基于DSP的电动叉车交流伺服控制系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代物流技术的发展,人们对叉车产品的要求越来越高。以交流电机为核心的交流驱动系统由于效率高、可靠性强、体积小、结构简单、调速范围宽、低速恒转矩、高速恒功率、维护成本低,将引领新一轮电动叉车技术革命,成为叉车发展的趋势。同时,电子技术的发展及新型控制理论的成熟也使得交流伺服控制系统由过去的模拟控制转向全数字控制。数控伺服电机控制系统可以对电机实现精确的力矩控制,速度控制和位置控制,其性能、反应速度和稳定性都明显优于直流电动机伺服系统。尤其是采用了高性能稀土永磁材料的伺服电机,其出力大,惯性小,起停动态性能特别好,有助于提高生产率和电动叉车质量。越来越多电动叉车设备中采用这种省电、免维修、低噪音的新型电机控制系统已是大势所趋。数控交流伺服电机控制系统正在逐步取代传统直流电动机、步进电机伺服控制系统而成为电动叉车驱动系统的主流技术。
     论文首先分析了永磁同步电机(PMSM)的原理和模型,包括PMSM的结构、工作原理和数学模型,并对伺服系统的矢量控制理论进行了系统的分析研究。选用了Id=0的磁场定向矢量控制(FOC)方法作为本系统的主要控制理论基础。它可以实现对电机交直轴之间的解耦,具有转矩控制的线性特点,能够获得比较平稳的输出转矩,达到比较宽的调速范围。随后,根据控制原理分析系统各组成部分的构成,以及伺服系统的工作流程。
     在控制理论上,介绍了传统PID和数字PID控制算法,重点分析了SVPWM控制算法和一种死区补偿策略。对电压源型三相逆变器死区效应的发生机理进行了详细分析,根据电压空间矢量图将三相电压分成6个区域,并采用时间补偿方法在各区域中按电流方向对三相输出电压进行补偿。试验结果表明,该补偿方法能有效改善由于死区效应引起的电机电流波形畸变,提高了逆变器的输出性能。
     本文讨论了基于DSP的电动叉车交流伺服控制系统的设计与研究,提出了一套基于TMS320F2812 DSP数字信号处理器为主控芯片,及并联多个低压大电流的MOSFET作为功率驱动模块的系统设计方案,并且详述了关键部分的功能与实现方法。系统设计了较为完善的保护功能:控制器中增加了外围过压、过热和过流保护;功率模块中采用光耦隔离屏蔽措施,提高抗干扰能力,保障系统安全可靠运行。在软件实现上,采用了模块化设计思想以及系统主程序和中断服务程序的结构,并介绍了几个主要子程序的实现过程。
     最后在理论的基础上对系统进行Simulink仿真。通过实验平台,对电机低速运转进行了测试,结果证明该系统稳定性好、各参数符合设计要求。测试结果表明整套控制系统能够满足现代数控电动叉车的工业需求,有较高的性能价格比,具备良好的市场前景。
With the development of modern logistics technology, people have higher and higher requirement on forklift products. AC motor as the core of AC drive system will lead a new wave of electric forklift technology revolution and become forklift truck trends because of high efficiency, reliability, small size, simple structure, wide speed range, low-speed constant torque, high-speed constant-power and low maintenance costs. Meanwhile, the development of electronic technology and maturity of new control theory also makes AC servo control system from the previous analog control to an all-digital control. The digital servo motor control system can achieve precise torque control, speed control and position control, and much better than DC motor servo systems special in quickly reaction and stability. Especially using the high energy Rare-earth permanent magnets motor, the servo system have performance in torque output, small force of inertia, fast dynamic response in start-stop mode, which help promote production efficiency and forklift quality. It become the irresistible trend that the low power consume, maintenance-free, low noise motor control system is more and more used in Electric Forklift Equipments. The NC (Numerical Control) AC servo motor control systems are gradually replacing traditional DC motor servo control system and become the mainstream technology in the sewing machine drive system.
     First of all, the principle and model of Perrnanent Magnet Synchronous Motors (PMSM) are given, including the structure,works and mathematical model. Then the vector control theory of servo system is analyzed systematically and the Field Oriented Control(FOC) theory that d-axis current is equal to zero is selected as the main theoretical basis. It can realize the electrical decoupling between the the d and q axe with a linear torque control characteristics, and obtain relatively steady output of torque to achieve relatively wide speed range. Subsequently, according to the control principle, the composition of the various components and workflow of the servo system are analyzed.
     In the control theory, the traditional PID control algorithm and the traditional PID control algorithm are introduced with the emphasis on SVPWM control algorithm and a kind of dead-time compensation strategy. Mechanism of dead-time effect on the three-phase voltage source inverter is analyzed in detail. According to voltage space vector, three-phase voltage is divided into six regions and is compensated by the method of time compensation in various regions according to current direction. The results show that the compensation method can effectively improve motor current waveform distortion causing by the effect of dead zone, and enhance the output performance of the inverter.
     The design and research of the electric forklift AC servo control system are discussed based on DSP. A set of hardware system design is presented out based on the TI TMS320F2812 DSP digital signal processor chip as a master, and multiple parallel low-voltage high-current of the MOSFET as the power drive module. The method and realization about some key segments are elaborated. System designs a more comprehensive protection functions. For example, the external overvoltage, overheating and overcurrent protections are added in the controller design. Optocoupler isolators shielding measures are used in the power module to raise the anti-jamming capability to ensure the system safe and reliable operation. In software design, the idea of modular design method and the structure of system main program, the interrupt service program are adopted, and implementation processes of some sub-programs are proposed.
     Finally, this system is simulated by Simulink on the basis of the theory. The experiment platform is tested on low-speed operation of the motor. The results show that the system has good stability and the parameters are in line with design requirements. Test results show that the entire control system can meet the modern numerical control electric forklift industrial demand, and it has a high cost performance with good market prospects.
引文
[1]张一丹,胡强叉.车综合性能评价[J].起重运输机械,2008,1:39-40.
    [2]瞿锐.叉车的分类综述[J].科技创新导报,2008,27:184.
    [3]杨忠敏.电动叉车的交流动力控制技术[J].电气时代,2008,1: 66-68.
    [4]李春卉,张海波.电动叉车调速控制系统的发展[J].中国储运,2008,10:125-126.
    [5]杨晓军.交流驱动系统引领电动叉车技术革命[J].物流技术与应用,2005,9:89-91.
    [6]乌晓东,孙春茂.未来叉车的发展趋势[J].起重运输机械,2008,10:7-8.
    [7]佚名.电动叉车发展的趋势[EB/OL].[2009-05].http://www.soo56.com/chache.
    [8]刘向阳.我国叉车行业发展综述[J].集装箱化,2006,08:40-41.
    [9]佚名.国内外电动叉车的结构特点及安全应用分析[EB/OL].[2009-11]. http://www.cnchache.net/
    [10]佚名.电动叉车的结构特点及技术特性[EB/OL].[2004-10]. http://www.chinaforklift.com/news/
    [11]徐杰君,杨福增.叉车门架动态仿真及优化设计[J].工程机械2008,39(12):25-29.
    [12]陶新良.电动叉车和电动牵引车的构造与维修[M].北京:中国物资出版社,2006:385-396.
    [13]杨忠敏.交流驱动开创了电动叉车新技术[J].电机技术,2007,3:57-58.
    [14]谢庆国,阂松,沈轶.全数字交流调速系统软件设[J].计算机工程与应用,2002,(5):207-210.
    [15]胡淑华,郑宝才,唐任远.稀土永磁电机的发展趋势—大功率化、高功能化、微型化[J].电工技术杂志,1995,4:5-8.
    [16]谷爱星,王春茹. DSP在电机控制领域的应用展望[J].微电机,2001,34(2):35-3.
    [17]李卫中.基于ARM的嵌入式数控系统硬件平台研究[D].北京:中国地质大学,2008:1-11.
    [18]赵继敏,姜淑忠.交流永磁同步伺服电机在工业缝纫机中的应用[EB/OL].[2005-07]. http://articles.e-works.net.cn/motion_servo/Article31565_1.htm.
    [19]郭庆鼎,赵希梅.交流永磁同步伺服技术讲座第五讲交流永磁伺服电动机(二)[J].伺服控制,2007,01:70-71.
    [20]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机[M].北京:机械工业出版社,1995:256-262.
    [21] Pillay P, Krishnan R. Modeling, simulation, and analysis of permanent-magnet motor drives,Part II: The brushless DC motor drive[J]. IEEE Trans. on Industry Applications,1989,,25(2):274-279.
    [22]陈涛.永磁同步电动机交流伺服系统研究[D].北京:北方工业大学,2009:8-15.
    [23] Blaschke Felix. Principle of field orientation as used in the new Transvektor control system for induction machines[J]. Siemens Review,May,1972,39(5):217-220.
    [24]林飞,张春朋,宋文超等.基于转子磁场定向的异步电机输入输出解藕控制[J].清华大学学报(自然科学版),2003,43(9):1153~1156.
    [25] Sangwongwanich,S,Doki,S.A daptive sliding observers for direct field-oriented control of induction motor[J]. IEEE IECON 16th Annual 1990 Vol.2:915-920.
    [26]姜飞荣.永磁同步电机伺服控制系统[D].浙江:浙江大学,2006.
    [27]崔伟荣.永磁同步电动机功率因数的仿真分析[D].南京:南京航空航天大学,2006.
    [28]曹文霞. RBF神经网络整定PID控制直线永磁同步电机的研究[D].合肥:合肥工业大学,2009.
    [29]陶永华.新型PID控制及其应用(第2版)[M].机械工业出版社,2003:211-213.
    [30]齐剑玲.模糊控制及其在开关磁阻电动机控制中的应用[J].微计算机信息,2007:15-17.
    [31]刘云平. PID参数自整定方法在电力机车微机控制柜中的应用研究[D].成都:西南交通大学,2009.
    [32]陈荣.永磁同步电机伺服系统研究[D].南京:南京航空航天大学,2004:25-32.
    [33]张典林.永磁同步电机智能PID控制[D].天津:天津大学,2007:25.
    [34]王明亮.基于永磁同步电机的工业缝纫机控制系统[D].西安:西北工业大学,2006:21-39.
    [35]吕健.基于DSP的全数字永磁同步电机[D].广东:广东工业大学,2008:32-35.
    [36]于艳君,柴凤,高宏伟等.基于Anti-windup控制器的永磁同步电机控制系统设计[J].电工技术学报,2009,39(4):66-70.
    [37]张旭泽.全数字交流伺服系统在工业缝纫机上的应用研究[D].西安:西北工业大学,2007:26.
    [38]王义芳.基于DSP的小型发电机控制系统设计[D].杭州:浙江大学,2006:45-46.
    [39]谢宝昌,任永德.电机的DSP控制技术及其应用[M].北京:北京航空航天大学出版社,2005.
    [40] Wang Zheng-guang, Jin Jian-xun,et al. Modeling and simulation of PMSM control system based on SVPWM [C]//27th Chinese Control Conference,2008:724-728.
    [41] Hou Li-Min,Li Hong-Zhu,Wang Wei. Principle of SVPWM and its realization based on DSP[J], Journal of Liaoning Technical University (Natural Science Edition),2007 :898-900.
    [42]熊茂.基于DSP的电动汽车交流驱动电机矢量研究[D].武汉:武汉理工大学,2006:18-20.
    [43]苏奎峰,吕强,耿庆锋等. TMS320F2812原理与开发[M].北京:电子工业出版社,2005.
    [44]王晓明,王玲.电动机的DSP控制——TI公司DSP应用[M].北京:北京航空航天大学出版社,2004:125.
    [45]万健如,魏志强.针对SVPWM死区问题一种新的控制方法[J].电工技术学报,2006,21(7):105-108.
    [46]窦汝振,刘钧一种基于SVPWM控制的死区补偿方法[J].电气传动自动化,2005,27(l):20-22.
    [47]李西光,李正熙.基于SVPWM调制策略的死区补偿方法[J].冶金自动化,2009,S2:841-843.
    [48]程小猛,陆海峰.一种减小SVPWM线性调制区损失的方法[J].清华大学学报(自然科学版),2009,49(11):1861-1864.
    [49]许嘉昊,徐国卿等.基于永磁同步电机的SVPWM死区分析与补偿[J].电气传动,2007,37(2):29-31.
    [50]韩丰田等. TMS320F281X DSP原理及应用技术[M].北京:清华大学出版社,2009:176-224
    [51]孙丽明. TMS320F2812原理及其C语言程序开发[M].北京:清华大学出版社,2008:306-367.
    [52]魏尚俊.自装卸叉车控制系统综合设计[D].西安:西北工业大学,2005:10.
    [53]栾英.交流技术在电动叉车驱动系统的应用[D].西安:合肥工业大学,2009:20.
    [54]武军. SPWM调速系统在蓄电池叉车上的开发研究[D].合肥:合肥工业大学,2003:19.
    [55]孙剑峰.基于TI-DSP的专用伺服系统研究[D].杭州:浙江大学,2006:23-24.
    [56]苏奎峰,吕强,邓志东等. TMS320X2812XX原理与开发[M] .北京:电子工业出版社,2009:108-122.
    [57]孙建华.基于CAN总线的电动叉车牵引控制器设计[D].合肥:合肥工业大学,2002:31-40.
    [58]万文献.基于TMS320F2812的运动控制器的研究[D].河北:河北工业大学,2007:31-32.
    [59]涂有瑞.霍尔传感元器件及其应用[J].电子元器件应用,2002,4(1-2):41-43.
    [60] TOSHIBA. TLP350DATASHET[[EB/OL]. http://www.toshiba.com/taec/components/Datasheet/TLP350.pdf.
    [61] Ron Randall.在SMPS应用中选择IGBT和MOSFET的比较[J].今日电子,2005:40-43.
    [62] Jonathan Harper ,Enrique Rodriguez.选择正确的MOSFET:工程师所需要知道的[J].今日电子,2007:32-33.
    [63]佚名.功率MOSFET基础知识[EB/OL].[2007-03]. http://www.cps800.com/knowledge/1003.htm.
    [64]刘松.理解功率MOSFET的开关损耗[J].今日电子,2009:52-55.
    [65]钱敏,徐鸣谦等.功率MOSFET并联驱动特性分析[D].半导体技术,2007:952-956.
    [66]周军.开关电源控制电路UC3842A(3843A)介绍[J].家电检修技术,2004(3):56.
    [67] Texas Instruments Incorporated. TMS320C28X系列DSP指令和编程指南[M].北京:清华大学出版社,2005:123-156.
    [68]林伟杰.永磁同步电机伺服系统控制策略的研究[D].杭州:浙江大学,2005.
    [69]司伟.基于DSP的永磁同步电机伺服系统的研究与实现[D].北京:北京交通大学,2009.
    [70]纪志成,沈艳霞,姜建国.基于Matlab无刷直流电机系统仿真建模的新方法[J].系统仿真学报,2003,15 (12) :1745 - 1749.
    [71]陈琦,季国瑜.基于Matlab5.3的永磁同步电机的分析和仿真[J].南昌大学学报:工科版,2001,03(1):79-83.
    [72]范心明.基于SIMULINK的SVPWM仿真[J].电气传动自动化,2009,31(3):19-21.
    [73]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M] .北京:机械工业出版社,2006.
    [74]杜志勇,王鲜芳.基于DSP的感应电动机SVPWM矢量控制调速系统[J].电力电子技术,2007 ,41 (9) :26228.
    [75]张金利,张玉瑞.永磁同步电机变频调速系统建模与仿真[J].电力电子技术,2008,42(2):67-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700