power Systems With the Steinmetz Circuit.[J]. IEEE Transactions on Power Delivery, 2009,24(4):2090-2098.
    [9]叶淳铮,常鲜戎,顾为国.基于小波变换和支持向量机的电力系统短期负荷预测[J].电力系统保护与控制,2009,37(14):41-45.
    [10]韩敏,刘云侠.改进的双小波空域相关混沌信号降噪方法[J].系统仿真学报,2009,21(15):4743-4747.
    [11]徐金榜,何悦嘉,沈安文.基于FFT与坐标变换的谐波电流检测[J].华中科技大学学报,2009,37(7):83-85.
    [12]刘芳,陈君诚,韩璐.基于小波变换和快速傅立叶变换的电网谐波分析[J].通信电源技术,2009,26(4):17-19.
    [13]Chen Ruiguo. Zhao Yisong. Sun Yanhe.Study of partial discharge feature based on complex wavelet for large power transformer. [C]. IEEE International Conference on Industrial Technology,2009,1-5.
    [14]Salcic,Z. Sing Kiong Nguang. Yanzhen Wu. An Improved Taylor Method for Frequency Measurement in Power Systems.[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(9):3288-3294.
    [15]Fanghua Zhang. Yangguang Yan. Selective Harmonic Elimination PWM Control Scheme on a Three-Phase Four-Leg Voltage Source Inverter. [J]. IEEE Transactions on Power Electronics,2009,24(7):1682-1689.
    [16]赵敏.FFT变换与小波变换在变压器局部放电信号去噪中的应用[J].变压器.2009,46(5):28-31.
    [17]冯宇,唐轶,吴夕科.采用电量参数分析方法的电能质量扰动参数估计[J].中国电机工程学报,2009,29(16):100-107.
    [18]欧阳碧欢,赵春宇.现有电网谐波检测方法及其发展趋势[J].电子测量技术,2009,32(7):1-4.
    [19]李海东,李青.基于阈值法的小波去噪算法研究[J].计算机技术与发展,2009,19(7):56-58.
    [20]权建峰,李艳,郭东敏.小波变换模极大值方法对信号的奇异性检测[J].探测与控制学报,2009,31(2):46-49.
    [21]Cataliotti,A. Cosentino,V. Nuccio,S. Static Meters for the Reactive Energy in the Presence of Harmonics:An Experimental Metrological Characterization.[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(8):2574-2579.
    [22]Jiefan,Cui. Yue,Fu. Nan,Zhao. Linear motor control based on resistance identification with wavelet transform. [C]. IEEE International Conference on Automation and Logistics,2009,5-7 Aug,1518-1521.
    [23]Abu-Elanien,A.E.B. Salama,M.M.A. A Wavelet-ANN Technique for Locating Switched Capacitors in Distribution Systems.[J]. IEEE Transactions on Power Delivery,2009,24(1):400-409.
    [24]Lavopa,E. Zanchetta,P. Sumner,M. Cupertino,F. Real-Time Estimation of Fundamental Frequency and Harmonics for Active Shunt Power Filters in Aircraft Electrical Systems.[J]. IEEE Transactions on Industrial Electronics,2009,56(8): 2875-2884.
    [25]Silva,J. Narayanan,S. Discriminative Wavelet Packet Filter Bank Selection for Pattern Recognition.[J]. IEEE Transactions on Signal Processing,2009,57(5): 1796-1810.
    [26]赵勇,王学伟.小波Mallat谐波测量的带内泄漏误差分析与算法改进[J].电力自动化设备,2009,29(8):59-63.
    [27]宗常进,毕军涛,董军宇.基于离散小波变换的信号分解算法研究[J].计算机工程与应用,2009,45(8):165-167.
    [28]刘慧,刘国海,沈跃.采用希尔伯特振动分解的非整数次谐波检测新方法[J].高电压技术,2009,35(7):1758-1764.
    [29]Weickert,T. Benjaminsen,C. Kiencke,U.Analytic Wavelet Packets Combining the Dual-Tree Approach With Wavelet Packets for Signal Analysis and Filtering[J]. IEEE Transactions on Signal Processing,2009,57(2):493-502.
    [30]Li Ying-Lang. Na Cai.The Application of Wavelet De-noising in the Power System Fault Recording.[J]. IEEE Transactions on Computer Society,2009,78(2):495-498.
    [31]Mehrizi-Sani,A. Filizadeh,S. An Optimized Space Vector Modulation Sequence for Improved Harmonic Performance.[J]. IEEE Transactions on Industrial Electronics, 2009,56(8):2894-2903.
    [32]邵婷婷,王吉富,韩少波.基于小波多分辨率分析的一维信号阈值去噪[J].山西电子技术.2009,4(4):41-42.
    [33]王耀宇,张颖.基于MATLAB的瞬时无功理论谐波检测算法仿真研究[J].电源技术应用,2009,12(5):12-15.
    [34]刘毅华,王媛媛,宋执环.基于平稳小波包分解和希尔伯特变换的故障特征自适应提取[J].电工技术学报,2009,24(2):145-157.
    [35]Qingjiang Chen. Zongling An. Properties of vector-valued multivariable wavelet packets with m-scale.[C]. Control and Decision Conference,2009,1826-1829.
    [36]Nassif,A.B. Wilsun Xu. Freitas,W. An Investigation on the Selection of Filter Topologies for Passive Filter Applications.[J]. IEEE Transactions on Power Delivery, 2009,24(3):1710-1718.
    [37]Panigrahi,B.K. Pandi,V.R. Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest neighbour algorithm.[J]. Generation, Transmission & Distribution,2009,3(3):296-306.
    [38]Castilla,M. Miret,J. Matas,J. Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped Resonant Harmonic Compensators.[J]. IEEE Transactions on Industrial Electronics,2009,56(11): 4492-4501.
    [39]Jasmine,J.S.L. Govardhan,A. Baskaran,S. Microcalcification detection in digital mammograms based on wavelet analysis and neural networks. [C]. International Conference on Control, Automation, Communication and Energy Conservation, 2009,1-6.
    [40]柯慧,顾洁.基于二进小波和二_十进制的电能质量信号检测及分类[J].电力自动化设备,2009,29(7):67-71.
    [41]赵磊,赵连玉.Haar小波滤波算法的研究[J].天津理工大学学报,2009,25(2):44-47.
    [42]秦英林,田立军,常学飞.基于小波变换能量分布和神经网络的电能质量扰动分类[J].电力自动化设备,2009,29(7):64-67.
    [43]梁祖权,束洪春,刘志坚.新型统一电能质量调节器解耦控制方法[J].中国电机工程学报,2009,29(19):99-104.
    [44]张卓,何东健.基于DB小波的暂态电能质量分析方法研究[J].微计算机信息,2009,4(1):221-223.
    [45]李军,赵峰.最小二乘小波支持向量机在非线性控制中的应用[J].电机与控制学报,2009,13(4):620-625.
    [46]Saleh,S.A. Rahman,M.A. Analysis and Real-Time Testing of a Controlled Single-Phase Wavelet-Modulated Inverter for Capacitor-Run Induction Motors.[J]. IEEE transactions on Energy Conversion,2009,24(1):21-29.
    [47]Hur,K. Santoso,S. Estimation of System Damping Parameters Using Analytic Wavelet Transforms. [J]. IEEE Transactions on Power Delivery,2009,24(3): 1302-1309.
    [48]Chaudhury,K.N. Unser,M. Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms.[J]. IEEE Transactions on Signal Processing, 2009,57(9):3411-3425.
    [49]梁东莺,毛蔚.小波变换在有源电力滤波器谐波分析中的应用[J].计算机工程与设计,2009,30(14):3472-3477.
    [50]曾博,滕召胜.基于多CPU与相位差校正的高精度谐波功率测量[J].电力系统自动化,2009,33(11):89-93.
    [51]王昌宝,郑世杰.超宽带信号检测中基于新阈值函数的小波去噪方法研究[J].理论与方法,2009,28(6):17-27.
    [52]欧鑫.基于多种小波基的MPSK信号符号速率估计[J].信号处理,2009,25(3): 469-471.
    [53]王若愚,冯豫华,郭经红.基于正交三角函数族的电力系统谐波识别算法[J].计算机仿真,2009,26(6):288-317.
    [54]吕雄飞,王蕴恒,卜树坡.基于DSP技术和小波理论的小电流接地系统故障选线装置的研究[J].电测与仪表,2009,46(520):63-66.
    [55]刘力,周建中,李英海.基于小波消噪的混沌径流预测模型[J].华中科技大学学报,2009,37(7):86-89.
    [56]李波,黄纯,方达意.改进的单相谐波和无功电流检测算法[J].电力电子技术,2009,43(7):5-7.
    [57]Hagh,M.T. Taghizadeh,H. Razi,K. Harmonic Minimization in Multilevel Inverters Using Modified Species-Based Particle Swarm Optimization. [J]. IEEE Transactions on Power Electronics,2009,24(10):2259-2267.
    [58]Sadeghian, A. Zhongming Ye. Bin Wu. Online Detection of Broken Rotor Bars in Induction Motors by Wavelet Packet Decomposition and Artificial Neural Networks. [J]. IEEE Transactions on Instrumentation and Measurement, 2009,58(7):2253-2263.
    [59]Rodriguez,P. Candela,J.I. Luna,A. Asiminoaei, L. Current Harmonics Cancellation in Three-Phase Four-Wire Systems by Using a Four-Branch Star Filtering Topology.[J]. IEEE Transactions on Power Electronics,2009,24(8):1939-1950.
    [60]董婷,阮建国.连续小波变换在电力系统谐波分析中的应用[J].微计算机信息,2009,25(8):212-214.
    [61]柯慧,顾洁.基于二进小波变换的电能质量暂态信号的检测[J].水电能源科学,2009,27(3):177-179.
    [62]何英杰,刘进军,王兆安.三电平有源电力滤波器谐波电流跟踪无差控制方法[J].西安交通大学学报,2009,43(8):90-94.
    [63]贾勇,何正友,赵静.基于小波熵和概率神经网络的配电网电压暂降源识别方法[J].电网技术,2009,33(16):63-69.
    [64]张严,吕伟杰.基于小波变换的电力系统间谐波分析与检测[J].电气开关,2009,04(289):46-71.
    [65]Freijedo,F.D. Doval-Gandoy,J. Lopez,O. A Signal-Processing Adaptive Algorithm for Selective Current Harmonic Cancellation in Active Power Filters.[J]. IEEE Transactions on Industrial Electronics,2009,56(8):2829-2840.
    [66]Tzung-Lin Lee. Jian-Cheng Li. Po-Tai Cheng. Discrete Frequency Tuning Active Filter for Power System Harmonics. [J]. IEEE Transactions on Power Electronics, 2009,24(5):1209-1217.
    [67]Collins,E.R. Jian Jiang. Analysis of Elevated Neutral-to-Earth Voltage in Distribution Systems With Harmonic Distortion.[J]. IEEE Transactions on Power Delivery,2009,24(3):1696-1702.
    [68]杨晓萍,刘普森,钟彦儒.基于经验模式分解的有源滤波器谐波检测[J].电工技术学报,2009,24(5):197-202.
    [69]王海军,练继建,张社荣等.基于Morlet小波变换和改进遗传算法的动态识别[J].哈尔滨工业大学学报,2009,41(4):193-196.
    [70]马秉伟,周莉.基于TLS_ESPRIT算法和支持向量机的间谐波检测[J].高电压技术,2009,35(6):1468-1471.
    [71]熊杰锋,王柏林,孙艳.奇异值与特征值分解在谐波源定阶中的等价性[J].电测与仪表,2009,46(523):6-21.
    [72]王云亮,孙凤杰.基于小波理论的电力谐波分析[J].天津理工大学学报,2009,25(4):42-45.
    [73]李庚银,王洪磊,周明.基于改进小波能熵和支持向量机的短时电能质量扰动识别[J].电工技术学报,2009,24(4):161-167.
    [74]宗荣芳.多尺度小波变换快速分解与重构算法的实现[J].计算机与信息技术,2009,20(6):42-43.
    [75]Orts-Grau,S. Gimeno-Sales,F.J. Segui-Chilet,S. Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach.[J]. IEEE Transactions on Industrial Electronics,2009,56(8):2862-2874.
    [76]de Aguiar,E.P. Marques,C.A.G Duque,C.A. Signal Decomposition With Reduced Complexity for Classification of Isolated and Multiple Disturbances in Electric Signals.[J]. IEEE Transactions on Power Delivery,2009,24(4):2459-2460.
    [77]Antonino-Daviu,J.A. Riera-Guasp,M. Pineda-Sanchez,M. A Critical Comparison Between DWT and Hilbert-Huang-Based Methods for the Diagnosis of Rotor Bar Failures in Induction Machines.[J]. IEEE Transactions on Industry Applications, 2009,45(5):1794-1803.
    [78]杜林,郭良峰,司马文霞.采用小波多分辨率能量分布分析电网过电压特征[J].高电压技术,2009,35(8):1927-1932.
    [79]武小梅,栗颂东,文福拴.瞬时无功功率理论在配电网电能质量控制中的应用[J].电力系统保护与控制,2009,37(10):79-82.
    [80]武晓冬,朱燕芳.小波分析在高次谐波抑制上的应用研究[J].电力学报,2009,24(2):125-127.
    [81]孔凡坊,王三桃,潘佩芳.基于小波变换模之和的奇异性检测启动元件算法[J].电力系统保护与控制,2009,37(11):24-27.
    [82]袁建虎,何竹青,龙云飞.低信噪比信号的连续与离散小波变换比较研究[J].自动化仪表,2009,30(8):8-10.
    [83]曾博,滕召胜,温和.莱夫-文森特窗插值FFT谐波分析方法[J].中国电机工程学报,2009,29(10):115-120.
    [84]韩孟涛,王伟平.基于小波变换的信号奇异性检测的研究[J].仪表技术,2009,5(5):46-52.
    [85]唐惠玲,刘志军.多小波变换在电能质量扰动检测与分类中的应用[J].江西师范大学学报,2009,33(2):148-152.
    [86]郭晓蓓,高沁翔.基于小波变换的电压暂态扰动检测的研究[J].微计算机信息,2009,25(3):208-210.
    [87]邹文学,牛滨,庞兵.电网谐波有功分量的分析与处理[J].电测与仪表,2009,46(521):46-49.
    [88]Gargour,C. Gabrea,M. Ramachandran,V. Lina,J. A short introduction to wavelets and their applications.[J]. Circuits and Systems Magazine,2009,9(2):57-68.
    [89]Borkowski,D. Bien,A. Improvement of Accuracy of Power System Spectral Analysis by Coherent Resampling.[J]. IEEE Transactions on Power Delivery, 2009,24(3):1004-1013.
    [90]周宝国.基于虚拟仪器技术的小波信号消噪仪的设计[J].计算机测量与控制,2009,17(4):794-796.
    [91]孔英会,吕云洁,吕云清.改进的基于移动小波树的数据流异常检测方法[J].华北电力大学学报.2009,36(4):67-72.
    [92]张全明,刘会金,兰泉妮.基于频谱分析的间谐波闪变效应计算[J].电力系统自动化,2009,33(9):67-72.
    [93]张海波,叶晓慧.一种改善微弱信号信噪比的小波变换消噪法[J].科学计算与信息处理,2009,4(4):124-130.
    [94]刘春波,王鲜芳,潘丰.基于多重小波变换与新阈值函数的去噪方法研究[J].计算机应用研究,2009,26(2):455-456.
    [95]周建萍,郑应平,王志萍.基于提升小波的输电线路短路故障奇异点检测[J].上海电力学院学报,2009,25(4):329-357.
    [96]Chang Hsin Chien. Bucknall,R. Harmonic Calculations of Proximity Effect on Impedance Characteristics in Subsea Power Transmission Cables. [J]. IEEE Transactions on Power Delivery,2009,24(4):2150-2158.
    [97]Nassif,A.B. Wilsun Xu. Freitas,W. An Investigation on the Selection of Filter Topologies for Passive Filter Applications.[J]. IEEE Transactions on Power Delivery, 2009,24(3):1710-1718.
    [98]DAntona,G. Muscas,C. Sulis,S. State Estimation for the Localization of Harmonic Sources in Electric Distribution Systems.[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(5):1462-1470.
    [99]储珺,马建伟.基于小波变换的电能质量扰动信号的检测[J].电力系统保护与控制,2009,37(5):34-64.
    [100]司杨.小波降噪在电力系统谐波分析中的应用[J].青海大学学报,2009,27(2):6-12.
    [101]郭京蕾.基于小波变换的电网谐波电流检测研究[J].计算机工程与设计,2009,30(3):732-734.
    [102]Massoud,A.M. Ahmed,K.H. Finney,S.J. Harmonic distortion-based island detection technique for inverter-based distributed generation. [J].Renewable Power Generation.2009,3(4):493-507.
    [103]Morsi,W.G. El-Hawary,M.E. Wavelet Packet Transform-Based Power Quality Indices for Balanced and Unbalanced Three-Phase Systems Under Stationary or Nonstationary Operating Conditions.[J]. IEEE Transactions on Power Delivery, 2009,24(4):2300-2310.
    [104]Jowder,F.A.L. Design and analysis of dynamic voltage restorer for deep voltage sag and harmonic compensation.[J]. Generation, Transmission & Distribution,2009,3(6): 547-560.
    [105]周建萍,郑应平,王志萍.基于提升小波的输电线路短路故障奇异点检测[J].上海电力学院学报,2009,25(4):329-357.
    [106]龚静.小波模极大值原理在暂态电能质量扰动信号检测中的应用[J].东北电力 技术,2009,5(5):10-13.
    [107]章梦哲,王军,赵书娟.基于Hermite插值同步化算法的电网谐波与无功测量方法[J].电力系统保护与控制,2009,37(12):58-67.
    [108]Demoulias,C. Goutzamanis,D. Gouramanis,K. Analysis of the voltage harmonic distortion at buses feeding office loads. [J]. Science, Measurement & Technology, 2009,3(4):286-301.
    [109]Mastromauro,R.A. Liserre,M. Kerekes,T. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality.[J]. IEEE Transactions on Industrial Electronics,2009,56(11): 4436-4444.
    [110]Kedjar,B. Al-Haddad,K. DSP-Based Implementation of an LQR With Integral Action for a Three-Phase Three-Wire Shunt Active Power Filter.[J]. IEEE Transactions on Industrial Electronics,2009,56(8):2821-2828.
    [111]Cecchi,V. St.Leger,A. Miu,K. Modeling Approach for Transmission Lines in the Presence of Non-Fundamental Frequencies. [J]. IEEE Transactions on Power Delivery,2009,24(4):2328-2335.
    [112]Toda,H. Zhong Zhang. Perfectly translation-invariant complex wavelet packet transforms. [C]. International Conference on Wavelet Analysis and Pattern Recognition,2009,374-379.
    [113]赵贺,钱峰,汤广福.电力系统谐波不稳定及相应对策的研究[J].中国电机工程学报,2009,29(13):29-34.
    [114]陈春玲,梁伟伟,许童羽.基于小波与FFT的电网谐波检测改进方法研究[J].农业科技与装备,2009,4(4):76-78.
    [115]段汕,何娟,刘少英.多小波变换在信号去噪中的应用[J].中南民族大学学报,2009,28(2):99-103.
    [116]Teotrakool,K. Devaney,M.J. Eren,L. Adjustable-Speed Drive Bearing-Fault Detection Via Wavelet Packet Decomposition.[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(8):2747-2754.
    [117]Radil,T. Ramos,P.M. Serra,A.C. New Spectrum Leakage Correction Algorithm for Frequency Estimation of Power System Signals.[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(5):1670-1679.
    [118]Freijedo,F.D. Doval-Gandoy,J. Lopez,O. A Signal-Processing Adaptive Algorithm for Selective Current Harmonic Cancellation in Active Power Filters.[J]. IEEE Transactions on Industrial Electronics,2009,56(8):2829-2840.
    [119]赵静,何正友,钱清泉.利用广义形态滤波与差分熵的电能质量扰动检测[J].中国电机工程学报,2009,29(7):121-127.
    [120]童立青,钱照明,彭方正.同步旋转坐标谐波检测法的数学建模及数字实现[J].中国电机工程学报,2009,29(19):111-117.
    [121]张勇,纪国宜.基于混沌振子和小波理论检测微弱信号的研究[J].电子测量技术,2009,32(6):40-43.
    [122]周喜超,刘峻,郑伟.基于小波_数学形态学和Hilbert的谐波分析[J].电力系统保护与控制,2009,37(16):20-23.
    [123]谢婷婷,张鸿伟.一种基于瞬时无功功率的电力系统谐波检测改进法[J].科学技术与工程,2009,9(13):3794-3797.
    [124]周明月,杜丽敏,姜文龙.基于高阶统计量的小波变换去噪算法[J].长春理工大学学报,2009,32(2):251-253.
    [125]周建萍,郑应平,王志萍.基于提升小波的输电线路短路故障奇异点检测[J].上海电力学院学报,2009,25(4):329-357.
    [126]Roscoe,A.J. Burt,GM. McDonald, J.R. Frequency and fundamental signal measurement algorithms for distributed control and protection applications. [J]. Generation, Transmission & Distribution,2009,3(5):485-495.
    [127]Morsi,W.G El-Hawary,M.E. Fuzzy-Wavelet-Based Electric Power Quality Assessment of Distribution Systems Under Stationary and Nonstationary Disturbances.[J]. IEEE Transactions on Power Delivery,2009,24(4):2099-2106.
    [128]Vlahinic,S. Brnobic,D. Stojkovic,N. Indices for Harmonic Distortion Monitoring of Power Distribution Systems.[J]. IEEE Transactions on Instrumentation and Measurement,2009,58(5):1771-1777.
    [129]Yazdani,D. Bakhshai,A. Joos,G. A Real-Time Three-Phase Selective Harmonic Extraction Approach for Grid-Connected Converters.[J]. IEEE Transactions on Industrial Electronics,2009,56(10):4097-4106.
    [130]Bao,Peng-yu. Yuan,Mei. Fu,Zhong. Research on monitoring technology of bolt tightness degree based on wavelet analysis. [C]. International Conference on Electronic Measurement & Instruments,2009,16-19 Aug,4329-4333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700