水火电力系统节能调度模型与优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力工业是高耗能产业,提高电力工业能源利用效率,转变能源利用方式,减少碳基能源使用量,对于缓解我国能源供需矛盾和改善生态环境等具有重要作用。理论和实践表明,优先利用清洁可再生能源,开展清洁电源与火电电源互补运行,是提高电力系统运行经济性、提高能源利用效率和节约非可再生能源的有效途径。目前,水电能源在我国清洁可再生能源中占主导地位,通过开展水火电力系统联合运行,合理协调系统间运行方式,发挥水火电力系统互补优势,可显著提高电力系统运行经济性,有利于促进电力工业能源利用方式的调整和系统的节能运行。
     本论文紧紧围绕水火电力系统联合优化调度问题,针对含有梯级水电站的水火电力系统间复杂时空耦合特性,以水能资源的合理高效利用和燃煤等非可再生能源的节约为目的,在水火电力系统节能运行理论、单目标和多目标节能调度模型构建和优化方法等几个方面进行深入研究。
     全文共6章,各章节主要内容可归纳如下:
     第1章绪论:简要回顾国内外水火电力系统优化调度理论研究现状和我国节能调度理论的研究进展,论述开展水火电力系统联合优化调度的必要性、重要性。针对目前含有梯级水电站的水火电力系统联合运行所面临的问题和电力工业节能调度机制下的要求,提出本论文的主要研究内容。
     第2章水火电力系统节能运行理论分析:水电站、火电厂的运行特性和水火电力系统间互动特性是构建合理优化调度模型及制订水电站合理用水计划与火电厂发电计划的前提和基础。本章详细分析了梯级水电站时空耦合特性、相互间作用规律、制约特性、弃水特性等,提出可有效反映水库特性影响的水电转换数学模型。分析了火电厂运行特性,通过拉格朗日极值条件揭示水火电力系统互补运行的互动规律,定性提出水火电力系统节能运行的措施。
     第3章仿电磁学算法:群体智能算法在求解强非线性优化问题方面具有突出优势,本章对一种新型群体智能算法--仿电磁学算法进行研究。在详细分析仿电磁学算法理论基础、优化原理及对优化问题求解的一般理论框架基础上,研究影响算法优化性能的主要因素及其改进措施。提出适合于求解具有大规模变量优化问题的单方向受力的改进仿电磁学算法,并对其收敛性进行了理论证明,为求解水火电力系统节能调度模型提供理论基础。
     第4章水火电力系统单目标节能调度与优化方法:构建了水电站运行协调条件和梯级水电站运行的动态弃水数学模型。提出以动态发电流量极限为基础的单目标水火电力系统节能调度优化数学模型。针对所建模型的强非线性特点,提出以遗传仿电磁学算法为基础的节能调度模型求解方法。
     第5章水火电力系统多目标节能调度与优化方法:建立兼顾用水、环境、节能等多方面要求的水火电力系统多目标节能调度模型,提出利用仿电磁学算法和数据包络分析融合的多目标优化问题求解新方法。该方法无需考虑各目标函数的性质,同时可为决策者提供利用优化目标和数据包络分析的DEA值双重准则来选取决策方案的方法,有利于减少多个目标追求下的决策盲目性。
     第6章对全文所做的主要工作和取得的成果进行总结,提出未来有待进一步研究的内容。
Electric power industry is energy-intensive industry. The energy efficiency improvement, change of energy utilization mode, and reduction of carbon-based energy use of electric power industry plays an important role in alleviating the contradiction between supply and demand of energy and improving the ecological environment. Theory and practice indicated that priority use of clean and renewable energy and making cleaning power and thermal power combined operation is an effective way to make the power system economic operation, improve energy utilization efficiency and save non-renewable energy. At present, hydroelectric energy is in dominant among clean and renewable energy in China. Hydrothermal power system combined operation is an effective way to enhance the energy utilization efficiency of power systems, promote the adjustment of energy utilization mode. The rational coordination of hydrothermal power system operation mode which can make the best use of the complementary advantages of power systems can promote power system energy-saving operation.
     Tightly focusing on combined optimization dispatch problems for hydrothermal power system with cascade hydroelectric plants which have complex spatiotemporal coupling characteristics, this paper has made deep research on several aspects of power system energy-saving operation theory, single objective and multi-objective energy-saving dispatch model and its optimization method for the purpose of water resources reasonable utilization and coal and non renewable energy conservation.
     The whole thesis consists of6chapters, each chapter of main contents can be summarized as follows:
     Chapter1introduction:A brief review has been given for current research status of the domestic and international power system optimization dispatch theory and our country energy-saving dispatch theory. The paper's main contents were put forward based on the combined operation problems faced by hydrothermal power systems with cascade hydroelectric plants and the requirements of electric power industry energy-saving dispatch mechanism.
     Chapter2hydrothermal power systems energy-saving operation theoretical analysis: Hydroelectric plant and thermal plant operation characteristics and interactive characteristics of hydrothermal power system are prerequisite and foundation for constructing rational optimization scheduling models, making optimal hydroelectric plants water plan and thermal plants power generation plan. This chapter has made a detailed analysis for spatiotemporal coupling characteristics, mutual affective law, restrict characteristics and water spillage characteristic of cascade hydroelectric plants. A detailed hydro-electric conversion mathematical model was put forward to analyze the characteristics of reservoir characteristic influence. Thermal plant operation characteristics have been analyzed. The interaction rules of hydrothermal power systems has been revealed by using mathematical analysis methods. At last, some energy-saving measures for hydrothermal power systems were proposed to make the power systems operate economically.
     Chapter3Electromagnetism-like mechanism (ELM):Swarm intelligence algorithms in solving nonlinear optimization problem have outstanding advantage. A novel swarm intelligence algorithm named Electromagnetism-like mechanism was studied in this chapter. By through analyzing algorithm theoretical basis, optimization principle and general theoretical framework, some factors affecting the algorithm's optimization performance were revealed. The enhanced Electromagnetism-like mechanism with single direction force were put forward for solving large-scale optimization problems effectively. Global convergence of the algorithm provides theoretical basis for solving power system energy-saving dispatch model.
     Chapter4hydrothermal power systems single objective energy-saving dispatch and optimization method:The coordination condition and dynamic water spillage mathematical model for hydroelectric plants were constructed. A novel single objective energy-saving dispatch model of hydrothermal power systems has been put forward based on dynamic water discharge limits. To solve the model effectively, a hybrid swarm intelligence algorithms with genetic operators and Electromagnetism-like mechanism was applied in solving the single objective energy-saving model.
     Chapter5hydrothermal power systems multi-objective energy-saving dispatch and optimization method:A novel multi objective energy-saving dispatch model for hydrothermal power systems was established which can realize the coordination of water, environment, energy saving and so on. To solve the multi-objective dispatch model effectively, a hybrid multi-objective method with Electromagnetism-like mechanism and data envelopment analysis was put forward which without considering the characteristics of the objective function. At the same time, the method can reduce the multiple goal decision making under blindness by through bi-criterion with optimization objective and comprehensive benefits.
     The sixth chapter summarizes the main work of full text and achievements of the dissertation. Finally, the future research contents have been put forward.
引文
[1]薛维忠.低碳经济、生态经济、循环经济和绿色经济的关系分析.科技创新与生产力,2011,(2):50-52.
    [2]何祚庥.解决中国能源短缺问题的重要途径.福州大学学报(哲学社会科学版),2005,69(1):5-7.
    [3]李建武,王安建,王高尚.中国能源效率及节能潜力分析.地球学报,2010,5(31):733-740.
    [4]张安华.中国电力工业节能降耗影响因素分析.电力需求侧管理,2006,8(6):1-4.
    [5]戴彦德,任东明.从我国社会经济发展所面临的能源问题看可再生能源发展的地位和作用.可再生能源,2005,(2):3-8.
    [6]胡婧.可再生能源大开发的出路——访中国科学院院士、清华大学教授卢强.国家电网,2010,(12):42-43.
    [7]蔡洋.电网经济调度应立即开展起来.电网技术,1994,14(1):47-48.
    [8]Ricard J. The determination of optimum operating scheduling for interconnected hydro and thermal stations. Revue Generale del'Electricite,1940,48(9):167-182.
    [9]Farhat I A, El-Hawary M E. Optimization methods applied for solving the short-term hydrothermal coordination problem. Electric Power Systems Research,2009,79(9): 1308-1320.
    [10]Rashid A H A, Nor K M. An efficient method for optimal scheduling of fixed head hydro and thermal plants. IEEE Trans on Power Systems,1991,6(2):632-636.
    [11]Sasikala J, Ramaswamy M. Optimal gamma based fixed head hydrothermal scheduling using genetic algorithm. Expert Systems with Applications,2010,37(4): 3352-3357.
    [12]El-Hawary M E, Ravindranath K M. Hydro-thermal power flow scheduling accounting for head variations. IEEE Trans on Power Systems,1992,7(3):1232-1238.
    [13]Lyra C, Ferreira L R M. A multiobjective approach to the short-term scheduling of a hydroelectric power system. IEEE Trans on Power Systems,1995,10(4):1750-1755.
    [14]Diniz L A, Maceira M E P. A Four-Dimensional Model of Hydro Generation for the Short-Term Hydrothermal Dispatch Problem Considering Head and Spillage Effects. IEEE Trans on Power Systems,2008,23(3):1298-1308.
    [15]Mariano S J P S, Catalao J P S, Mendes V M F, et al. Optimising power generation efficiency for head-sensitive cascaded reservoirs in a competitive electricity market. International Journal of Electrical Power & Energy Systems,2008,30(2): 125-133.
    [16]袁晓辉,袁艳斌,王乘.计及阀点效应的电力系统经济运行方法.电工技术学报,2005,20(6):92-96.
    [17]Coelho L S, Mariani V C. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Trans on Power Systems,2006,21(2):989-996.
    [18]韦化,李滨,杭乃善,等.大规模水火电力系统最优潮流的现代内点理论分析.中国电机工程学报,2003,23(4):5-8.
    [19]Sifuentes S W, Vargas A. Hydrothermal Scheduling Using Benders Decomposition: Accelerating Techniques. IEEE Trans on Power Systems,2007,22(3):1351-1359.
    [20]王雁凌,张粒子,杨以涵.基于水火电置换的发电权调节市场.中国电机工程学报,2006,26(5):131-136.
    [21]Bisanovic S, Hajro M, Dlakic M. Hydrothermal self-scheduling problem in a day-ahead electricity market. Electric Power Systems Research,2008,78(9):1579-1596.
    [22]翟桥柱,管晓宏,赖菲.具有相同机组水火电调度问题的新算法.中国电机工程学报,2002,22(3):38-42.
    [23]吴宏宇,管晓宏,翟桥柱,等.水火电联合短期调度的混合整数规划方法.中国电机工程学报,2009,29(28):82-88.
    [24]Catalao J P S, Mariano S J P S, Mendes V M F, et al. A practical approach for profit-based unit commitment with emission limitations Original Research Article. International Journal of Electrical Power & Energy Systems,2010,32(3): 218-224.
    [25]Horsley A, Wrobel A J. Profit-maximizing operation and valuation of hydroelectric plant:A new solution to the Koopmans problem Original Research Article. Journal of Economic Dynamics and Control,2007,31(3):938-970.
    [26]邵宝珠,王优胤,宋丹.电力期货在水火电资源优化配置中的应用.电网技术,2010,34(11):170-175.
    [27]朱建全,吴杰康.水火电力系统短期优化调度的不确定性模型.电力系统自动化,2008,32(6):51-54,103.
    [28]Basu M. An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling. Electric Power Systems Research,2004,69(2):277-285.
    [29]Yalcinoz T, OKoksoy. A multiobjective optimization method to environmental economic dispatch. International Journal of Electrical Power & Energy Systems,2007, 29(1):42-50.
    [30]Lu Youlin, Zhou Jianzhong, Qin Hui, et al. A hybrid multi-obj ective cultural algorithm for short-term environmental/economic hydrothermal scheduling. Energy Conversion and Management,2011,52(1):2121-2134.
    [31]文福拴,陈青松,褚云龙,等.节能调度的潜在影响及有待研究的问题.电力科学与技术学报,2008,23(4):72-77.
    [32]杨梅,王黎,马光文,等.节能调度对电力企业的影响及对策研究.水力发电,2009,35(1):88-91.
    [33]陆涛,马光文,王黎.节能调度对水力发电企业的影响及应对措施.华东电力,2010,38(1):36-38.
    [34]尚金成.节能发电调度的经济补偿机制研究(一)基于行政手段的经济补偿机制设计与分析.电力系统自动化,2009,33(2):44-48.
    [35]尚金成.节能发电调度的经济补偿机制研究(二)基于市场机制的经济补偿机制设计与分析.电力系统自动化,2009,33(3):46-50.
    [36]胡建军,胡飞雄.节能发电调度模式下有偿调峰补偿新机制.电力系统自动化,2009,33(10):16-18.
    [37]张森林.节能发电调度配套上网电价定价机制研究.电网技术,2009,33(18):105-110.
    [38]滕晓毕,李继红,吴臻,等.有序调停燃煤机组的节能调度模式及效益分析.中国电力,2010,43(9):19-23.
    [39]梁志宏.集散式交易模式:节能调度的有效选择.中国电力企业管理,2007(3):13-15.
    [40]胡建军.基于节能发电调度和国际贸易理念的电力市场竞争机制.电力系统自动化,2008,32(24):35-38.
    [41]苗增强,谢宇翔,姚建刚,等.兼顾能耗与排放的发电侧节能减排调度新模式.电力系统自动化,2009,33(25):16-20.
    [42]葛亮,谢宇翔,李湘祁,等.与市场机制相协调的发电交易与调度的节能减排方法.电工技术学报,2009,24(8):167-173.
    [43]周明,李科阳,李庚银.兼顾竞价和奖惩机制的节能发电调度方法.电网技术,2009,33(16):70-74.
    [44]尚金成.兼顾市场机制与政府宏观调控的节能发电调度模式及运作机制.电网技 术,2007,31(24):55-62.
    [45]牛玉广,谭文,苏凯,等.节能发电调度的网厂两级优化方案.中国电力,2010,43(9):15-18.
    [46]唐茂林,王超.基于节能发电原则的实时发电调度优化模型的研究.继电器,2008,36(7):47-61.
    [47]熊小伏,秦志龙,朱继忠.计及安全约束和网损修正的节能发电调度方法及实践.中国电力,2010,43(9):24-27.
    [48]陈之栩,谢开,张晶,等.电网安全节能发电日前调度优化模型及算法.电力系统自动化,2009,33(1):10-13,98.
    [49]范玉宏,张维,叶永松,等.基于机组煤耗高低匹配替换的区域电网节能调度模型.电网技术,2009,33(6):78-81.
    [50]徐致远,罗先觉,牛涛.综合考虑电力市场与节能调度的火电机组组合方案.电力系统自动化,2009,33(22):14-17.
    [51]谭忠富,陈广娟,赵建保,等.以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型.中国电机工程学报,2009,29(1):55-62.
    [52]李扬,葛乐,林一.电力市场下计及节能环保的实时发电调度策略.电力自动化设备,2009,29(3):42-45.
    [53]唐勇俊,刘东,阮前途,等.计及节能调度的分布式电源优化配置及其并行计算.电力系统自动化,2008,32(7):92-97.
    [54]韩彬,周京阳,崔晖,等.引入SO2排放惩罚价格因子的节能减排发电调度模型及实用算法.电网技术,2008,32(15):50-54.
    [55]喻洁,季晓明,夏安邦.基于节能环保的水火电多目标调度策略.电力系统保护与控制,2009,37(1):24-27.
    [56]张均良,马光文,王黎,等.节能发电调度规则下梯级水电站调度方式研究.人民黄河,2010,3(11):140-142.
    [57]Lauer GS, Bertsekas P, Sandell N R, et al. Solution of large-scale optimal unit commitment problems. IEEE Trans on Power Application System,1982,101(1): 79-86.
    [58]Ngundam J M, Kenfack F, Tatietse T T. Optimal scheduling of large-scale hydrothermal power systems using the Lagrangian relaxation technique. Electrical Power and Energy Systems,2000,22(4):237-245.
    [59]杨毅刚,彭建春,周意诚,等.水火电力系统有功无功经济调度的研究.中国电机工程学报,1994,14(4):19-25.
    [60]Ongsakul W, Petcharaks N. Fast Lagrangian relaxation for constrained generation scheduling in a centralized electricity market. Electrical Power and Energy Systems, 2008,30(1):46-59.
    [61]Guan X X, Luh P B, Zhang L. Nonlinear approximation method in Lagrangian relaxation-based algorithms for hydrothermal scheduling. IEEE Trans on Power Systems,1995,10(2):772-778.
    [62]Zhang D, Luh P B, Zhang Y. A bundle method for hydrothermal scheduling. IEEE Trans on Power Systems,1999,14(4):1355-1361.
    [63]白晓民,于尔铿,李朝安,等.水火电力系统开停机计划与调度.中国电机工程学报,1990,10(3):19-26.
    [64]Sifuentes W, Vargas A. Short-term hydrothermal coordination considering an AC network modeling. Electrical Power and Energy Systems,2007,29(6):488-496.
    [65]Sifuentes W S, Vargas A. Hydrothermal scheduling using benders decomposition accelerating techniques. IEEE Trans on Power Systems,2007,22(3):1351-1359.
    [66]Fu Y, Shahidehpour M, Li Z Y. Long-Term Security-Constrained Unit Commitment: Hybrid Dantzig-Wolfe Decomposition and Subgradient Approach. IEEE Trans on Power Systems,2005,20(4):2093-2106.
    [67]杨朋朋,韩学山.一种考虑时间关联约束的安全经济调度解法.电力系统自动化,2008,32(17):30-34.
    [68]Simo T, Kenfack F, Ngundam J M. Contribution to the long-term generation scheduling of the Cameroonian electricity production system. Electric Power Systems Research, 2007,77(10):1265-1273.
    [69]Catalao J P S, Pousinho H M I, Mendes V M F. Scheduling of head-dependent cascaded hydro systems:Mixed-integer quadratic programming approach. Energy Conversion and Management,2010,51(3):524-530.
    [70]Fu Y, Shahidehpour M, Li Z Y. GENCO's Risk-Constrained Hydrothermal Scheduling. IEEE Trans on Power Systems,2008,23(4):1847-1858.
    [71]Yu Z, Sparrow F T, Bowen B, et al. On convexity issues of short-term hydrothermal scheduling. International Journal of Electrical Power & Energy Systems,2000,22(6): 451-457.
    [72]Parrilla E, Garcia-Gonzalez J. Improving the B&B search for large-scale hydrothermal weekly scheduling problems. International Journal of Electrical Power & Energy Systems,2006,28(5):339-348.
    [73]Nowak M P, Schultz R, Westphalen M. A Stochastic Integer Programming Model for Incorporating Day-Ahead Trading of Electricity into Hydro-Thermal Unit Commitment. Optimization and Engineering,2005,6(2):163-176.
    [74]Redondo N J, Conejo A J. Short-term Hydro-thermal Coordination By Lagrangian Relaxation:Solution of The Dual Problem. IEEE Trans on Power Systems,1999, 14(1):89-95.
    [75]MURAI M, KATO M. Cutting Plane Methods for Lagrangian Relaxation-Based Unit Commitment Algorithm. Electrical Engineering in Japan,2002,141(3):163-176.
    [76]Madrigal M, Quintana V H. An Interior-Point/Cutting-Plane Method to Solve Unit Commitment Problems. IEEE Trans on Power Systems,2000,15(3):1022-1027.
    [77]李朝安,范明天,黄伟森,等.水火电力系统经济调度的一种新的分解和优化方法.中国电机工程学报,1985,5(2):1-7.
    [78]王成文,韩勇,谭忠富,等.一种求解机组组合优化问题的降维半解析动态规划法.电工技术学报,2006,21(5):110-116.
    [79]Yang J S, Chen N M. Short-term hydrothermal coordination by using multi-pass dynamic programming. IEEE Trans on Power Systems,1989,4(3):1051-1056.
    [80]Li C A, Svoboda A J, Tseng C L, et al. Hydro unit commitment in hydro-thermal optimization. IEEE Tran on Power Systems,1997,12(2):764-769.
    [81]Christofororids M, Aganagic M, AwobamiseB , et al. Long-term/mid-term resource optimization of a hydrodominant power system using interior point method.IEEE Trans on Power Systems,1996,11(1):287-294.
    [82]Medina J, Quintana V H, Conejo A J. A clipping-off interior point technique for medium term hydrothermal coordination. IEEE Trans on Power Systems,1999,14: 266-273.
    [83]韦化,李滨,杭乃善,等.大规模水火电力系统最优潮流的现代内点算法实现.中国电机工程学报,2003,12(2):13-18.
    [84]Ramos J L M, Lora A T, Santos J R, etal. Short-term hydro-thermal coordination based on interior point nonlinear programming and genetic algorithms. IEEE Porto Power Tech Conference, Porto, Portuga,2001(3):6-12.
    [85]Fuentes-Loyola R, Quintana VH. Medium term hydrothermal coordination by semi-definite programming. IEEE Trans on Power System,2003,18:1515-1522.
    [86]Oliveira A R L, Soares S, Nepomuceno L. Short term hydroelectric scheduling combining network flow and interior point approaches. International Journal of Electrical Power & Energy Systems,2005,27(2):91-99.
    [87]Naresh R, Sharma J. Two-phase neural network based solution technique for short term hydrothermal scheduling. IEE Proc-Gener Transm Distrib,1999,146(6): 657-663.
    [88]Basu M. Hopfield neural networks for optimal scheduling of fixed head hydrothermal power systems. Electric Power Systems Research,2003,64(1):11-15.
    [89]Dieu V N, Ongsakul W. Enhanced merit order and augmented Lagrange Hopfield network for hydrothermal scheduling. International Journal of Electrical Power & Energy Systems,2008,30(2):93-101.
    [90]谢永胜,孙洪波,徐国禹.基于模糊来水量模糊负荷的短期水火电调度.中国电机工程学报,1996,16(6):430-433.
    [91]Dhillon J S, Parti S C, Kothari D P. Fuzzy decision-making in stochastic multi-obj ective short-term hydrothermal scheduling. IEE Proc-Gener Transm Distrib, 2002,149(2):191-200.
    [92]Basu M. Bi-Objective Generation Scheduling of Fixed Head Hydrothermal Power Systems through an Interactive Fuzzy Satisfying Method and Particle Swarm Optimization. International Journal of Emerging Electric Power Systems,2006,6(1): 1-18-
    [93]Orero S O, Irving M R. A genetic algorithm modeling framework and solution technique for short-term optimal hydrothermal scheduling. IEEE Trans on Power Systems,1998,13(2):501-518.
    [94]Wong K P, Wong Y W. Short-term hydrothermal scheduling, Part 1:simulated annealing approach. IEE Proc-Gener Transm Distrib,1994,141(5):497-501.
    [95]Basu M. Artificial immune system for fixed head hydrothermal power system. Energy, 2011,36(1):606-612.
    [96]Lakshminarasimman L, Subramanian S. A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs. Energy Conversion and Management,2008,49(10):2513-2521.
    [97]Yu B H, Yuan X H, Wang J W. Short-term hydro-thermal scheduling using particle swarm optimization method. Energy Conversion and Management,2007,48(7): 1902-1908.
    [98]Yuan X H, Yuan Y B. Application of cultural algorithm to generation scheduling of hydrothermal systems. Energy Conversion and Management,2006,47(15):2192-2201.
    [99]Wolpert D H, Macready W G. No Free Lunch Theorems for Optimization. IEEE Trans on Evolutionary Computation,1997,1(1):67-82.
    [100]Wong S Y W. Hybrid simulated annealing/genetic algorithm approach to short-term hydro-thermal scheduling with multiple thermal plants. International Journal of Electrical Power & Energy Systems,2001,23(7):565-575.
    [101]胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法.中国电机工程学报,2004,24(4):24-28.
    [102]Sivasubramani S, Swarupa K S. Hybrid DE-SQP algorithm for non-convex short term hydrothermal scheduling problem. Energy Conversion and Management,2011,52(1): 757-761.
    [103]罗益民,余燕主编.大学物理[M].北京:北京邮电大学出版社,2004.
    [104]叶秉如.水利计算与水资源规划[M].北京:中国水利水电出版社,1995.
    [105]Zaghlool F M, Trutt F C. Efficient optimal scheduling for fixed head hydrothermal power system. IEEE Trans on Power Systems,1988,11(1):24-30.
    [106]El-Hawary M E, Ravindranath K M. Optimal operation of variable head hydrothermal systems using the Glimn-Kirchmayer model and the Newton-Raphson method. Electric Power Systems Research,1988,14(1):11-22.
    [107]Hreinsson E B. Optimal dispatch of generating units of the Itaipu hydroelectric plant. IEEE Trans on Power Systems,1988,3(3):1072-1077.
    [108]Soares S, Carneiro A A FM. Optimal operation of reservoirs for electric generation. EEEE Trans on Power Systems,1991,6(3):1101-1107.
    [109]蔡建章,蔡华祥,吴东平.水电站弃水电量计算探讨.电力系统自动化,2000,25(10):64-65.
    [110]Naresh R, Sharma J. Hydro system scheduling using ANN approach. IEEE Trans on Power Systems,2000,15(1):388-395.
    [111]Walters D C, Sheble G B. Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans on Power Systems,1993,8(3):1325-1332.
    [112]柳焯.最优化原理及其在电力系统中的应用[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [113]洪钧.火电调峰机组负荷分配优化的数学模型.中国电机工程学报,1990,10(1):60-67.
    [114]何仰赞,温增银.电力系统分析(下册)[M].华中科技大学出版社,2002.
    [115]张金城.电力系统网损微增率的计算方法.电机工程学报,1966,(1):35-48.
    [116]于尔铿,赵国虹,王世缨,等.电力系统经济调度中网损修正方法的试验研究.中国电机工程学报,1985,5(3):21-26.
    [117]Bazaraa M S, Sherali H D, Shetty C M. Nonlinear Programming Theory and Algorithms[M]. John Wiley & Sons, Inc,1979.
    [118]Birbil S I, Fang S C. An electromagnetism-like mechanism for global optimization. Journal of Global Optimization,2003,25(3):263-282.
    [119]Lan F, Gao L. An EM-based algorithm for constrained layout optimization. FRONTIE-RS SCIENCE SERIES,2007,49(3):489-490.
    [120]Yurtkuran A, Emel E. A new Hybrid Electromagnetism-like Algorithm for capacitated vehicle routing problems. Expert Systems With Applications,2010,37 (4):3427-3433.
    [121]A.C.Rocha A M, M.G.P.Fernandes E. Hybridizing the Electromagnetism-like algorithm with decend search for solving engineering design problems. International Journal of Computer Mathematics,2009,10(11):1932-1946.
    [122]Lee C H, Chang F K. Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Systems with Applications,2010,37(12): 8871-8878.
    [123]习岗.大学基础物理学[M].北京:高等教育出版社,2008.
    [124]Cowan E W. Basic Electromagnetism[M]. New York:Academic Press,1968.
    [125]Birbil S I. Stochastic global optimization techniques[D]. Doctor Dissertation of North Carolina State University,2002.
    [126]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [127]陈国良,王煦法,庄镇泉等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [128]解可新,韩立兴,林友联.最优化方法[M].天津:天津大学出版社,1997.
    [129]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2004.
    [130]Birbil S I. On the convergence of a population based global optimization algorithm. Journal of global optimization,2004,30(2):301-318.
    [131]Lidgate D, Amir B H. Optimal operational planning for a hydro-electric generation system[J]. IEE PROCEEDINGS,1988,135(3):169-181.
    [132]Soares S, Salmazo C T. Minimum loss predispatch model for hydroelectric power systems[J]. IEEE Trans on Power Systems,1997,12(3):1220-1228.
    [133]Alexander K V, Giddens E P. Optimum penstocks for low head microhydro schemes[J]. Renewable Energy,2008,33(3):507-519.
    [134]Paravan D, Stokelj T, Golob R. Improvements to the water management of a run-of-river HPP reservoir:methodology and case study[J]. Control Engineering Practice,2004,12, (4):377-385.
    [135]原文林,黄强,王义民,等.最小弃水模型在梯级水库优化调度中的应用[J].水力发电学报2008,27(3):16-21.
    [136]郭壮志,吴杰康,孔繁镍,等.梯级水电站水库蓄能利用最大化的长期优化调度[J].中国电机工程学报,2010,30(1):20-26.
    [137]王兴,刘广一,于尔铿.一种改进的火电厂耗煤特性曲线拟合方法[J].电网技术,1995,19(5):20-24.
    [138]吴杰康,郭壮志.基于仿电磁学算法的梯级水电站多目标短期优化调度[J].中国电机工程学报,2010,30(31):14-21.
    [139]Wong K P, Yuryevich J. Evolutionary-programming-based algorithm for environmentally-constrained economic dispatch. IEEE Trans on Power Systems,1998, 13(2):301-306.
    [140]Za'rate-Minano R, Conejo A J. Milano F. OPF-based security redispatching including FACTS devices. IET Gener Transm Distrib,2008,2(6):821-833.
    [141]Christiano L, Luiz R. A multi-objective approach to the short-term scheduling of a hydroelectric power system. IEEE Trans on Power Systems,1995,10 (4) 1750-1754.
    [142]Fahmy F H. Scheduling and resource allocation of non-conventional power systems via multi level approach. Proceedings of the 37th Midwest Symposium on Circuits and Systems,1994, (2):1483-1486.
    [143]YOKOYAMAR, BAE S H, MORT TAT, etal. Multiobjective optimal generation dispatch based on probability security criteria. IEEE Trans on Power Systems,1988, 3(1):317-324.
    [144]Agrawal S, Panigrahi B K, Tiwari M K. Multiobjective Particle Swarm Algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans on Evolutionary Computation,2008,12(5):1750-1754.
    [145]Xu J X, Chang C S, Wang X W. Constrained multiobjective global optimisation of longitudinal interconnected power system by genetic algorithm. IEE Proc-Gener Transm Distrib,1996,143(5):435-1754.
    [146]Das D B, Patvardhan C. New multi-objective stochastic search technique for economic load dispatch. IEE Proc-Gener Transm Distrib,1998,145(6):747-752.
    [147]王欣,秦斌,阳春华,等.基于混沌混合遗传优化算法的短期负荷环境和经济调度.中国电机工程学报,2006,26(11):128-133.
    [148]Ramesh V C, Xuan Li. A Fuzzy Multiobjective Approach to Contingency Constrained OPF. IEEE Trans on Power Systems,1997,12(3):1348-1354.
    [149]胡国强,贺仁睦.梯级水电站多目标模糊优化调度模型及其求解方法[J].电工技术学报,2007,22(1):154-158.
    [150]Ladurantaye DD, Gendreau M, Potvin J Y. Optimizing profits from hydroelectricity production. Computers & Operations Research,2009,36(2):499-529.
    [151]吴杰康,朱建全.机会约束规划下的梯级水电站短期优化调度策略.中国电机工程学报,2008,28(13):41-46.
    [152]曾勇红,姜铁兵,张勇传.三峡梯级水电站蓄能最大长期优化调度模型及分解算法.电网技术,2004,28(10):5-8.
    [153]Dhillon J S, Parti S C, Kothari D P. Fuzzy decision-making in stochastic multiobjective short-term hydrothermal scheduling. IEE Proc-Gener Transm Distrib,2002,149(2): 191-200.
    [154]Milano F, Canizares C A, Invernizzi M. Multiobjective Optimization for Pricing System Security in Electricity Markets. IEEE Trans on Power Systems,2003,18(2): 596-604.
    [155]Gent M R, Lamont J Wm. Minimum-emission dispatch. IEEE Trans on Power Apparatus and Systems,1971, PAS-90(2):2650-2660.
    [156]于尔铿.现代电力系统经济调度[M].北京:水利电力出版社,1986.
    [157]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2005.
    [158]Zitzler E, Thiele L. Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach. IEEE Tran on Evolutionary Computation,1999,3(4): 257-271.
    [159]Knowles JD, Corne DW. Approximating the nondominated front using the Pareto archived evolution strategy. Evolutionary Computation,2000,8(2):149-172.
    [160]Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic algorithm:NSGA-II. IEEE Trans on Evolutionary Computation,2002,6(2):182-197.
    [161]Carlos P B. Efficiency analysis of hydroelectric generating plants:A case study for Portugal. Energy Economics,2008,30(1):59-75.
    [162]王敬敏,张艳,陶鹏.基于DEA的600MW火力发电机组的经济效益评价.华东电力,2006,34(1):41-43.
    [163]刘艳,顾雪平,张丹.基于数据包络分析模型的电力系统黑启动方案相对有效性评估.中国电机工程学报,2006,25(6):32-38.
    [164]魏权龄.数据包络分析[M].北京:科学出版社,2006.
    [165]Arakawa M, Hagiwara I, Nakayama H, et al. Multi-objective optimization using adaptive range genetic algorithms with data envelopment analysis[C]. Proceedings of AIAA Conference on Multidisciplinary Analysis & Optimization, S aint Louis, USA, 1998:2074-2082.
    [166]吴杰康,郭壮志,丁国强.采用梯级水电站动态弃水策略的多目标短期优化调度.中国电机工程学报,2011,31(4):15-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700