病原细菌溶藻弧菌和铜绿假单胞菌中致病相关系统的调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶藻弧菌(Vibrio alginolyticus)是一种重要的动物致病菌,弧菌病暴发可以引起海水养殖动物的高死亡率,在欧洲和南亚等地导致重大的经济损失。该菌黏附宿主表面,形成细胞被膜,具有产生如外毒素碱性丝氨酸蛋白酶(Asp)和铁载体等胞外产物的能力。这些毒力机制与其致病性密切相关。
     病原菌主要依赖多种分泌系统分泌的胞外蛋白的活性来利用养分、侵染宿主和适应环境。第六型分泌系统(T6SS)是一种新发现的、保守的细菌蛋白转运系统,在革兰氏阴性细菌中受到严谨的调控。在溶藻弧菌中存在两套T6SS基因簇(T6SSVA1和T6SSVA2),可以编码T6SS标志蛋白Hcp.VgrG以及IcmF,还包括丝氨酸-苏氨酸激酶/磷酸酶(PpkA和PppA)。多种与T6SS相关的细菌生理现象已经被报道,但是其内在机制尚不清楚。本研究发现T6SS的标志蛋白溶血素共调蛋白(Hcp1)的表达受到严谨的调控。进一步的实验发现,Hcp1的表达具有生长依赖性,在指数期时达到最高。群体感应系统(Quorum sensing, QS)中的调节因子LuxO和LuxR分别正调控和负调控该蛋白的表达。此外,可替换sigma因子RpoN以及由T6SSVA1基因簇中基因编码的增强子结合蛋白VasH也可以调控Hcp1的表达。T6SSVA1中不仅Hcp1基因,其他基因如icmFl、dpⅥ和vasA1也受到LuxR、RpoN和VasH的负调控。总之,本研究表明在溶藻弧菌中T6SS的表达受到了QS和可替换sigma因子的调控。
     本研究第一次在溶藻弧菌中将T6SS分泌系统、QS以及与3’,5’-环二鸟苷酸(c-di-GMP)相关的多种毒力表型联系起来。两个T6SS基因簇的框内无标记缺失显示,T6SS的突变可以影响细菌的运动性、生物被膜形成、细胞聚集以及外毒素Asp的产生能力。ppkAl和pppA的缺失导致了Hcp1蛋白表达水平的改变,pppA的缺失促使分泌系统的开启,标志着这两个基因对于T6SS调控的重要作用。PppA/PpkA1通过控制胞内第二信使c-di-GMP的水平来控制多种表型的变化。更重要的是,PppA/PpkA1可以通过控制群体感应调节因子LuxR来调控Asp的表达,而在本实验室之前的研究中已经证明了LuxR对Asp的表达有正调控作用。全基因组转录谱分析结果表明,ppkA1和pppA缺失株中100多个基因的表达水平受到了显著的影响。以上结果表明,溶藻弧菌中T6SS的PppA/PpkAl介导调控多种表型,丰富了我们对新发现的T6SS系统的认识。
     在胃肠道内,复杂的通信发生在定植的细菌与胃肠道细胞内。这些通信中包括了病原菌和宿主之间的通讯。条件致病菌铜绿假单胞菌(Pseudomonas aeruginosa)是众所周知的一种伤口和肺部感染的病原菌。它的毒力与其监控宿主化学信号的能力以及形成生物被膜黏附于表面的能力有关。本研究通过分析在环境压力下,由真核细胞水解ATP产生的、随后分泌到胃肠道内的信号分子腺苷对细菌病原性的影响,阐明了腺苷在调控铜绿假单胞菌的病原性中起到的关键作用。外源腺苷的添加抑制了铜绿假单胞菌形成生物被膜的能力,同时腺苷还可以通过抑制鼠李糖脂的产生来减弱细菌爬动的能力。由于腺苷的代谢物肌苷不会影响生物被膜的形成,并且由于腺苷代谢能力的丧失也不会影响细菌的表型,因此推测腺苷代谢物对于铜绿假单胞菌病原性的降低没有显著影响。腺苷还可以降低毒力因子的产生,例如绿脓菌素、弹性蛋白酶、胞外多糖、铁载体和假单胞菌喹诺酮信号,这些毒力因子的减少可以降低铜绿假单胞菌对秀丽隐杆线虫的侵染能力。为了探究腺苷降低铜绿假单胞菌的毒力机制,本研究采用全基因组转录分析方法,利用基因芯片技术,分析了腺苷添加对基因表达的影响。芯片结果显示腺苷的添加抑制了部分基因的表达,与在富含铁离子的环境中得到的结果相似。电泳迁移实验表明,铁相关基因的表达受到了腺苷的抑制,推测这是由于腺苷可以增强铁摄取调节因子Fur与pvdS和fagA等铁相关启动子的结合从而阻碍这些基因的转录。因此,腺苷作为一个跨界信号抑制某些铁摄取基因的表达,降低了铜绿假单胞菌的毒力。本研究意义在于提出了一个新的无毒的方法(添加腺苷)来抑制生物被膜的形成和降低毒力,并且对于最重要的毒力调节因子之一的Fur蛋白在铜绿假单胞菌中是如何受到控制的这一问题,提供了一个崭新的理解。
Vibrio alginolyticus is one of the important epizootic pathogens causing high mortality outbreaks of vibriosis in sea animals in farmed mariculture throughout Europe and South Asia, resulting in important economic losses. The abilities to adhere to the host surface, form biofilm and produce extracellular products such as the exotoxin alkaline serine protease (Asp) and siderophore have been suggested to be critically involved in virulence in this bacterium.
     Bacterial pathogens mainly rely on the activity of proteins secreted by a variety of protein secretion systems for the nutrients utilization, pathogenesis and niche adaptation. The type VI secretion system (T6SS) is a newly-defined, conserved bacterial protein translocation system and is precisely regulated in Gram-negative bacterial pathogens. We show that two sets of T6SS gene clusters (T6SSVA1and T6SSVA2) reside in the genomes of V. alginolyticus, encoding T6SS hallmark proteins such as Hcp, VgrG, and IcmF as well as serine-threonine kinase/phosphatase PpkA and PppA. A wide range of T6SS-related bacterial processes have been described while their underlying mechanisms are not clear. In this study, expression of a haemolysin co-regulated protein (Hcpl), which is one of the hallmarks of T6SS, was found to be strictly regulated in V. alginolyticus. The expression of Hcpl was growth phase-dependent and the production of Hcpl reached a maximum in the exponential phase. The expression of Hcpl was positively and negatively regulated by quorum sensing (QS) regulators LuxO and LuxR, respectively. In addition, we observed that Hcpl expression required the alternative sigma factor RpoN and the enhancer binding protein (EBP) VasH, which is encoded in T6SSVA1gene cluster. Moreover, LuxR, RpoN, and VasH could positively regulate the expression of other T6SS genes. Taken together, it was demonstrated that the expression of T6SS in V. alginolyticus was under the regulation of quorum sensing and alternative sigma factor.
     In this study, we identified a connection between the T6SS secretion/quorum sensing and various3',5'-cyclic diguanylic acid (c-di-GMP) associated virulence phenotypes in V. alginolyticus. In-frame deletion mutants were made in the two T6SS gene loci to show their influences on motility, biofilm formation, cell aggregation, and exotoxin Asp production. The deletion of ppkA1and pppA resulted in an obvious alteration in the expression and secretion of Hcp1, signifying their essential roles in regulation of T6SS. PppA/PpkAl controlled pleiotropic phenotypes through the modulation of intracellular levels of second messenger c-di-GMP. Moreover, PppA/PpkAl also regulated the expression of Asp through manipulation of the expression of the quorum sensing regulator LuxR, which positively regulates the extracellular protease expression. Whole genome transcriptional profiling of ppkAl and pppA deletion strains revealed that the expression levels of over100genes were significantly co-regulated. These results demonstrate new roles of T6SS mediated by PppA/PpkAl in controlling pleiotropic phenotypes and contribute to our understanding of the conserved T6SS.
     In the gastrointestinal (GI) tract, complex communication occurs between the colonizing bacterial species and the cells of GI tract. This communication includes crosstalk between pathogens and the host. The opportunistic pathogen Pseudomonas aeruginosa is a well known wound and lung pathogen whose virulence is related to its abilities to monitor host chemical signals and to form communities of cells attached to surfaces known as biofilms. Here the breakdown product of ATP, adenosine, which is released into the GI tract by stressed eucaryotic cells, was found to play an important role in regulating the pathogenicity of P. aeruginosa. The addition of adenosine repressed P. aeruginosa biofilm formation and abolished bacterial swarming by preventing production of rhamnolipids. Since the adenosine metabolite, inosine, did not affect biofilm formation and a mutant unable to metabolize adenosine behaved like the wild-type strain, adenosine metabolism could be believed to be unrelated to the reduction of pathogenicity. Adenosine also reduces production of the virulence factors pyocyanin, elastase, EPS, siderophores, and the Pseudomonas quinolone signal which led to reduced virulence with Caenorhabditis elegans. To determine the mechanism by which adenosine reduces the virulence of P. aeruginosa, a whole-transcriptome analysis was conducted, and it was revealed that adenosine addition repressed genes similar to an iron-replete condition. DNA binding assays showed that adenosine repressed the iron-related genes through it increased the affinity of Fur for both the pvdS and fagA iron-related promoters. Therefore, adenosine decreases P. aeruginosa pathogenicity as an interkingdom signal by repressing genes related to iron acquisition. Significantly, this study provides a novel and nontoxic way (adenosine addition) to inhibit biofilm formation and virulence as well as an insight into how one of the most important virulence regulators is controlled.
引文
[1]吴后波,潘金培.弧菌属细菌及其所致海水养殖动物疾病.中国水产科学.2001,8(1):89-93.
    [2]Lee KK, Yu SR, Yang TI, Liu PC, Chen FR. Isolation and characterization of Vibrio alginolyticus isolated from diseased kuruma prawn, Penaens japonicus. Lett Appl Microbiol.1996,22(2): 111-114.
    [3]Liu CH, Cheng W, Hsu JP, Chen JC. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis Aquat Org.2004, 61(1):169-174.
    [4]Gomez-Leon J, Villamil L, Lemos ML, Novoa B, Figueras A. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl Environ Microbiol.2005,71(1):98-104.
    [5]Balebona MC, Andreu MJ, Bordas MA, Zorrilla I, Morinigo MA, Borrego JJ. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl Environ Microbiol.1998, 64(11):4269-4275.
    [6]Zen-Yoji H, Le Clair RA, Ota K, Montague TS. Comparison of Vibrio parahaemolyticus cultures isolated in the United States with those isolated in Japan. J Infect Dis.1973,127(3):237-241.
    [7]French GL. Antibiotics for marine vibrios. Lancet.1990,336(8714):568-569.
    [8]Daniels NA, Shafaie A. A review of pathogenic Vibrio infections for clinicians. Infect Med.2000, 17(10):665-685.
    [9]Howe TR, Iglewski BH. Isolation and characterization of alkaline protease-deficient mutants of Pseudomonas aeruginosa in vitro and in a mouse eye model. Infect Immun.1984,43(3):1058-1063.
    [10]Pavlovskis OR, Wretlind B. Assessment of protease (elastase) as a Pseudomonas aeruginosa virulence factor in experimental mouse burn infection. Infect Immun.1979,24(1):181-187.
    [11]Norqvist A, Norrman B, Wolf-Watz H. Identification and characterization of a zinc metalloprotease associated with invasion by the fish pathogen Vibrio anguillarum. Infect Immun.1990,58(11): 3731-3736.
    [12]Nottage A, Birkbeck T. Production of proteinase during experimental infection of Ostrea edulis L. larvae with Vibrio alginolyticus NCMB 1339 and the antigenic relationship between proteinases produced by marine vibrios pathogenic for fish and shellfish. J Fish Dis.1987,10(4):265-273.
    [13]Lee KK, Yu SR, Liu PC. Alkaline serine protease is an exotoxin of Vibrio alginolyticus in Kuruma prawn, Penaeus japonicus. Curr Microbiol.1997,34(2):110-117.
    [14]Chen FR, Liu PC, Lee KK. Purification and partial characterization of a toxic serine protease produced by pathogenic Vibrio alginolyticus. Microbios.1999,98(390):95-111.
    [15]Cai SH, Wu ZH, Jian JC, Lu YS. Cloning and expression of the gene encoding an extracellular alkaline serine protease from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis in Lutjanus erythopterus (Bloch). J Fish Dis.2007,30(8):493-500.
    [16]Yahr TL. A critical new pathway for toxin secretion? N Engl J Med.2006,355(11):1171-1172.
    [17]Williams SG, Varcoe LT, Attridge SR, Manning PA. Vibrio cholerae Hep, a secreted protein coregulated with H1yA. Infect Immun.1996,64(1):283-289.
    [18]Wang J, Li C, Yang H, Mushegian A, Jin S. A novel serine/threonine protein kinase homologue of Pseudomonas aeruginosa is specifically inducible within the host infection site and is required for full virulence in neutropenic mice. J Bacteriol.1998,180(24):6764-6768.
    [19]Pallen M, Chaudhuri R, Khan A. Bacterial FHA domains:neglected players in the phospho-threonine signalling game? Trends Microbiol.2002,10(12):556-563.
    [20]Das S, Chaudhuri K. Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol.2003,3(3): 287-300.
    [21]Srinivasa Rao PS, Yamada Y, Tan YP, Leung KY. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol.2004,53(2): 573-586.
    [22]Zheng J, Tung SL, Leung KY. Regulation of a type Ⅲ and a putative secretion system in Edwardsiella tarda by EsrC is under the control of a two-component system, EsrA-EsrB. Infect immu 2005,73(7):4127-4237.
    [23]Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordonez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science.2006,312(5779):1526-1530.
    [24]Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A.2006,103(5):1528-1533.
    [25]Cascales E. The type Ⅵ secretion toolkit. EMBO Rep.2008,9(8):735-741.
    [26]Bingle LEH, Bailey CM, Pallen MJ. Type Ⅵ secretion:a beginner's guide. Curr Opin Microbiol. 2008,11(1):3-8.
    [27]Sheahan KL, Cordero CL, Satchell KJF. Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc Natl Acad Sci U S A.2004,101(26): 9798-9803.
    [28]Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA. 2007,104(39):11508-11513.
    [29]Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK. Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog.2008,44(4):344-361.
    [30]Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact.2003,16(1):53-64.
    [31]Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrazek J, Nierman WC. Type Ⅵ secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol.2007,64(6):1466-1485.
    [32]Christie PJ, Atmakuri K, Krishnamoorthy Ⅴ, Jakubowski S, Cascales E. Biogenesis, architecture, and function of bacterial type Ⅳ secretion systems. Annu Rev Microbiol.2005,59:451-485.
    [33]Akeda Y, Galan JE. Chaperone release and unfolding of substrates in type Ⅲ secretion. Nature.2005, 437(7060):911-915.
    [34]Schlieker C, Zentgraf H, Dersch P, Mogk A. ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem.2005,386(11):1115-1127.
    [35]Zheng J, Leung KY. Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol. 2007,66(5):1192-1206.
    [36]Mougous JD, Gifford CA, Ramsdell TL, Mekalanos JJ. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol.2007,9(7): 797-803.
    [37]Pieper R, Huang ST, Robinson JM, Clark DJ, Alami H, Parmar PR, Perry RD, Fleischmann RD, Peterson SN. Temperature and growth phase influence the outer-membrane proteome and the expression of a type Ⅵ secretion system in Yersinia pestis. Microbiology.2009,155(2):498-512.
    [38]Motin VL, Georgescu AM, Fitch JP, Gu PP, Nelson DO, Mabery SL, Garnham JB, Sokhansanj BA, Ott LL, Coleman MA, Elliott JM, Kegelmeyer LM, Wyrobek AJ, Slezak TR, Brubaker RR, Garcia E. Temporal global changes in gene expression during temperature transition in Yersinia pestis. J Bacteriol.2004,186(18):6298-6305.
    [39]Mattinen L, Somervuo P, Nykyri J, Nissinen R, Kouvonen P, Corthals G, Auvinen P, Aittamaa M, Valkonen J, Pirhonen M. Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobaclerium atrosepticum. Microbiology. 2008,154(8):2387-2396.
    [40]Yuan ZC, Liu P, Saenkham P, Kerr K, Nester EW. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol.2008, 190(2):494-507.
    [41]Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol.2005,55(4): 1160-1182.
    [42]Waite RD, Paccanaro A, Papakonstantinopoulou A, Hurst JM, Saqi M, Littler E, Curtis MA. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 2006,7:162.
    [43]Rao PSS, Yamada Y, Tan YP, Leung KY. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol.2004,53(2):573-586.
    [44]Wang X, Wang QY, Xiao JF, Liu Q, Wu HZ, Xu LL, Zhang YX. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish. Fish Shellfish Immun 2009,27(3):469-477.
    [45]Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog.2006,2(8):e81.
    [46]Castang S, McManus HR, Turner KH, Dove SL. H-NS family members function coordinately in an opportunistic pathogen. Proc Natl Acad Sci U S A.2008,105(48):18947-18952.
    [47]Renzi F, Rescalli E, Galli E, Bertoni G. Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ Microbiol.2010,12(1):254-263.
    [48]Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. The bacterial enhancer-dependent sigma 54 (sigma N) transcription factor. J Bacteriol.2000,182(15):4129-4136.
    [49]Bernard CS, Brunet YR, Gavioli M, Lloubes R, Cascales E. Regulation of Type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol.2011,193(9):2158-2167.
    [50]Ishikawa T, Rompikuntal PK, Lindmark B, Milton DL, Wai SN. Quorum Sensing Regulation of the Two hcp Alleles in Vibrio cholerae O1 Strains. PloS One.2009,4(8):e6734.
    [51]Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJ, Yildiz F, Klose KE. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol.2009, 191(21):6555-6570.
    [52]Krin E, Chakroun N, Turlin E, Givaudan A, Gaboriau F, Bonne I, Rousselle JC, Frangeul L, Lacroix C, Hullo MF. Pleiotropic role of quorum-sensing autoinducer 2 in Photorhabdus Iuminescens. Appl Environ Microbiol.2006,72(10):6439-6451.
    [53]Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg MB, Birch PR, Salmond GP, Toth IK. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog.2008,4(6):e1000093.
    [54]Lesic B, Starkey M, He J, Hazan R, Rahme LG. Quorum sensing differentially regulates Pseudomonas aeruginosa type Ⅵ secretion locus Ⅰ and homologous loci Ⅱ and Ⅲ, which are required for pathogenesis. Microbiology.2009,155(9):2845-2855.
    [55]Parsons DA, Heffron F. sciS, an icmF Homolog in Salmonella enterica Serovar Typhimurium, Limits Intracellular Replication and Decreases Virulence. Infect Immun.2005,73(7):4338-4345.
    [56]Dudley EG, Thomson NR, Parkhill J, Morin NP, Nataro JP. Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli. Mol Microbiol.2006,61(5):1267-1282.
    [57]Hsu F, Schwarz S, Mougous JD. TagR promotes PpkA-catalysed type Ⅵ secretion activation in Pseudomonas aeruginosa. Mol Microbiol.2009,72(5):1111-1125.
    [58]Leung KY, Siame BA, Snowball H, Mok YK. Type VI secretion regulation:crosstalk and intracellular communication. CurrOpin Microbiol 2011,14(1):9-15.
    [59]Vilches S, Jimenez N, Tomas JM, Merino S. Aeromonas hydrophila AH-3 type Ⅲ secretion system expression and regulatory network. Appl Environ Microbiol.2009,75(19):6382-6392.
    [60]Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell. 2004,118(1):69-82.
    [61]Weber B, Hasic M, Chen C, Wai SN, Milton DL. Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol.2009,11(12):3018-3028.
    [62]Liu Z, Miyashiro T, Tsou A, Hsiao A, Goulian M, Zhu J. Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc Natl Acad Sci U S A.2008,105(28): 9769-9774.
    [63]Bernard CS, Brunet YR, Gueguen E, Cascales E. Nooks and crannies in type Ⅵ secretion regulation. J Bacteriol.2010,192(15):3850-3860.
    [64]Brencic A, Lory S. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol.2009,72(3):612-632.
    [65]Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol.2009,73(3):434-445.
    [66]Nealson KH, Hastings JW. Bacterial bioluminescence:its control and ecological significance. Microbiol Rev.1979,43(4):496-518.
    [67]Waters CM, Bassler BL. Quorum sensing:cell-to-cell communication in bacteria. Annu Rev Cell DevBiol.2005,21:319-346.
    [68]Milton DL. Quorum sensing in vibrios:complexity for diversification. Int J Med Microbiol.2006, 296(2-3):61-71.
    [69]Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol.1994,176(2):269-275.
    [70]Waters CM, Lu W, Rabinowitz JD, Bassler BL. Quorum Sensing Controls Biofilm Formation in Vibrio cholerae through Modulation of Cyclic Di-GMP Levels and Repression of vpsT. J Bacteriol. 2008,190(7):2527-2536.
    [71]Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A.2002,99(5): 3129-3134.
    [72]Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis.1983,5(2):279-313.
    [73]Eron LJ, Harver L, Hixon DL, Poretz DM. Ciprofloxacin therapy of infections caused by Pseudomonas aeruginosa and other resistant bacteria. Antimicrob Agents Chemother.1985,28(2): 308-310.
    [74]Laughlin RS, Musch MW, Hollbrook CJ, Rocha FM, Chang EB, Alverdy JC. The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg.2000,232(1): 133-142.
    [75]Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, Yoshiya K, Matsushima A, Sumi Y, Kuwagata Y, Tanaka H, Shimazu T, Sugimoto H. Altered gut flora and environment in patients with severe SIRS. J Trauma.2006,60(1):126-133.
    [76]Schook LB, Carrick L, Jr., Berk RS. Murine gastrointestinal tract as a portal of entry in experimental Pseudomonas aeruginosa infections. Infect Immun.1976,14(2):564-570.
    [77]Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The "undrained abscess" of multiple organ failure. Ann Surg.1993,218(2):111-119.
    [78]Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A.1999,96(2): 715-720.
    [79]Mills SA, Marietta MA. Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry.2005,44(41):13553-13559.
    [80]Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML. Architecture of a protein central to iron homeostasis:crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol.2003,47(4):903-915.
    [81]Ahmad R, Brandsdal BO, Michaud-Soret I, Willassen NP. Ferric uptake regulator protein:Binding free energy calculations and per-residue free energy decomposition. Proteins:Struct Funct Bioinform. 2009,75(2):373-386.
    [82]Sheikh MA, Taylor GL. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol.2009,72(5):1208-1220.
    [83]Ochsner UA, Vasil AI, Vasil ML. Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression:purification and activity on iron-regulated promoters. J Bacteriol.1995,177(24):7194-7201.
    [84]Cornelis P, Matthijs S, Van Oeffelen L. Iron uptake regulation in Pseudomonas aeruginosa. Biometals.2009,22(1):15-22.
    [85]Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A.2004,101(26):9792-9797.
    [86]Oglesby AG, Farrow JM,3rd, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, Vasil ML The influence of iron on Pseudomonas aeruginosa physiology:a regulatory link between iron and quorum sensing. J Biol Chem.2008,283(23):15558-15567.
    [87]Chien JY, Shih JT, Hsueh PR, Yang PC, Luh KT. Vibrio alginolyticus as the cause of pleural empyema and bacteremia in an immunocompromised patient. Eur J Clin Microbiol Infect Dis.2002, 21(5):401-403.
    [88]Wang QY, Liu Q, Ma Y, Rui HP, Zhang YX. LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus. J App1 Microbiol.2007, 103(5):1525-1534.
    [89]Rui HP, Liu Q, Ma Y, Wang QY, Zhang YX. Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol Lett. 2008,285(2):155-162.
    [90]Ye J, Ma Y, Liu Q, Zhao DL, Wang QY, Zhang YX. Regulation of Vibrio alginolyticus virulence by the LuxS quorum-sensing system. J Fish Dis.2008,31(3):161-169.
    [91]Liu H, Wang QY, Liu Q, Cao XD, Shi C, Zhang YX. Roles of Hfq in the stress adaptation and virulence in fish pathogen Vibrio alginolyticus and its potential application as a target for live attenuated vaccine. Appl Microbiol Biotechnol.2011,91(2):353-364.
    [92]Dennis JJ, Zylstra GJ. Plasposons:modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol.1998,64(7):2710-2715.
    [93]Liang W, Wang S, Yu F, Zhang L, Qi G, Liu Y, Gao S, Kan B. Construction and Evaluation of a Safe, Live, Oral Vibrio cholerae Vaccine Candidate, IEM108. Infect Immun.2003,71(10):5498-5504.
    [94]Rui HP, Liu Q, Wang QY, Ma Y, Liu H, Shi C, Zhang YX Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System. J Microbiol Biotechnol.2009,19(5):431-438.
    [95]Wang SY, Lauritz J, Jass J, Milton DL. A ToxR homolog from Vibrio anguillarum serotype OI regulates its own production, bile resistance, and biofilm formation. J Bacteriol.2002,184(6): 1630-1639.
    [96]Milton DL, Norqvist A, Wolf-Watz H. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol.1992,174(22):7235-7244.
    [97]Morales VM, Backman A, Bagdasarian M. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene.1991,97(1):39-47.
    [98]Kramer JA. Omiga:a PC-based sequence analysis tool. Mol Biotechnol.2001,19(1):97-106.
    [99]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods.2001,25(4):402-408.
    [100]Tian Y, Wang QY, Liu Q, Ma Y, Cao XD, Guan LY, Zhang YX. Involvement of LuxS in the regulation of motility and flagella biogenesis in Vibrio alginolyticus. Biosci Biotechnol Biochem. 2008,72(0):1063-1071.
    [101]Denkin SM, Nelson DR. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl Environ Microbiol.1999,65(8):3555-3560.
    [102]Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis:what can be learned from available microbial genomic resources? BMC Genomics.2009,10:104.
    [103]Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog.2010,6(8):117-137.
    [104]Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T. Zhang X, Stockley P, Severinov K. Modus operandi of the bacterial RNA polymerase containing the σ54 promoter-specificity factor. Mol Microbiol.2008,68(3):538-546.
    [105]Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant-Microbe Interact.2003,16(1):53-64.
    [106]Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol. 2002,291(8):605-614.
    [107]Kawagishi I, Nakada M, Nishioka N, Homma M. Cloning of a Vibrio alginolyticus rpoN gene that is required for polar flagellar formation. J bacteriol.1997,179(21):6851-6854.
    [108]Schumacher J, Joly N, Rappas M, Zhang X, Buck M. Structures and organisation of AAA+enhancer binding proteins in transcriptional activation. J Struct Biol.2006,156(1):190-199.
    [109]Aubert DF, Flannagan RS, Valvano MA. A novel sensor kinase-response regulator hybrid controls biofilm formation and type Ⅵ secretion system activity in Burkholderia cenocepacia. Infect Immun. 2008,76(5):1979-1991.
    [110]de Pace F, Boldrin de Paiva J, Nakazato G, Lancellotti M, Sircili MP, Guedes Stehling E, Dias da Silveira W, Sperandio V. Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology.2011,157(10):2954-2962.
    [111]Schwarz S, Hood RD, Mougous JD. What is type Ⅵ secretion doing in all those bugs? Trends Microbiol.2010,18(12):531-537.
    [112]Jani AJ, Cotter PA. Type Ⅵ secretion:not just for pathogenesis anymore. Cell Host Microbe.2010, 8(1):2-6.
    [113]Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A. Structure and composition of the Shigella flexneri "needle complex", a part of its type Ⅲ secreton. Mol Microbiol. 2001,39(3):652-663.
    [114]Rohde M, Puls J, Buhrdorf R, Fischer W, Haas R. A novel sheathed surface organelle of the Helicobacter pylori cag type Ⅳ secretion system. Mol Microbiol.2003,49(1):219-234.
    [115]Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad RR, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD. A type Ⅵ secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe.2010,7(1):25-37.
    [116]Kodama T, Gotoh K, Hiyoshi H, Morita M, Izutsu K, Akeda Y, Park KS, Cantarelli VV, Dryselius R, Lida T, Honda T.. Two regulators of Vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region. Plos One.2010,5(1):e8678.
    [117]Simm R, Morr M, Remminghorst U, Andersson M, Romling U. Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Biochem 2009,386(1):53-58.
    [118]Ueda A, Wood TK. Connecting Quorum Sensing, c-di-GMP, Pel Polysaccharide, and Biofilm Formation in Pseudomonas aeruginosa through Tyrosine Phosphatase TpbA (PA3885). PLoS Pathog 2009,5(6):e1000483.
    [119]Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol.2009,7(4):263-273.
    [120]Ma Q, Wood TK. OmpA influences Escherichia coti biofilm formation by repressing cellulose production through the CpxRA two-component system. Environ Microbiol.2009,11(10):2735-2746.
    [121]Zheng J, Shin OS, Cameron DE, Mekalanos JJ. Quorum sensing and a global regulator TsrA control expression of type Ⅵ secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A.2010, 107(49):21128-21133.
    [122]Kulesekara H, Lee Ⅴ, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence. Proc Natl Acad Sci U S A.2006,103(8): 2839-2844.
    [123]Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol.2007,65(6):1474-1484.
    [124]Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science. 2010,327(5967):866-868.
    [125]Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. Structural identification of a bacterial quorum-sensing signal containing boron. Nature.2002,415(6871): 545-549.
    [126]Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci U S A.2003,100(18):10452-10459.
    [127]Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Nat1 Acad Sci U S A.2010, 107(1):228-233.
    [128]Jahoor A, Patel R, Bryan A, Do C, Krier J, Watters C, Wahli W, Li G, Williama SC, Rumbaugh KP. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. J Bacteriol.2008,190(13):4408-4415.
    [129]Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun.2007,75(9):4597-4607.
    [130]Freestone PP, Haigh RD, Williams PH, Lyte M. Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett.1999,172(1):53-60.
    [131]Alverdy J, Holbrook C, Rocha F, Seiden L, Wu RL, Musch M, Chang E. Ohman D,Suh S. Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg.2000,232(4): 480-489.
    [132]Roman RM, Fitz JG. Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function. Gastroenterology.1999,116(4):964-979.
    [133]Hasko G, Cronstein BN. Adenosine:an endogenous regulator of innate immunity. Trends Immunol. 2004,25(1):33-39.
    [134]Crane JK, Olson RA, Jones HM, Duffey ME. Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator. Am J Physiol Gastrointest Liver Physiol. 2002,283(1):G74-86.
    [135]Crane JK, Shulgina I. Feedback effects of host-derived adenosine on enteropathogenic Escherichia coli. FEMS Immunol Med Microbiol.2009,57(3):214-228.
    [136]Kohler JE, Zaborina O, Wu L, Wang Y, Bethel C, Chen Y, Shapiro J, Turner JR., Alverdy JC. Components of intestinal epithelial hypoxia activate the virulence circuitry of Pseudomonas. Am J Physiol Gastrointest Liver Physiol.2005,288(5):G1048-1054.
    [137]Patel NJ, Zaborina O, Wu L, Wang Y, Wolfgeher DJ, Valuckaite V, Ciancio MJ, Kohler JE, Shevchenko O, Colgan SP, Chang EB, Turner JR., Alverdy JC. Recognition of intestinal epithelial HIF-1 alpha activation by Pseudomonas aeruginosa. Am J Physiol Gastrointest Liver Physiol.2007, 292(1):G134-142.
    [138]Thammavongsa V, Kern JW, Missiakas DM, Schneewind O. Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med.2009,206(11):2417-2427.
    [139]Venturi V, Weisbeek P, Koster M. Gene regulation of siderophore-mediated iron acquisition in Pseudomonas:not only the Fur repressor. Mol Microbiol.1995,17(4):603-610.
    [140]Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML. GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa:identification of novel pyoverdine biosynthesis genes. Mol Microbiol.2002,45(5):1277-1287.
    [141]Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM. Iron and Fur regulation in Vibrio cholerae and the role of Fur in virulence. Infect Immun.2005,73(12):8167-8178.
    [142]Calderwood SB, Mekalanos JJ. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the.fur locus. J Bacteriol.1987,169(10):4759-4764.
    [143]Bjorn MJ, Sokol PA, Iglewski BH. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures. J Bacteriol.1979,138(1):193-200.
    [144]Althaus EW, Outten CE, Olson KE, Cao H, O'Halloran TV. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry.1999,38(20):6559-6569.
    [145]Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA 14 transposon insertion mutants. Proc Natl Acad Sci U S A.2006,103(8):2833-2838.
    [146]Heydorn A, Nielsen AT, Hentzer M, Steinberg C, Givskov M, Ersb(?)ll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology.2000,146(10): 2395-2407.
    [147]Lee J, Attila C, Cirillo SL, Cirillo JD, Wood TK. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol.2009,2(1):75-90.
    [148]Ueda A, Wood TK. Tyrosine phosphatase TpbA of Pseudomonas aeruginosa controls extracellular DNA via cyclic diguanylic acid concentrations. Environ Microbiol.2010,2(3):449-455.
    [149]Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol.2006,188(1):305-316.
    [150]Overhage J, Bains M, Brazas MD, Hancock RE. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol. 2008,190(8):2671-2679.
    [151]Caiazza NC, Shanks RM, O'Toole GA. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol.2005,187(21):7351-7361.
    [152]Essar DW, Eberly L, Hadero A, Crawford IP. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa:interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol.1990,172(2):884-900.
    [153J Attila C, Ueda A, Wood TK. PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Appl Microbiol Biotechnol.2008,78(2):293-307.
    [154]Martinez-Granero F, Capdevila S, Sanchez-Contreras M, Martin M, Rivilla R. Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology.2005,151(3):975-983.
    [155]Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem.1987,160(1):47-56.
    [156]Zhang XS, Garcia-Contreras R, Wood TK. Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA).1SME J.2008,2(6):615-631.
    [157]Trott O, Olson AJ. AutoDock Vina:improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem.2010,31(2):455-461.
    [158]Kimura Y, Turner JR, Braasch DA, Buddington RK. Lumenal adenosine and AMP rapidly increase glucose transport by intact small intestine. Am J Physiol Gastrointest Liver Physiol.2005,289(6): G1007-1014.
    [159]Egan LJ, Sandborn WJ, Mays DC, Tremaine WJ, Lipsky JJ. Plasma and rectal adenosine in inflammatory bowel disease:effect of methotrexate. Inflamm Bowel Dis.1999,5(3):167-173.
    [160]Heurlier K, Denervaud V, Haas D. Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol.2006,296(2-3):93-102.
    [161]Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A. Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun.1998,66(1):43-51.
    [162]O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol.1998,30(2):295-304.
    [163]Wolkow CA, Kimura KD, Lee MS, Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science.2000,290(5489):147-150.
    [164]Farrow JM,3rd, Pesci EC. Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol.2007,189(9):3425-3433.
    [165]Zheng P, Sun J, Geffers R, Zeng AP. Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. J Biotechnol.2007, 132(4):342-352.
    [166]Hassett DJ, Howell ML, Ochsner UA, Vasil ML, Johnson Z, Dean GE. An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa:fur mutants produce elevated alginate levels. J Bacteriol.1997,179(5):1452-1459.
    [167]Heinrichs DE, Poole K. Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa. J Bacteriol. 1993,175(18):5882-5889.
    [168]Lewin AC, Doughty PA, Flegg L, Moore GR, Spiro S. The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology. 2002,148(8):2449-2456.
    [169]Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev.2003,27(2-3):215-237.
    [170]Prince RW, Cox CD, Vasil ML. Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol.1993, 175(9):2589-2598.
    [171]Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms:a common cause of persistent infections. Science.1999,284(5418):1318-1322.
    [172]Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev.2004,28(3):261-289.
    [173]Hegde M, Wood TK, Jayaraman A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA 14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol.2009,84(4):763-776.
    [174]Diggle SP, Cornells P, Williams P, Camara M.4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol.2006,296(2-3):83-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700