水稻黄单胞菌水稻致病变种与致病相关的新基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作者所在实验室以前工作表明含有水稻黄单胞菌水稻致病变种(以下简称Xoo)13751 DNA的重组质粒pGXN3000上至少有4个基因(rpfA、rpfB、rpfC、rpfF)能正向调控该菌的胞外多糖的产生及致病性并已完成了pGXN3000的序列测定。序列分析表明pGXN3000的rpfA上游有4个完整的ORFs,分别为pdeA、cheB、pin、pcaD。pdeA基因为2262 bp,可编码一个含754个氨基酸的产物,该产物与地毯草黄单胞菌柑橘致病变种(以下简称Xac)的环二鸟苷酸磷酸二酯酶A(c-di-GMP phosphodiesterase A)有96%的相似性和93%的相同性。cheB基因为1074 bp,可编码一个含358个氨基酸的产物,该产物与Xac的谷氨酸甲酯酶(glutamate methylesterase)的相似性和相同性均为67%。pcaD基因为813bp,可编码一个含271个氨基酸的产物,该产物与野油菜黄单胞菌野油菜致病变种(以下简称Xcc)的β-酮已二烯醇内酯水解酶(beta-ketoadipate enol-lactone hydrolase)有92%的相似性和85%的相同性。pin基因产物的功能域分析表明其第189-198个氨基酸为锌指结合域(zinc finger binding domain,ZnF_NFX域)。在rpfC基因下游有—ORF的产物与Xcc的属于双组分调控系统家族的调节蛋白RpfG有99%的相似性和96%的相同性。
     为了了解Xoo pdeA、rpfG、cheB、pin、pcaD基因在该菌在水稻致病过
    
    广西大学硕_l:学位论文
    程中的作用和功能,我们用同源自杀质粒单位点整合突变方法分别构建得到
    了该菌的p认纳一突变体(GXNI 256)、,月一突变体(GXNI 258)、CheB一突变体
    (GXNI 255)、刀j厅突变体(GXN1269)和户eal)一突变体(GXN1261)。
     水稻植株剪叶接种试验表明,xo口p/n-突变体GXNI 269在水稻上引起
     的病斑长度与野生型13751的没有显著差别,说明xo口pl’n基因可能与其在
     水稻上的致病性无关。无论是在高接种浓度(OD600二0.1)还是在低接种浓度
     (0D600=0.001)下,而oFp几一突变体GXNI 258、p动纳一突变体GXNI 256和pCaD-
     突变体GXNI 261在水稻上引起的病斑长度显著降低,在高接种浓度(OD600=
    0.1)下,GXNI 25a、GxNI 256和GxNI 261在水稻上引起的病斑长度分别是野
     生型13751的21.37%、64.69%和77.44%,在低接种浓度(0D600=0.001)下
     则分别是野生型13751的14.47%、67.99%和76.10%,说明而。的rP招、刀决斌
    和pCao基因与其在水稻上的致病性有关。
     平板检测表明xo口p丈介绒一突变体GXNI 256、rP招一突变体GXNI 258的胞外多
    糖和OSF因子的产量均显著减少,说明xo口胞外多糖和OSF因子的产生与rP招
    和p尤论斌基因有关。xo口pde月基因产物的功能域分析表明其第317一488个氨基
    酸为具有环二鸟昔酸磷酸二醋酶A活性的OUFI域和第498一745个氨基酸为具
    有二鸟昔酸环化酶活性的DU「2域(也称GGOE「基序),这两个酶可能参与调
    控细胞内信号分子环二鸟昔酸的浓度。xo口rP凡基因产物的功能域分析表明
    第1 92一329个氨基酸为HD域,属于依赖金属的磷酸水解酶家族。关于信号分
    子环二鸟昔酸与病原菌在植物上的致病的相关性目前还未见报道。平板检测
    表明xo口p决流基因能很好地恢复rP绍一突变体GxNI 258产Ds「的能力,xo口rP凡
    基因也能很好地恢复pdeA一突变体GXN 1 256产胞外多糖和DSF的能力。
    
     广西大学硕士学位论文
     水稻植株剪叶接种试验表明cheB一突变体GXN 1 255在水稻上引起的病斑长
    度与13751的没有显著差异,但是水稻植株喷雾接种试验表明cheB一突变体
    GXN 1 255在水稻上引起的病情指数是1 3751的48.91%。毛细管趋化应答试验
    表明ch出一突变体的趋化能力显著降低,说明cheB基因与xo口的趋化应答有
    关,xo。的ch出基因与其在水稻上的致病性有关可能是通过控制其趋向水孔
    有关。进一步说明趋化性可能在植物病原细菌致病的早期起重要作用。
It was previously shown that a cosmid clone pGXNGOOO containing Xanthomonas oryzae pv. oryzae (here after Xoo for short) 13751 DNA had at last four genes (rpfA rpfB rpfC rpfF), mutation in any of these genes resulted in significant reduction in the production of EPS and virulence of this bacteria. The plasmid pGXN3000 had been sequenced previously and sequence analysis revealved that there are at least four ORFs (pdeA,cheB,pcaD and pin) at the upstream of rpfA gene. The pdeA gene was 2262 bp, encoding a protein with 754 amino acids. PdeA has 96% similarity and 93% identity with c-di-GMP phosphodiesterase A of Xanthomonas axonopodis pv. citri str. 306. (here after Xac) .The cheB gene was 1077 bp, encoding a protein with 358 amino acids. CheB has 67% similarity and 67% identity with glutamate methylesterase of Xac. The pcaD gene was 813 bp,encoding a protein with 271 amino acids.PcaD has 92% similarity and 85% identity to beta-ketoadipate enol-lactone
    
    
    hydrolase of Xac. The pin gene was 651 bp. Amino acid 189-198 of P i n formed z i nc f i nger b i nd i ng doma i n (ZnF-NFX doma i n). There is one ORF dowmstream of rpfC, which encodes a protein having 99% similarity and 96% identity with Xcc RpfG, a regulator protein of two-component regulatory systems.
    In order to understand the function of the above mentioned five genes in Xoo 13751, nonpolar mutant of 13751 in pdeA
    (GXN1256), cheB (GXN1255), pcaD (GXN1261), pin (GXN1269) or rpfG (GXN1258) was constructed by homologous suicide plasmid integration.
    The lesion length of rice leaves caused by Xoo pin-(GXN1269) mutant was similar to that caused by Xoo wild type strain 13751, showing Xoo pin may not be necessary for the virulence of Xoo on rice. The virulence of Xoo rpfG- (GXN1258) , pdeA-
    (GXN1256), pcaD-(GXN1261) was significantly reduced compared to Xoo wild type strain 13751 both at high inoculation and low inoculation concentrations. The lesion length of rice leaves caused by Xoo rpfG-(GXN1258) , pdeA(GXN1256)and pcaD- (GXN1261) was 21. 37%, 64. 69% and 77. 44% of that caused by Xoo wi Id type 13751 at high inoculation concentration, respectively, and was 14.47%,77.99% and 76.10% of that caused by 13751 at low inoculation concentration, respectively, indicating that Xoo
    
    pdeA, rpfG and pcaD genes are required for the full virulence of Xoo on r i ce.
    The analysis of Xoo PdeA revealed that its ami no acid 317-488 formed DUF1 domain with c-di-GMP phosphodiesterase A activity and ami no acid 498-745 formed DUF2 domain (also named GGDEF motif) with diguanylate cyclase activity. Diguanylate cyclase is involved in the sythesis of c-di-GMP and phosphodiesterase A is involved in the turnover of c-di-GMP. Xoo pdek can restore the production of DSF of rpfG-mutant(GXN1258) and Xoo rpfG can restore the production of EPS and DSF of pdek mutant (GXN1256).
    The lesion length of rice caused by Xoo cheB-(GXN1255) with leaf-clipping inoculation was similar to that caused by Xoo wi Id type, while the disease index caused by Xoo cheB-(GXN1255) on rice with leaf-spraying inoculation was 48.91% of that of 13751. The chemotactic respone assay revealed the ability of chemotactic respone of Xoo cheB-(GXN1255) was significantly reduced, indicating that cheB is involved in chemotaxis of 13751. The role of cheB in the virulence of Xoo may through controlling the ability of bacteria to move towards hydrothodes. Chemotaxis may play an important role at the early stages in pathogenesis of phytopathogenic bacteria.
引文
[1] Chatterjee A.K., Videver A.K., Advances in plant pathology. Academic Press. Orlando. Fla Vol. 4
    [2] 王金生,植物病原细菌学,中国农业出版社,221-225
    [3] Tang J. L., Feng J.X., Li Q. Q.,et al. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. orrzae: involvement in exopolysaccharide production and virulence to rice. Mol Plant Microbe Interact. 1996, Sep 9(7):664-666.
    [4] Ielpi L., Couso R.O., Dankert M.A., Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeatingunit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol 1993 May;175(9):2490-2500.
    [5] Katzen F., Becker A., Ielmini M. Y., et al. New mobilizable vectors suitable for gene replacement in gram-negative bacteria and their use in mapping of the 3' end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol. 1999 Jan;65(1):278-282.
    [6] Kumar A., Sunish Kumar R., Sakthivel N., Compositional difference of the exopolysaccharides produced by the virulent and virulence-deficient strains of Xanthomonas oryzae pv. oryzae. Curr Microbiol. 2003, Apr 46(4): 251-255
    [7] Paulsen I.T., Beness A.M., Saier Jr M. H., Computer based analyses of the protein constituents of transport systems catalysingexport of complex carbohydrates in bacteria. Microbiology. 1997 143, 2685-2699.
    [8] Harding N.E., Raio S., Raimond A., et al. Identification, genetic and biochemical analysis of genes involvedin synthesis of sugarnucleotide precursors of xanthan gnm. J. Gen. Microbiol. 1993 139, 447-457.
    [9] Katzen F., Becket A., Zorreguieta A., et al. Promoter analysis of the Yanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J. Bacteriol. 1996 178, 4313-4318.
    [10] Pollock T.J., Thorne L., Yamazaki M.,et al. Mechanism of bacitracin resistance inGram-negative bacteria that synthesize exopolysaccharides. J. Bacteriol. 1994 176, 6229-6237.
    [11] Paulsen I.T., Beness A.M., Saier Jr M.H., Computerbasedanalyses of the protein constituents of transport systems catalysingexport of complex carbohydrates in bacteria. Microbiology. 1997 143, 2685-2699.
    [12] Nakai K., ttorton P., PSORT: a program for detectingsorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1999 24, 34-36.
    [13] Dharmapuri S., Yashitola J., Vishnupriya M. R.,et al. Novel geuomic locus with atypical G+C content that is required for extracellular polysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact. 2001Nov;14(11):1335-1339
    [14] Newman M.A., Daniel S.M.J., Dow J. M., lysaccharide from Xanthomonas camp estris induces defense related gene expression in Brassica camp estris. Mol. Plant. Microbe Interact. , 1995, 8: 775-780.
    [15] Pugsley A.P., Francetic O., Possot O.M.,et al. Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram negative bacteria. Gene, 1997 ,192, 13-19.
    [16] Lecch J.E.,Sherwood J., Fulton R.W., et al. Comparison of soluble proteins associated with disease resistanceinduced by bacterial lipopolysaccharide and by viral necrosis. Physiol. Plant Pathol. , 1983, 23: 377-385.
    
    
    [17] Friedman L, Kolter R.M., Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Microbiol. 2004 Feb;51(3):675-690.
    [18] Pugsley A.P., Francetic O., Possot O.M.,et al. Recent progress and furore directions in studies of the main terminal branch of the general secretory pathway in Gram negative bacteria. Gene, 1997,192, 13-19.
    [19] Ray S.R., Rajeshwari R., Sonti R.V., Mutants of Xamthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase, 2000. Mol. Plant-Microbe Interact. 13:394-401
    [20] Russel Macromolecular assembly and secretion across the bacterial cell envelope: type Ⅱ protein secretion systems. M J Mol Biol. 1998 Jun 12;279(3):485-99.
    [21] Zhn W., Yang B., White F. F., et al. AvrXa10 contains an acid transcriptional activation domain in the functionally conserved C terminus[J] . Mol Plant-Microb Interact, 1998,11:824-832
    [22] Nizan-Koren R., Manulis S., Mor H., et al. The regulatory cascade that activates the Hrp regnlon in Erwinia herbicola pv. gypsophilae Mol Plant Microbe Interact. 2003 Mar; 16(3) :249-60.
    [23] Alfano J. R., Charkowski W. L., Deng, et al. The Pseudomonax syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type Ⅲ secretion genes bonnded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 2000.97:4856-4861
    [24] Hacker J., Kaper J. B., Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000;54:641-679. Review
    [25] Wei Z. M., Beer S. V., hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J Bacteriol. 1995 Nov;177(21):6201-6210.
    [26] Xiao Y., Heu S., Yi J., et al. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol. 1994 Feb; 176(4) :1025-36.
    [27] Genin S., Gough C.L., Zischek C.,et al. Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. Mol Microbiol. 1992 Oct; 6 (20) : 3065-76.
    [28] Wengelnik K., Bonas U., HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol. 1996 Jun; 178(12): 3462-3469.
    [29] Preston G., Deng W.L., Huang H.C.,et al. Negative regulation of hrp genes in Pseudomonas syringae by HrpV. J Bacteriol. 1998 Sep; 180(17):4532-4537.
    [30] Vasse J., Genin S., Frey P. et al. The hrpB and hvpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Mol Plant Microbe Interact. 2000 Mar; 13(3):259-267
    [31] Fenselau S., Balbo I., Bonas U., Determinants of pathogenicity in Xanthomonas campestris pv. vesicatovia are related to proteins involved in secretion in bacterial pathogens of animals. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):390-396.
    [32] Fenselau S., Balbo I., Bonas U., et. al. hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are couserved among plant pathogenic bacteria. Mol Plant Microbe Interact. 1992 Sep-Oct; 5(5):384-389.
    [33] Huang H. C., He S. Y., Bauer D. W., et al. The Pseudomonas syringae pv. syringae 61 hrpH product,
    
    an envelope protein required for elicitation of the hypersensitive response in plants. J Bacteriol. 1992 Nov;174(21):6878-6885
    [34] Salmond G.P., Reeves P. J., Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci. 1993 Jan;18(1):7-12. Review.
    [35] Van Gijsegem F., Genin S., Boucher C., Conservation of secretion pathways for pathogenicity determinants of plant and animal bacteria. Trends Microbiol. 1993 Aug;1(5):175-180. Review
    [36] Alfano J. R., Collmer A., The type Ⅲ (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol. 1997 Sep;179(18):5655-5662.
    [37] Colla Z.O., Galan I.E., The Invasion-associated type Ⅲ protein secretion system in salmonella-a review. Gene 1997.192:51-59
    [38] Galan J. E., Curtiss R., Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6383-6387.
    [39] Goguen J. D., Yother J., Straley S. C., Genetic analysis of the low calcium response in Yersinia pestis mudl(Aplac) insertion mutants. J Bacteriol. 1984 Dec;160(3):842-848.
    [40] Kamata K.,Sakai T., Makino S., et al. Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri J Bacteriol. 1988 Jun;170(6):2480-2484.
    [41] Hueck C. J., Type Ⅲ protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998 Jun;62(2):379-433.
    [42] 陈功友,王金生.植物病原细菌致病性决定因子[J] .植物病理学报, 2002,32 (1) : 1-7.
    [43] Artat M., Fan Gijsegem F., Huet J.C.,et al. PopAl, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 1994 Feb 1;13(3):543-553.
    [44] Leach J. E., White F.F., Bacterial avirulence genes. Annu Rev Phytopathol. 1996;34:153-179.
    [45] Collmer A, Badel JL, Charkowski AO et al. Pseudomonas syringae Hrp type Ⅲ secretion system and effector proteins. Proc Natl Acad Sci U S A. 2000 Aug; 97(16):8770-8777. Review
    [46] Keen N.T., Tamaki S., Kobayashi D., et al. Bacteria expressing avriulcnce gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol. Plant-Microbe Interact 1990.3:112-121
    [47] Dangl J. L., The enigmatic avirulence genes of phytopathogenic bacteria. Curr Top Microbiol Immunol. 1994;192:99-118
    [48] Huynh T.V., Dahlbeck D., Staskawicz B.J. , Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science. 1989 Sep 22;245(4924):1374-1377.
    [49] Van den Ackerveken G, Marois E, Bonas U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell. 1996 Dec 27;87(7):1307-1316.
    [50] Buttner D., Bonas U., Getting across—bacterial type Ⅲ effector proteins on their way to the plant cell. EMBO J. 2002 Oct 15;21(20):5313-5322.
    [51] Rossier O., Wengelnik K., Hahn K., The Xanthomonas Hrp type Ⅲ system secretes proteins from plant and mammalian pathogens. Proc Natl Acad Sci USA 1999 96:9368-9373
    [52] Mudgett M.B., Chesnokova O., Dahlbeck D.,et al. Molecular signals required for type Ⅲ secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci USA 2000 97: 13324-13329.
    [53] Rossier O., Van den Ackerveken G., Bonas U., HrpB2 and HrpF from Xanthomonas are type
    
    Ⅲ-secreted proteins and essential for pathogenicity and recognitionhy the host plant. Mol Microbiol 2000 38:828-838
    [54] Escolar L., Van den Ackerveken G., Rossier O., Type Ⅲ secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBsl and AvrBsT. Mol Plant Pathol 2001 2:287-296
    [55] AckervekenV. D., Marois E., Bonas U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell , [J] . Cell , 1996. 87:1307-1316.
    [56] Yang Y., Gabriel D.W., Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant-Microbe Interact 1995 8:627-631
    [57] Szurek B., Rossier O., Hanse G., et al. Type Ⅲ-dependent translocatiou of the Xanthomonas AvrBs3 protein into the plant cell. Mol Microbiol. 2002 Oct;46(1):13-23
    [58] Marois E., Bonas U., et al. Eukaryotic features of the Yanthomonas type Ⅲ effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J, 2001, 26:523-534
    [59] Herbers K., Conrads-Strauch J., Bonas U., Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 1992, 356: 172-174.
    [60] Zhu W., gang B., White F. F. et al. AvrXa10 contains an acid transcriptional activation domain in the functionally conserved C terminus [J] .Mol Plant-Microb Interact, 1998 ,11:824-832
    [61] Zhu W.G., Yang B., Chittoor J. M., et al. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant-Microhe Interact 1998, 11:824-832.
    [62] Vivian A., Arnold D. L., Bacterial effector genes and their role in host-pathogen interactions. J Plant Pathol 2000, 82:163-178
    [63] Herbers K.,Conrads-strauch. J.M., Nature (London) 1992,356,172-174
    [64] Badel JL, Nomura K, Bandyopadhyay S, et al. Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type Ⅲ secretion system in a chaperone-dependent manner. Mol Microbiol. 2003 Sep;49(5):1239-1251.
    [65] Anne-Laure Page, Claude Parsot, Chaperones of the type Ⅲsecretion pathway: jacks of all trades Molecular Microbiology 2002, Oct; 46
    [66] Nasser W., Reverchon S., H-NS-dependent activation of pectate lyases synthesis in the phytopathogenie bacterium Erwinia chrysanthemi is mediated by the PecT repressor. Mol Microbiol. 2002 Feb;43(3):733-748
    [67] Matsumoto H., Muroi H., Umehara M.,et al. Peh production, flagellum synthesis, and virulence reduced in Erwinia carotovora subsp, carotovora by mutation in a homologue of cytR. Mol Plant Microbe Interact. 2003 May;16(5):389-397.
    [68] Cui Y., Mukherjee A.,et al. Characterization of a novel RNA regnlator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol. 1998 Jul;29(1):219-234
    [69] Hyytiainen H., Montesano M., Palva E.T. , Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact. 2001 Aug;14(8):931-938.
    [70] Chatterjee A., Cui Y., Yang H., et al. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 hy controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact. 2003
    
    Dec; 16(12) : 1106-1117
    [71] Flego D., Marits R., Eriksson A.R.,et al. A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp, earotovora. Mol Plant Microbe Interact. 2000 Apr;13(4):447-455
    [72] Hyytiainen H., Sjoblom S., Palomaki T., et al. The PmrA-PmrB two—component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora. Mol Microbiol. 2003 Nov;50(3) :795-807
    [73] Llama-Palacios A., Lopez-Solanilla E., Poza-Carrion C.,et al. The Erwinia chrysanthemi phoP-phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue. Mol Microbiol. 2003 Jul;49(2):347-357
    [74] Chancey S.T., Wood D.W., Pierson L.S. ,Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol. 1999 Jun; 65 (6): 2294-2299
    [75] Zuber S., Carruthers F., Keel C.,et al. GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHAO. Mol Plant Microbe Interact. 2003 Jul; 16(7) :634-644.
    [76] Galperin M. Y., Koonin E. V., Who's your neighbor? Newcomputational approaches for functional genomics. Nat. Biotechnol. 2000 18, 609-613.
    [77] Nora Ausmees A., Raphael Mayer B., Haim Weinhouse C.,et al. genetic data indicate that proteins containing the GGDEF domainpossess diguanylate cyclase activity FEMS Microbiology Letters 204, 2001, 163-167
    [78] Bateman A., Birney E., Durbin, et al. Pfam 3.1:1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 1999, 27,260-262.
    [79] Hecht G. B., Newton A., Identification of a novel responseregulator required for the swarmer-to-stalked-cell transition in Caulobactercrescentus. J. Bacteriol. 1995, 177, 6223-6229.
    [80] Aldridge P., Jenal U., Cell cycle-dependent degradation ofa fagellar motor component requires a novel-type response regulator. Mol. Microbiol. 1999, 32, 379-391.
    [81] Galperin M. Y., Natale D.A., Aravind L. et al. A specialized version of the HD hydrolase domain implicated insignal transduction. J. Mol. Microbiol. Biotechnol. 1999, 1, 303-305.
    [82] Ross P., Mayer R. , Benziman, M. , Microbiol. Rev. 1991 55, 35-58.
    [83] Chang A. L., Tuckerman J. R., Gonzalez G., et al. Phosphodiesterase Al, a regulator of cellulose synthesisin Acetobacter xylinum, is a heme-based sensor. Biochemistry 2001, 40, 3420-3426.
    [84] Jones H.A., Lillard Jr J.W., et al. HmsT, a proteinessential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 1999 , 145, 2117-2128.
    [85] Ko M ,Park C, Two novel fagellar components and H-NS are involved in the motor function of Escherichia coli. J. Mol. Biol. 2000, 303, 371-382.
    [86] Huang B., Whitchurch C. B., Mattick J. S., FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol. 2003 Dec ; 185 (24) : 7068-7076.
    [87] Wang L. H., He Y., Gao Y., et al. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol. 2004 Feb;51 (3) :903-912
    [88] Dow J.M., Crossman L., Tang J.L. et al. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10995-1000.
    
    
    [89] Barber C. E., Tang J. L., Feng J. X., et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol. 1997 May;24(3):555-566
    [90] Tang J. L., Liu Y.N., Barber C.E.,et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet. 1991 May;226(3):409-417.
    [91] Tang J.L., Feng J.X., Li Q.Q.,et al. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. Mol Plant Microbe Interact. 1996 Sep;9(7):664-666.
    [92] Dow J.M., Feng J.X., Barber C.E.,et al. Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology. 2000 Apr;146 ( Pt 4):885-891
    [93] Wilson T. J, Bertrand N., Tang J. L., et al. The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. Mol Microbiol. 1998 Jun;28(5):961-970.
    [94] Slater H., Alvarez-Morales A., Barber C. E., et al , A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol. 2000 Dec;38(5):986-1003
    [95] Scarpari L.M., Lambais M.R., Silva D.S., et al, Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro. FEMS Microbiol Lett. 2003 May 16;222(1):83-92
    [96] Soto M. J., Fernandez-Pascual M., Sanjuan J. et al, Swarming A fadD mutant of SinorhizoBlum meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol. 2002 Jan;43(2):371-382
    [97] Chatterjee S., Sonti R.V., rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol Plant Microbe Interact. 2002 May;15(5):463-471.
    [98] Poplawsky A.R., Chun W.. PigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris. J Bacteriol. 1997 Jan;179(2):439-444.。
    [99] Gray K.M., Pearson J.P., Downie J.A. et al. Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium RhizoBlum leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J Bacteriol. 1996 Jan;178(2):372-376
    [100] Litbgow J.K., Wilkinson A., Hardman A., et al. The regulatory locus cinRI in RhizoBlum leguminosarum controls a network of quorum-sensing loci. Mol Microbiol. 2000 Jul;37(1):81-97
    [101] Friedman L., Kolter R.M. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Microbiol. 2004 Feb;51(3):675-690.
    [102] Clough S.J., Lee K.E., Schell M. A., et al. A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester. J Bacteriol. 1997 Jun;179(11):3639-3648.
    [103] . Pesci E.H., Iglewski B.H. Quorum sensing in Pseudomonas aeruginosa, 1999, 147-155.
    [104] Teplitski M., Chen H., Rajamani S., et al. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol. 2004 Jan;134(1):137-146. Epub 2003 Dec 11.
    [105] Givskov M.. DeNys R., Manefield M., et al. Interference with homoserine lactone-mediated
    
    prokaryotic signalling. J Bacteriol. 1996 Nov;178(22):6618-6622.
    [106] Teplitski M., Robinson J.B., Bauer W.D. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact. 2000 Jun:13(6):637-648.
    [107] Gap M., Teplitski M., Robinson J.B., et al. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact. 2003 Sep;16(9):827-834.
    [108] Fray R.G., Throup J.P., Oaykin M.,et al. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol. 1999 Oct;17(10):1017-1020.
    [109] Mac A., Montesano M., Koiv V.,et al. Zransgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant Microbe Interact. 2001 Sep;14(9):1035-1042
    [110] Dong Y.H.,Xu J.L., Li X.Z., et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora.Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3526-3531.
    [111] Florence Wisniewski-Dy'el, J. Allan Downie Quorum-sensing in RhizoBlum Antanie van Leeuwenhoek 81: 397-407, 2002. Kluwer Academic Publishers. Printed in the Netherlands. 397
    [112] VandeBroek A., Vanderleyden J., The role of bacterial motility, cbemotaxis, and attachment in bacteria-plant interactions. Mol. Plant-Microbe Interact. 1995. 8:800-810.
    [113] Manning P.A., Meyer T.F. Type 4 pili: biogenesis, adhesins, protein export and DNA import. Proceedings of a workshop. Gene1997, 192: 1-198.
    [114] Kang, Yao wei, Liu, et al. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Molecular Microbiology 2002. 46 (2), 427-437.
    [115] Wall , Kaiser, Type Ⅳ pill and cell motility. Mol Microbiol 1999, 32: 1-10.;
    [116] Merz A.J., So M., Sheetz M. P. Pilus retraction powers bacterial twitching motility. Nature 2000, 407:98-102
    [117] Beattie. G.A.,Lindow. S.E. Epiphytic fitness of phytopathogenicbacteria: physiological adaptations for growth and survival. Curr. Top. Microbiol. Immunol. 1994. 192:1-27.
    [118] Liu H., Kang Y., Genin S., et al. Twitching motility of Ralstonia solanacearum requires a type Ⅳ pilus system. Microbiology2001, 147: 3215-3229.
    [119] Mazumder R.T.J., Phelps N.R., Krieg R.E., Determining chemotactic responses by two subsurface microaerophiles using a simplified capillary assay method. J. Microbiol. Methods 1999.37:255-263
    [120] Romantschuk, M. Annu. Rev. Phytopathol. 1992,30, 225-243
    [121] Ojanen-Reuhs, T., Kalkkinen, N., Westerlund-Wikstrom, et al. Characterization of the fimA gene encoding bundle-forming fimbriae of the plant pathogen Xanthomonas campostris pv. vesicatoria. J. Bacteriol. 1997,179, 1280-1290
    [122] Van Gijsegem, F., Vasse, J., Camus, J. C., et al . Ralstonia solanacearum produces hrp-dependent pili that are required for PopA secretion but not for attachment of bacteria to plant cells. Mol. Microbiol. 2000,36, 249-260
    [123] Ray S.K., Rajeshwari R., Sonti R. V., et al. A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. oryzae exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol Microbiol. 2002 Nov:46(3):637-647.
    
    
    [124] Roine E., Raineri D.M., Romantschuk M.,et al. Characterization of type Ⅳ pilus genes in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact. 1998 Nov;11(11):1048-1056.
    [125] Mazumder R.T.J., Phelps N.R., Krieg R.E., Determining chemotactic responses by two subsurface microaerophiles using a simplified capillary assay method. J. Microbiol. Methods 1999.37:255-263
    [126] Simpson A.J., Reinach F.C. , Arruda P, et al. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature. 2000 Jul 13;406(6792):151-157.
    [127] Salanoubat M., Genin S. , Artiguenave F., et al. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature (London) 2002, 415, 497-502
    [128] Ham C.M., , Deng J. H., et al. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlingsRojas, Proc. Natl. Acad. Sci. USA 2002,99, 13142-13147.
    [129] Simpson D.A., Ramphal R., Lory S. Characterization of Pseudomonas aeruginosa fliO, a gene involved in flagellar biosynthesis and adherence. Infect Immun. 1995 Aug;63(8):2950-2957
    [130] Shen Y., Chern M., Silva F.G., et al. Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF. Mol Plant Microbe Interact. 2001 Feb;14(2):204-213
    [131] Bayot R. G., Ries S.M. Role of motility in apple blossom infection by Erwinia amylovora and studies of fire blight control with attractant and repellent compounds. Phytopathology 1986, 76:441-445.
    [132] Hatterman D.R., Ries S.M., Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 1989, 79:284-289.
    [133] Panapoulos N.J., Schroth M.N,, Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseolicola. Phytopathology 1974, 64:1389-1397.
    [134] Taguchi F., Shimizu R., Inagaki Y., et al. Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol. 2003 Mar;44(3):342-349
    [135] Shimizu R., Taguchi F., Marntani M.,et al. The DeltafliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Genet Genomics. 2003 Apr;269(1):21-30. Epub 2003 Feb 13.
    [136] 武波,G T J wilson,唐纪良等水稻白叶枯病菌rpfA基因的鉴定。广西农业大学学报,1996,15(1):1-6
    [137] 王兴达,唐纪良 水稻白叶枯病菌rpfF基因的定位及其在致病调控中的作用。广西农业大学学报,1996,15(1):14-16
    [138] 武波,唐纪良,马庆生水稻黄单胞杆菌水稻变种rpfA基因与毒性相关 西南农业学报 2001,14:(1)
    [139] Hanahan D. Studies on transformation of E. coli with plasmids. J. Mol. Biol. 1983.166:557
    [140] Boyer H.W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 1969,41:459-472
    [141] Murray, N.E., Brammar, W.J., Murray, k. Lambdoid phages that simplify the recovery of in vitro recombinants. Mol. Gen. Genet. 1977. i50:53-61
    [142] Shrot J.M., Femandez, et al. a ZAP: A bacteriophage a expression vector with in vivo excision properties. Nucleic. Acids. Res. 1988,16:7583-7600
    
    
    [143] Leong S.A., Ditta G.S., Helinski D.R., Beme biosynthesis in RhizoBlum. J. Biol. Chem. 1982.,257:8724-8730
    [144] Kauffman H.E., Reddy A.P.K., ttsieh S.P.Y., et al. long-chain fatty-acid-CoA ligase Plant Disease Reporter ,1973., 57:537-541
    [145] Jefferson R.A., Kavanagh T.A., Bevan M.W. GUS fusions: beta-glueuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901-3907.
    [146] Newman K.L., Almeida R.P., Purcell A.H., et al. cell-cell signaling controls xylella fastidiosa interactions with insects and plants Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1737-1742. Epub 2004 Jan 30.
    [147] Huynh, T.V., Dahlbeck, D., Staskawicz, B. J. 1989. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245:1374-1377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700