多功能给水控制器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着经济的高速发展,高层建筑日渐增多,原有的城市供水网络逐渐显露缺陷,如在切换水泵时会出现水锤、在用水高峰期会出现供水压力下降等问题,给生活用水带来了极大的不便。
     针对上述情况,设计了一款以C8051f020和ATEML89S52为核心的给水控制器,通过控制一个变频器和五台水泵实现恒压供水的功能。该系统由若干模块组成,包括电源模块、开关模块、时钟模块、数据采集、数据存储、电机控制、串口通信、人机接口(参数设定和数据显示)和报警系统等模块,并且模块之间和模块与控制芯片之间均采用了抗干扰设计。
     软件设计以控制器C8051f020和89S52的软件设计为主,同时能够实现两控制器之间的信息交互。给水控制器以管网实际压力和设定压力为参数,通过增量式PID计算得出控制命令,控制变频器的输出频率来自动调节水泵电机的转速,并根据用水量的大小由单片机控制运行水泵数量及变频器状态,实现管网水压的闭环调节,最终达到恒压供水的目的。同时,本系统还具有消防、巡检、报警、电压电流检测、定时换泵、手动和运行图等功能,有较强的应对突发事件的能力。
     最后通过对硬件和整个系统的实验,证明该系统不仅能够实现给水控制器的恒压供水功能,同时还可以完成休眠等附加功能。由于设计过程中考虑到成本问题,因此能够在完成上述功能的前提下,将成本降到最低。
With the rapid economic development and the large increase of high-rise buildings, current city water supply network gradually reveals shortcomings. For Example, water hammer occurs when the pumps being switched; water supply pressure drops during the peak hours, which have brought us great inconvenience.
     To resolve the above issues, the author designed a water supply controller with C8051f020 and AT89S52 as the core. It achieves constant pressure water supply by controlling the frequency converter and five water pumps. The system consists of several modules, including power modules, switching modules, clock modules, data acquisition, data storage, motor control, serial communication, human-machine interface (parameter settings and data displaying) and the alarm system module, etc. It adopted anti-jamming design both in between the modules and in between the control chip and the module.
     Software design composed mainly of C8051f020 and 89S52, can achieve information exchange between the two controllers. The controller of water supply, with the actual pipe network pressure and the set pressure as the parameter, obtains the control command through the incremental PID algorithm; automatically adjusts the speed of pump motor through control of the inverter output frequency; achieves closed-loop pipe network water pressure regulation by controlling the number of running water pumps and inverter status in accordance with the size of water micro-controller, ultimately reaches the goal of constant pressure water supply. At the same time, the system also has fire-fighting function, monitor function, alarm, voltage and current detection, pump switch at the fixed time, manual function and Run Chart function, has strong ability to respond to emergencies.
     Finally, the experiment on hardware and the whole system proved that the system not only can make the controller to achieve the function of constant pressure water supply but also attain additional, such as sleeping functions. Due to the cost has been taken into consideration in the design process, the system is able to complete all the above functions with the minimum cost.
引文
1王智为.水厂水泵运行的节能问题探讨.科技咨询导报.科技咨询导报. 2007(6):43
    2徐柳娟,周丽萍.基于变频器的恒压供水节能改造的研究.学术交流
    3曾毅.变频调速控制系统的设计与维护[M].山东科技技术出版社, 2004: 29-54
    4王国卿.变频及PID控制技术在煤气鼓风机系统中的应用[J].山西煤炭, 25(3), 2006: 30-32
    5 Kawabata, Yoshitaka. A new Variable-speed Constant-frequency Stand-alone Power Generating Stem. Electrical Engineering in Japan. 2004, 146(2): 75-85
    6徐作华.变频恒压供水系统的技术改进措施.中国新技术新产品. 2010, (8): 42
    7魏召刚.工业变频器原理及应用[M].电子工业出版社, 2006
    8 Peter. Cartwright, P. E. Water Purifieation Water Treatment. 1999(5): 69-74
    9高钦和.可编程序控制器应用技术与设计实例[M].北京人民邮电出版社, 2004: 69-85
    10 Bryan Coulbeck, Bogumil Ulanicki, Vladimir V. Deviatkov, Sergei Kosov, losiff Glukhovsky. Pressure Control of a Moscow Water Supply System Using Expert System Technology[J]. Conference on Decision and control, Kobe, Japan. December 1996(4): 4498-4499
    11 Chengzhao Zhi, Yisun Zhi. Stable-Pressure Water-Supplying System Based on MCGS[J]. Machine Learning and Cybernetics. 2003(4): 2148-2151
    12 K. F. Man, W. K. Yung, T. W. S. Chow. Adaptive Control strategy of a Water Supply System[J]. Software Engineering for Real Time Systems. 1991(9): 125-128.
    13 Coulbeck B, Tennant S. Development of a demand prediction program for use in optimal control of water supply. Systems Science,1985,11(1): 76-80
    14 Perry P F. Demand forecasting in water supply networks. Journal of Hydraulics, 1981,107(9): 37-52Robert DeMoyer J r, Lawrence B Horwitz. Macroscopic distribution system modeling. JAWWA, 1975, 95(7): 43-50
    16 Yam Y. Subsystem inference representations for fuzzy systems baseduponproduct-sum-gravity rule. IEEE Trans on Fuzzy Systems,1997 ,27(6): 90-107.
    17 Marek Hartman, Eugeniusz Loeiec, Piotr Boguslawski. Water Pumping Stations Remote Control System in Depression Areas Based GSM-900 Cellular Communications System.TCSET2002,Lviv-Slavsko, Ukraine, 2002.
    18 ASAD A.ABIDI.Low-Power RF-ICs in Wireless Transceivers.1994 IEEE Symposium on Low Power Electronic, San Diego, 1994:18-20
    19吴小许,孙瑜,黄敏.数字量调节阀的控制算法研究与应用[J].化工自动化及仪表, 2004,31(2):61-63
    20孙洪程,翁唯勤.过程控制工程设计[M].化学工业出版社, 2001:33-68
    21崔维群,孙启发. S7-300/400可编程控制器原理与应用.北京航空航天大学出版社. 2009:501-507
    22 MITRA A. Bit Error Analysis of New Generation Wireless Transceivers.The 8th International Conference on Communication Systems, 2002,(2):636-639
    23单联海.基于无线数据传输的嵌入式监控系统的研究.武汉理工大学硕士论文, 2006:3-5
    24李士勇.模糊控制和智能控制理论与应用[M].哈尔滨:哈尔滨工业大学出版社, 2005: 79-81
    25张万忠,刘明芹.电器与PLC控制技术[M].化学工业出版社. 2003: 89-102
    26诸静.模糊控制原理与应用[M].北京机械工业出版社, 2001:89-102
    27王鲜芳,杜志勇. PLC的PID指令在变频调速恒压供水系统中的应用[J].给水排水, 2005,31(3): 101-103
    28孙小权,秦春节,何喜玲.基于PLC的变频恒压供水系统优化设计.自动化仪表. 2007.28.1:47-51
    29陈伯时.电力拖动自动控制系统[M].北京机械工业出版社, 2003: 48-56
    30胡跃冰.水泵电机变频调速的节能与计算.节能技术. 2003(5): 48-49
    31黄金波,郭丽春.可编程控制器在自动给水系统中的应用.辽宁工程技术大学学报(自然科学版). 2002(3): 338-339
    32张培仁,孙力.基于C语言C8051F系列微控制器原理和应用.清华大学出版社, 2007
    33梅晓蓉.自动控制原理.科学出版社. 2007: 149-154
    34张荣刚. PID功能在变频调速恒压供水系统中的应用.福建电脑. 2005.12: 100-101
    35朱玉堂.变频恒压供水系统的研究开发及应用.浙江大学硕士学位论文. 2005
    36 K. J. Astrom, C. C. Hang, B. C. Lim. A new Smith predictor for controlling a process with an integrator and long dead-time[J]. IEEE Transactions on Automatic Control,1994,39(2): 343~345
    37 Zadeh L A. Fuzzy Set. Information andcontrol. 1965,8(2):338-358
    38 LiXin Wang. A coursein fuzzy systems and control, Prentice-Hallinc. 1997
    39周国平.常用恒压供水PID控制的探讨.电气技术与自动化. 2004, 33 (6): 90-92
    40 Filev D P, Yager R R. A generalized defuzzification method via BAD distributions[J]. Int J of Intelligent Systems, 1991,6(4):687-697
    41张金焕. PID控制系统和模糊自适应PID控制系统的研究及比较.武汉理工大学学报·信息与管理工程版. 2007(5): 286-288
    42 Lansey K E, Awumah K. Optimal pump operations considering pump switches. Journal Water Resources Planning and Management,1994,120(1): 17-35
    43 Jinhang Wang, Shiyin Qin, Mingyue Chen.Design of Fuzzy Controller for the Water Supply System of Watercurtain Cooling Process in the Steel Plate Mill of Shougang Group[J].Computers, Communications, Control and Power Engineering, 2002,10(3): 1500-1503
    44 H. O. Wang, K Tanaka and M. F. Griflin. An Approach to Fuzzy Control of Nonlinear Systems[J]. Stability and Design Issues. IEEE Trans Fuzzy Systems,1996,4(1): 14-23
    45 Maeda M, Murakami S. Self-Turning fuzzy controller. Fuzzy sets and systems, 1992, 51: 29-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700