统计建模方法的理论研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当今信息时代,各种统计方法层出不穷,统计知识得到越来越多的应用。例如,统计的多尺度建模无论是在理论统计学还是在应用统计学中现都已成为热门课题,这无论对统计方法还是其在各个应用科学领域的发展都起着冲击作用;基于核的学习方法引起了数据分析领域的一场革命;广义可加模型高度的灵活性,为有效揭示数据间所隐含的各种关系提供了一种有效的方法。在化工领域,一个有效的过程模型的建立,对研究如何科学规划生产工艺,进而实现生产过程的优化意义重大。
     针对常规预测函数模型存在未将预测时域的优化从总体上考虑的不足,在统计的多尺度建模方面研究后,基于小波多尺度的特性而提出了基于小波基函数和Hammerstein模型的预测函数模型,其内部模型参数可以通过不断辨识,自适应的进行校正。利用小波的紧支局部性和多尺度分析特性,既保证了整体误差性能的优化,又突出了重要拟合点的逼近要求,并实现了优化变量的集结。理论分析和仿真应用表明,该方法有更好的跟踪性和抗模型失配性能。
     (1)针对如何提高核方法的建模精度的同时还要兼顾建模速度的问题,通过核方法研究,结合小波分析的理论,提出了小波融合核的建模方法。该方法具有小波多分辨率分析和核方法对输入维数不敏感的特点,理论上在保证建模精度的前提下,有更快的建模速度。在此基础上,分别通过一维函数和化工生产数据进行了仿真研究,仿真结果也验证了算法的有效性。(2)由可分Hilbert空间与L~2 ( R )的等价性,利用内积同构的线性算子,可以把L~2 ( R )中子空间的小波尺度函数折算为Hilbert空间中子空间的小波尺度函数。基于支持向量机核函数的条件和小波多分辨率理论,在Hilbert空间构造出Morlet小波核函数。通过仿真实验,与传统的RBF核函数相比较,该尺度再生核函数具有更高的精度和更好的泛化能力。(3)在应用融合核支持向量机建模以提高模型的泛化能力和精度时,为避免在进行核融合时,支持向量机稀疏性的缺失,提出了将数据映射到稀疏特征空间进行研究。通过仿真研究表明,所建模型在保证稀疏性的前提下,能提高建模精度,从而验证了算法的有效性,有良好的应用意义。
     针对谷氨酸发酵过程复杂,如何解决难以建立有效的模型来指导生产过程优化的现状的研究中,发现广义可加模型(GAM)能为谷氨酸的发酵过程提供行之有效的建模方法。利用该方法可以方便的分析不同的建模变量对谷氨酸产量的影响并从中得出与谷氨酸产量间的关系。研究中,基于15批次发酵实验数据,通过对不同影响因素的分析,最终选择三个显著影响因素(时间T、溶氧DO和氧摄取率OUR)来构建GAM模型,这一模型可以对谷氨酸的发酵过程解释97%。该模型的构建成功,为研究发酵过程中不同因素对谷氨酸产量的影响提供了基础。该模型不仅为根据在线数据预测谷氨酸产量提供了可行有效的方法,而且为发酵过程中在线故障诊断提供了新思路。在谷氨酸发酵过程故障诊断的方法研究中,提出了基于GAMs和Bootstrap方法的故障诊断方法。该方法能只依靠显著观测变量就可对发酵过程的状态是否正常做出判断,并能初步给出故障源相关的观测变量。该方法只有很少的参数需要确定和调整,在发酵过程中,一方面能及时的对故障状态进行报告,另一方面为排除故障源提供必要的参考信息,从而为发酵过程的正常运行提供了可靠的保障。
     总之,随着计算机技术的快速普及和广泛发展,面对着数据和信息爆炸的挑战,为迅速有效地将数据提升为信息、知识和智能,统计建模方法在工业领域的研究意义重大。
In today's information age, the statistical knowledge has been used more and more widely in practice with the development of statistic methods emerging in an endless stream. The multi-scale modelling of statistics has been a hot subject whether in theoretical statistics or applied statistics which impacts both the statistical methods and the development in all fields of science. The study methods based on kernel method have resulted in a revolution in the field of data analysis. The high mobility of generalized additive models (GAMs) provides a valid method which can reveal the implicit various relationships among data.
     The predictive functional model is proposed based on wavelet function and Hammerstein model on the basis of the multi-scale characteristic of wavelet, and the inner model parameters can adjust automatically depended on the repeated identification. The multi-scale analysis characteristics of wavelet and the properties of compact support can not only guarantee the optimization of the integrated error, but also highlight the approaching requirement of the important fit points as well as fulfill the aggregation of the optimized variables. Both the theoretical analysis and simulation applications showed that this method had the performance of more fast and less mismatching of the model.
     Based on the theories of wavelet analysis and kernel method, a wavelet fusion kernels modelling method was proposed. It performed multiple-scaled decomposition on sampled data series using wavelet transform firstly, the reconstructed approximate series and detail series were then regressed depending on kernel method, and the outputs were fused finally. This modelling method owning the traits of wavelet multiple solution analysis and kernel method's insensitiveness toward the input dimension has faster modelling speed on the premise of ensuring satisfied modelling precision. On this basis, the simulations were carried out through one dimensional function and the data from the chemical process. The simulation results also showed the effectiveness of the proposed algorithm. When the Hilbert space and L~2 ( R ) are defined isomorphic, linear operators of inner product isomorphic can convert the scaling functions of wavelet subspace in L~2 ( R ) space into other scaling functions of Wavelet Subspace in Hilbert space. Morlet wavelet kernel function is proposed in Hilbert space based on the conditions of the support vector kernel function and wavelet multi-resolution theory. The simulation experiment results showed that the scaling reproducing kernel function had better accuracy and generalization capability as compared with the traditional support vector machine with radial base function (RBF) kernel function. When trying to apply the SVM modelling so as to improve the generalization ability and the precision of models, sample data were mapped to sparse feature space to prevent the loss of SVM’s sparsity when the kernels were fused. Through the simulation, the results showed that this modelling method could improve the modelling accuracy under the premise of guaranteeing sparsity, which verified effectiveness of the method and of significant practical application.
     The GAMs provide an effective way to model the fermentation process of glutamate (Glu). By this model, the effect of the different modelling variables on the production of Glu can be easily analyzed and the relationships between modelling variables and the production of Glu can be discovered. Three significant factors, fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR), were finally selected based on the analysis of the effect of the different factors using the data from 15 batches of Glu fermentation to construct the GAM model. The constructed GAM model could capture 97% variance of the production of Glu during the fermentation process. This model was applied to investigate the single and combined effects of T, DO and OUR on the production of Glu, and the conditions to optimize fermentation process were proposed based on this model. Results showed that the production of Glu can reach a high level by control the concentration levels of DO and OUR during the fermentation process following the optimization conditions proposed by GAM-2. The successful construction of this mode provides the bases to study the effect of different factors on the production of Glu, and we can study of fermentation conditions with specific aims to optimize the fermentation of Glu. This study not only provides an effective way to predict the production of Glu using online data but also provide a novel idea for online-fault diagnosis during the fermentation of Glu. During the study on the fault diagnosis of the fermentation process of Glu, the online fault diagnostic method was proposed based on methods of GAMs and Bootstrap. This method can judge if the state of the fermentation process is normal only relying on the effective observation of the variables and also obtain the observed variables associated with the sources of the faults. This method only involved a few parameters to be determined and adjusted. During the fermentation process, on one hand, this method can provide report timely on the state of the faults, and on the other hand, provide necessary information on debug of the sources of the faults, which therefore provide a reliable way to guarantee the normal running of the fermentation process.
     All in all, with the rapid growth and extensive development of computer technology and the challenge of the data and information explosion, statistical modelling methods have great significances in the field of industry so as to elevate the data to information, knowledge and intelligence rapidly and effectively.
引文
[1] Centsov N. Evaluation of an unknown distribution density from observations[C]. Vol. 3: Doklady, 1962, pp. 1559-1562.
    [2] Coifman R., Wickerhauser M. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information Theory, 1992, 38(2): 713-718.
    [3] Donoho D. CART and best-ortho-basis: a connection[J]. The Annals of Statistics, 1997, 25(5): 1870-1911.
    [4] Mallat S. A wavelet tour of signal processing[M]. San Diego,CA: Academic Process, 1998.
    [5] Mercer J. Functions of positive and negative type, and their connection with the theory of integral equations[J]. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 1909, 209: 415-446.
    [6]王文丽.基于rm界的多核支持向量机算法研究[D].西安:西安电子科技大学, 2009.
    [7]李青.优化核方法[D].西安:西安电子科技大学, 2007.
    [8] Baudat G., Anouar F. Feature vector selection and projection using kernels[J]. Neurocomputing, 2003, 55(1-2): 21-38.
    [9] Saitoh S. Theory of reproducing kernels and its applications[M]. Hoarlow, England: Longman Scientific & Technical, 1988.
    [10] Mika S., Ratsch G., Scholkopf B., et al. Invariant Feature Extraction and Classification in Kernel Spaces[C]. In Advances in Neural Information Processing System 12, Cambridge, MA: MIT Press, 2000, pp. 526-532.
    [11] Burges C. Geometry and invariance in kernel based methods[C]. In Advance in kernel method- support vector learning, Cambridge, MA: MIT Press, 1999, pp. 89-116.
    [12] Scholkopf B., Mika S., Burges C., et al. Input Space Versus Feature Space in Kernel-Based Methods[J]. Ieee Transactions on Neural Networks, 1999, 10(5): 1000-1017.
    [13] Scholkopf B., Herbrich R., Smola A. J. A generalized representer theorem[J]. Computational Learning Theory, Proceedings, 2001, 2111: 416-426.
    [14] Scholkopf B. The kernel trick for distances[C]. Advanced in Neural Information Processing Systems 13, Cambridge, MA: MIT Press, 2000, pp. 301-307.
    [15] Wahba G. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV[M]. Advances in kernel methods. MIT Press. 1999: 69-88.
    [16] Wahba G. An introduction to model building with reproducing kernel hilbert spaces[M]. Technical Report 1020. University of Wisconsin-Madison, Statistics Department 2000.
    [17] Tsuda K. Support vector classification with asymmetric kernel function[C]. Proceedings of ESANN'99, Brussels: D Facto, 1999, pp. 183-188.
    [18] Tipping M. E. The Relevance Vector Machine[C]. Advances in Neural Information Processing Systems 12. SOLLA S A, LEEN T K, M LLER K-R, editors: MIT Press, 2000, pp. 652-658.
    [19] Ruiz A., Lopez-De-Teruel P. E. Nonlinear kernel-based statistical pattern analysis[J]. Ieee Transactions on Neural Networks, 2001, 12(1): 16-32.
    [20] Vincent P., Bengio Y. Kernel matching pursuit[J]. Machine Learning, 2002, 48(1-3): 165-187.
    [21]王旭东.基于计算机视觉的机器人多指手预抓取模式聚类分析研究[D]:南京航空航天大学, 2008.
    [22]陈林利,汤军克,董英等.广义相加模型在环境因素健康效应分析中的应用[J].数理医药学杂志, 2006, 19(6): 569-570.
    [23]温仲明,赫晓慧,焦峰等.延河流域本氏针茅(Stipa bungeana)分布预测――广义相加模型及其应用[J].生态学报, 2008, 28(1): 192-201.
    [24] Stone C. Additive regression and other nonparametric models[J]. The Annals of Statistics, 1985, 13(2): 689-705.
    [25] Hastie T., Tibshirani R. Generalized additive models[M]. Chapman & Hall/CRC, 1990.
    [26] Hastie T., Tibshirani R. Generalized Additive Models[J]. Statistical Science, 1986, 1(3): 297-310.
    [27] Kuntze H., Jacubasch A., Richalet J., et al. On the predictive functional control of an elastic industrial robot[C]. 25th IEEE Conference on Decision and Control, Piscataway, USA: IEEE, 1986, pp. 1877-1881.
    [28] Richalet J., Abu E., Arber C., et al. Predictive functional control: application to fast and accurate robots[C]. Proc of 10th IAFC World Congress, Munich, 1997.
    [29]张智焕,王树青.非线性系统的多内模控制[J].浙江大学学报:工学版, 2003, 37(1): 56-59.
    [30]刘暾东,钟诚,宋健等.基于模糊内模的自适应控制算法的并行处理[J].系统工程与电子技术, 2004, 26(1): 83-86.
    [31] Hunter W. I., Korenberg M. J. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models[J]. Biol Cybern, 1986, 55(2-3): 135-144.
    [32] Eskinat E., Johnson S., Luyben W. Use of Hammerstein models in identification of nonlinear systems[J]. AIChE Journal, 1991, 37(2): 255-268.
    [33]柯晶,姜静,乔谊正.应用混合进化策略辨识Wiener―Hammerstein模型[J].系统工程与电子技术, 2006, 28(7): 1055-1058.
    [34]习毅,潘丰.基于Hammerstein模型的非线性自适应预测函数控制[J].系统工程与电子技术, 2008, 30(11): 2237-2240.
    [35]潘红华,胡家升,朱森等.一种改进的预测函数控制法[J].系统工程与电子技术, 2003, 25(11): 1389-1391.
    [36]郭晶,孙伟娟.小波分析理论与MATLAB7实现[M].北京:电子工业出版社, 2005.
    [37] Daubechies I.,李建平,杨万年译.小波十讲[M].北京:国防工业出版社, 2004.
    [38]郑军,颜文俊,诸静.基于小波基函数的预测函数控制[J].控制与决策, 2005, 20(9): 1077-1080.
    [39]刘贵忠,邸双亮.小波分析及其应用[M].西安电子科技大学出版社, 1992.
    [40]飞思科技产品研发中心.MATLAB 7.0辅助小波分析与应用[M].北京:电子工业出版社, 2003.
    [41] Daubechies I. Ten lectures on wavelets[M]. Montpelier Vermont: Captial City Press, 1992.
    [42] Richalet J., Abu E., Arber C., et al. Predictive functional control: application to fast and accurate robots[C]. 10th IFAC World Congress, Munich, 1997.
    [43]向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法[J].控制理论与应用, 2007, 24(1): 143-147.
    [44]李嗣福,刘勇.基于Laguerra函数模型的预测控制算法[J].中国科学技术大学学报, 1999, 29(3): 281-288.
    [45] King R., Paraskevopoulos P. Digital laguerre filters[J]. International Journal of Circuit Theory and Applications, 1977, 5(1): 81-91.
    [46] Makila P. M. Laguerre series approximation of infinite dimensional systems[J]. Automatica, 1990, 16(6): 985-995.
    [47] Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Trans on Information Theory, 1990, 36(5): 961-1005.
    [48]张泉灵,王树青.基于Hammerstein模型的非线性预测函数控制[J].浙江大学学报(工学版), 2002, 36(2): 119-122.
    [49]刘春波,王鲜芳,章瑶等.基于小波基函数和Hammerstein模型的预测函数控制[J].系统工程与电子技术, 2009, 31(8): 1935-1939. (EI:20093812327131).
    [50] Vapnik V. N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
    [51] Vapnik V. N. Statistical learning theory[M]. New York: Springer-Verlag, 1998.
    [52] Vapnik V. N. Statistical learning theory[M]. 2 ed. New York: Springer-Verlag, 2000.
    [53] Smola A. J., Scholkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
    [54] Sanchez V. D. Advanced support vector machines and kernel methods[J]. Neurocomputing, 2003, 55(1-2): 5-20.
    [55]杜树新,吴铁军.用于回归估计的支持向量机方法[J].系统仿真学报, 2003, 15(11): 1580-1585,1633.
    [56] Chapelle O., Vapnik V., Bousquet O., et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1-3): 131-159.
    [57] Zheng C., Jiao L. Automatic parameters selection for SVM based on GA[C]. Proc of the the 5th World Congress on Intelligent Control and Automation, Vol. 2: IEEE, 2004, pp. 1869-1872.
    [58] Shao X., Yang H., Chen G. Parameters selection and application of support vector machines based on particle swarm optimization algorithm[J]. Kongzhi Lilun yu Yingyong, 2006, 23(5): 740-743,748.
    [59] Dorigo M., Birattari M., Stutzle T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.
    [60] Dorigo M., Blum C. Ant colony optimization theory: A survey[J]. Theoretical ComputerScience, 2005, 344(2-3): 243-278.
    [61] Dorigo M., Gambardella L. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1997, 1(1): 53-66.
    [62] Stutzle T., Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6(4): 358-365.
    [63] Stutzle T., Hoos H. Improving the Ant System: A detailed report on the MAX-MIN Ant System[C]. Technical Report AIDA-96-12, FG Intellektik, FB Informatik, TU Darmstadt, Germany, 1996.
    [64]汪镭,吴启迪.蚁群算法在系统辨识中的应用[J].自动化学报, 2003, 29(1): 102-109.
    [65] Scholkopf B., Weston J., Eskin E., et al. A kernel approach for learning from almost orthogonal patterns[J]. Machine Learning: Ecml 2002, 2002, 2430: 511-528.
    [66] Scholkopf B., Smola A. J. A short introduction to learning with kernels[J]. Advanced Lectures on Machine Learning, 2002, 2600: 41-64.
    [67]周林成.小波支持向量机在数据建模中的研究及应用[D].无锡:江南大学, 2008.
    [68] Dorigo M., Maniezzo V. Ant system optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26(1): 29-41.
    [69]谭冠政李.基于蚁群算法的智能人工腿最优pid控制器设计[J].中南大学学报(自然科学版), 2004, (01): 91-96.
    [70]詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优选择[J].科技通报, 2003, 19(5): 381-386.
    [71]于乃功,阮晓钢.模拟青霉素发酵过程中菌体生长动态的细胞自动机模型[J].生物物理学报, 2004, 20(2): 155-162.
    [72]刘春波,王鲜芳,潘丰.基于蚁群优化算法的支持向量机参数选择及仿真[J].中南大学学报:自然科学版, 2008, 39(6): 1309-1313. (EI:20090611896981).
    [73] Jangal F., Saillant S., Helier M. HFSWR clutter mitigation using wavelet analysis[C]. Wave 2006-Wavelets and Applications Conference, Lausanne: Lausanne-EPFL, 2006, pp. 10-14.
    [74] Newland D. An introduction to random vibrations, spectral and wavelet analysis[M]. New York: John Wiley & Sons, 1996.
    [75] Dai Z., Gu C., Wang T., et al. Decision of sample sizes in experiments of turbulent flow based on wavelet analysis[J]. JOURNAL OF HYDRODYNAMICS SERIES B-ENGLISH EDITION, 2006, 18(3): 324-328.
    [76] Liu J., Jiang N., Wang Z., et al. Multi-scale coherent structures in turbulent boundary layer detected by locally averaged velocity structure functions[J]. Applied Mathematics and Mechanics, 2005, 26(4): 495-504.
    [77] Muller K. R., Mika S., Ratsch G., et al. An introduction to kernel-based learning algorithms[J]. Ieee Transactions on Neural Networks, 2001, 12(2): 181-201.
    [78] Aronszajn N. Theory of reproducing kernels[M]. HARVARD UNIV CAMBRIDGE MA, 1950.
    [79] Ando T., Saitoh S. Restrictions of reproducing kernel Hilbert spaces to subsets[J]. Preliminary reports, Suri Kaiseki Kenkyu Jo, Koukyu Roku, 1991, 743: 164-187.
    [80] Burges C. Geometry and invariance in kernel based methods[C]. Advance in Kernel Methods-support Vector Learning, Cambridge: MIT Press, 1999, pp. 89-116.
    [81] Alain R., Mary X., Canu S. Non-parametric regression with wavelet kernels[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 153-163.
    [82] Smola A., Scholkopf B., Muller K. The connection between regularization operators and support vector kernels[J]. Neural Networks, 1998, 11(4): 637-649.
    [83] Zhang Q., Benveniste A. Wavelet networks[J]. Ieee Transactions on Neural Networks, 1992, 3(6): 889-898.
    [84]范洪明,季刚.离子法双酚a工艺优化探讨[J].化工时刊, 2001, 15(10): 38-40.
    [85]李复生,许文,耿安利等.由双酚a结晶母液的裂解产物合成双酚a反应过程研究[J].化学反应工程与工艺, 2002, 18(2): 168-173.
    [86]刘春波,王鲜芳,潘丰.基于小波融合核的建模方法研究[J].自动化与仪表, 2009, 24(6): 30-34.
    [87]胡丹,肖建,车畅.再生核支持向量机在非线性系统中的应用[J].电子科技大学学报, 2008, 37(1): 124-127.
    [88]胡丹.再生核支持向量机在刀具故障诊断中的应用[J].西华大学学报:自然科学版, 2010, 29(2): 11-15.
    [89] Sanchez V. D. Advanced support vector machines and kernel methods[J]. Neurocomputing, 2003, 55(1): 5-20.
    [90] Rakotomamonjy A., Mary X., Canu S. Wavelet Kernels and RKHS[M]. Proc of Statistical Learning : Theory and Applications. Paris, 2002.
    [91]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社, 2004.
    [92]李国正,王猛,曾华军译.支持向量机导论[M].北京:电子工业出版社, 2004.
    [93] Rakotomamonjy A., Mary X., Canu S. Non-parametric regression with wavelet kernels[J]. Applied Stochastic Models in Business and Industry, 2005, 21(2): 153-163.
    [94] Jiang Z., Fu H., Li L. Support Vector Machine for Mechanical Faults Classification[J]. Journal of Zhejiang University (Science) B, 2005, 6A(5): 433-439.
    [95]张莉,周伟达,等.尺度核函数支撑矢量机[J].电子学报, 2002, 30(4): 527-529.
    [96]朱建鸿,丁健,杨慧中等.贝叶斯回归支持向量机的软测量建模方法[J].南京航空航天大学学报, 2006, 38(B07): 136-138.
    [97]刘春波,王鲜芳,范启亮等.基于RKHS的小波核在化工软测量中的仿真研究[J].化工自动化及仪表, 2009, 36(1): 14-17.
    [98] Wang Y., Jiao L. Multiuser Detector Based on the Support Vector Machine in the TD-SCDMA System[J]. Journal of Xidian University, 2004, 31(5): 744-748.
    [99] Wu C. Study on generalized chromosome genetic algorithm and iterative least squares support vector machine regression[D]. Changchun: Jilin University, 2006.
    [100] Zhang H., Wang X. Incremental and online learning algorithm for regression least squares support vector machine[J]. Jisuanji Xuebao(Chinese Journal of Computers),2006, 29(3): 400-406.
    [101] Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
    [102] Mhaskar H. N., Micchelli C. A. Approximation by superposition of sigmoidal and radial basis functions[J]. Adv Appl Math, 1992, 13(3): 350-373.
    [103]周伟达,张莉,等.线性规划支撑矢量机[J].电子学报, 2001, 29(11): 1507-1511.
    [104] Zhou W., Zhang L., Jiao L. Linear programming support vector machines[J]. Pattern Recognition, 2002, 35(12): 2927-2936.
    [105] Liu J. H., Chan J. P., Jiang S., et al. Online LS-SVM for function estimation and classification[J]. Journal of University of Science and Technology Beijing, 2003, 10(5): 73-77.
    [106] Suykens J., Van Gestel T., De Brabanter J. Least squares support vector machines[M]. Singapore: World Scientific Pub Co Inc, 2002.
    [107]刘春波,王鲜芳,潘丰.基于稀疏特征空间的核方法建模研究[J].化工自动化及仪表, 2009, 36(4): 30-32.
    [108] Kinoshita S., Udaka S., Shimono M. Studies on the amino acid fermentation - Part I. Production of L-glutamic acid by various microorganisms[J]. Journal of General and Applied Microbiology, 1957, 3: 193-205.
    [109] Fernstrom J. D. 100th Anniversary Symposium of Umami Discovery: The Roles of Glutamate in Taste, Gastrointestinal Function, Metabolism, and Physiology Introduction to the symposium[J]. American Journal of Clinical Nutrition, 2009, 90(3): 705s-706s.
    [110] Sano C. History of glutamate production[J]. American Journal of Clinical Nutrition, 2009, 90(3): 728s-732s.
    [111] Kimura E. Metabolic Engineering of Glutamate Production[J]. Advances in Biochemical Engineering/ Biotechnology, 2003, 79: 37-57.
    [112] Shirai T., Nakato A., Izutani N., et al. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria[J]. Metabolic Engineering, 2005, 7(2): 59-69.
    [113] Asakura Y., Kimura E., Usuda Y., et al. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2007, 73(4): 1308-1319.
    [114] Zhang C. Y., Shi Z. P., Gao P., et al. On-line prediction of products concentrations in glutamate fermentation using metabolic network model and linear programming[J]. Biochemical Engineering Journal, 2005, 25(2): 99-108.
    [115] Lodeiro A., Melgarejo A. Robustness in Escherichia coli Glutamate and Glutamine Synthesis Studied by a Kinetic Model[J]. Journal of Biological Physics, 2008, 34(1-2): 91-106.
    [116] Bajaj I. B., Lele S. S., Singhal R. S. A statistical approach to optimization of fermentative production of poly(gamma-glutamic acid) from Bacillus licheniformis NCIM 2324[J]. Bioresource Technology, 2009, 100(2): 826-832.
    [117] Ibanoglu S., Ibanoglu E. Modelling of natural fermentation in cowpeas using response surface methodology[J]. Journal of Food Engineering, 2001, 48(3): 277-281.
    [118] Gao P., Lu J., Duan Z., et al. Effects of Dissolved Oxygen on the Key Enzymes in Glutamate Fermentation[J]. Food and Fermentation Industries, 2005, 31: 72-75.
    [119] Uy D., Delaunay S., Goergen J. L., et al. Dynamics of glutamate synthesis and excretion fluxes in batch and continuous cultures of temperature-triggered Corynebacterium glutamicum[J]. Bioprocess and Biosystems Engineering, 2005, 27(3): 153-162.
    [120] Monod J. The Growth of Bacterial Cultures[J]. Annual Review of Microbiology, 1949, 3: 371-394.
    [121] Monod J. La Technique De Culture Continue Theorie Et Applications[J]. Annales De L Institut Pasteur, 1950, 79(4): 390-410.
    [122] Luedeking R., Piret E. L. A Kinetic Study of the Lactic Acid Fermentation - Batch Process at Controlled Ph[J]. Journal of Biochemical and Microbiological Technology and Engineering, 1959, 1(4): 393-412.
    [123] Shimizu K., Furuya K., Taniguchi M. Optimal Operation Derived by Greens Theorem for the Cell-Recycle Filter Fermentation Focusing on the Efficient Use of the Medium[J]. Biotechnology Progress, 1994, 10(3): 258-262.
    [124] Pollard J. F., Broussard M. R., Garrison D. B., et al. Process Identification Using Neural Networks[J]. Computers & Chemical Engineering, 1992, 16(4): 253-270.
    [125] Ungar L. H., Powell B. A., Kamens S. N. Adaptive Networks for Fault-Diagnosis and Process-Control[J]. Computers & Chemical Engineering, 1990, 14(4-5): 561-572.
    [126] Rao C. S., Sathish T., Mahalaxmi M., et al. Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm[J]. Journal of Applied Microbiology, 2008, 104(3): 889-898.
    [127] Warnes M. R., Glassey J., Montague G. A., et al. On data-based modelling techniques for fermentation processes[J]. Process Biochemistry, 1996, 31(2): 147-155.
    [128] Kishimoto M., Yoshida T. Application of Fuzzy Theory on Fermentation Processes[J]. Hakkokogaku Kaishi-Journal of the Society of Fermentation Technology, 1991, 69(2): 107-116.
    [129] Georgieva O., Wagenknecht M., Hampel R. Takagi-Sugeno fuzzy model development of batch biotechnological processes[J]. International Journal of Approximate Reasoning, 2001, 26(3): 233-250.
    [130] Hastie, Tibshirani R. Generalized Additive Models[J]. Chapman and Hall, 1990.
    [131] Gu C. Cross-validating non-Gaussian data[J]. Journal of Computational and Graphical Statistics, 2002, 1: 169-179.
    [132] Wood S. N. Generalized Additive Models: An Introduction with R, Chapman and Hall/CRC[J]. 2006.
    [133] Wood S. N. Fast stable direct fitting and smoothness selection for generalized additive models[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2008, 70: 495-518.
    [134] He S., Mazumdar S., Arena V. C. A comparative study of the use of GAM and GLM in air pollution research[J]. Environmetrics, 2006, 17(1): 81-93.
    [135] Mikolajczyk R. T., Maxwell A. E., El Ansari W., et al. Relationship between perceived body weight and body mass index based on self- reported height and weight among university students: a cross-sectional study in seven European countries[J]. Bmc Public Health, 2010, 10: -.
    [136] Liu Y., Paciorek C. J., Koutrakis P. Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information[J]. Environmental Health Perspectives, 2009, 117(6): 886-892.
    [137] Mcleod S. R., Pople A. R. Modelling the distribution and relative abundance of feral camels in the Northern Territory using count data[J]. Rangeland Journal, 2010, 32(1): 21-32.
    [138] Cox M. E., Moss A., Smyth G. K. Water quality condition and trend in North Queensland waterways[J]. Marine Pollution Bulletin, 2005, 51(1-4): 89-98.
    [139] Morton R., Henderson B. L. Estimation of nonlinear trends in water quality: An improved approach using generalized additive models[J]. Water Resources Research, 2008, 44(7): -.
    [140] R Development Core Team. R: A language and environment for statistical computing[M]. Vienna, Austria , R Foundation for Statistical Computing, 2010.
    [141] Wood S. N. Generalized Additive Models: An Introduction with R[M]. New York: Chapman and Hall, 2006.
    [142] Wood S. N. Modelling and smoothing parameter estimation with multiple quadratic penalties[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2000, 62: 413-428.
    [143] Wood S. N., Augustin N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling[J]. Ecological Modelling, 2002, 157(2-3): 157-177.
    [144] Liu C., Li Y., Pan F., et al. Generalised additive modelling approach to the fermentation process of glutamate[J]. Bioresouce Technology 2010: DOI: 10.1016/j.biortech.2010.1012.1026.
    [145] Efron B. Second thoughts on the bootstrap[J]. Statistical Science, 2003, 18(2): 135-140.
    [146] Mooney C., Duval R., Duval R. Bootstrapping: a nonparametric approach to statistical inference[M]. Sage university paper series on quantitative applications in the social sciences, sage: newbury park, 1993.
    [147] Efron B., Tibshirani R., Tibshirani R. An introduction to the bootstrap[M]. New York: Chapman & Hall/CRC, 1993.
    [148] Davison A., Hinkley D. Bootstrap methods and their application [M]. Cambridge, England: Cambridge University Press, 1997.
    [149]谢益辉,朱钰. Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛, 2008, 23(2): 90-96.
    [150]刘勤,金丕焕. Bootstrap方法及其在医学统计中的应用[J].中华预防医学杂志, 1998, 32(1): 52-53.
    [151]龙志和,欧变玲. Bootstrap方法在经济计量领域的应用[J].工业技术经济, 2008,7: 231-234.
    [152]钱俊,陈平雁. Bootstrap和Permutation方法在样本率多重比较中的应用[J].中国医院统计, 2008, 15(1): 43-45.
    [153] Mackinnon J. Bootstrap inference in econometrics[J]. The Canadian Journal of Economics, 2002, 35(4): 615-645.
    [154] Liu C., Ju X., Pan F. Statistical Modelling of Glutamate Fermentation Process Based on GAMs[J]. Life System Modeling and Intelligent Computing, 2010: 490-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700