土体开挖引起的邻近受荷桩基附加响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管目前很多学者针对土体开挖引起的环境问题开展了大量的研究,但近年来隧道或基坑开挖引起邻近建筑物破坏倒塌的工程事故仍然频发。究其原因,与工程人员和科研人员对土体开挖条件下被动桩的若干问题考虑不周(诸如忽略桩土作用应力历史、界面剪切滑移特性及桩身变形耦合效应等)不无关系,所建立的近接既有桩基开挖条件下地层位移控制标准严重缺乏理论依据和针对性。本文着眼于克服这些缺陷,对土体开挖条件下邻近受荷桩基附加响应预测方法开展了系统的研究。
     首先,进一步完善了隧道和基坑开挖引起的自由位移场预测方法。考虑到目前基坑深度大、支护结构强及位移控制严格的特点,提出了一种考虑主(被)动区土压力随支挡结构位移发展过程的修正“m”法,并结合Sagaseta解,给出了由围护结构挠曲曲线预测坑外地层位移的解析算法。同时,针对掌子面三维变形问题,开展了近200个工况的数值模拟研究,计算结果表明盾构隧道掌子面水平侵入位移基本服从高斯曲线,且各种不同工况下,最大无量纲化水平侵入位移与稳定系数之间的关系比较统一基本不受隧道埋深、开挖直径及土体不排水抗剪强度等因素影响。基于这些结论,进一步确定出了掌子面侵入位移的归一化模式,并提出了一种预测掌子面前方三维变形引起的等效间隙参数的半解析方法。验证实例表明,所提出的隧道和基坑开挖引起的自由位移场预测方法是可靠的。
     其次,建立了考虑变形耦合效应及桩基实际受荷历史的被动单(群)桩分析方法。首先针对被动单桩的特性,提出了一种改进的非线性两阶段分析方法,该法能够更合理地考虑桩土作用非线性特征、桩土荷载传递应力历史及桩身纵横向变形耦合效应等,并编制了相应的MATLAB程序。参数分析表明,先期工作荷载对被动阶段桩身竖向响应影响显著,且对于被动桩而言,有必要考虑变形耦合效应,完全解耦算法的计算结果与实际值之间的偏差可能超过25%。随后,考虑被动群桩内桩一桩相互作用特性,建立了遮拦效应的位移传递系数法求解思路,成功地将被动单桩的改进两阶段分析方法推广至无承台群桩和刚性高承台群桩。利用编制的程序进行参数化分析,结果显示竖直方向上桩身遮拦效应明显,必须予以考虑,而水平方向上桩身的遮拦效应相对较小,土体刚度较大时可不予考虑,承台影响区域之外的桩身弯矩可直接按单桩进行计算。
     然后,建立了考虑桩土界面剪切滑移特性的被动桩分析方法。在全面总结结构—土界面试验成果的基础上,提出了考虑界面往返剪切特性的修正双曲线模型及损伤模型,建立了一种能够全面适用于各类桩—土界面的“双弹簧—地基梁”模型,并编制了考虑桩土界面滑移特性的被动桩分析方法的计算程序。结果显示,当界面强度系数小于0.7时,无论桩顶是否受荷,都应如实考虑界面的剪切滑移特性;考虑界面剪胀软化效应是必要的,采用理想弹塑性模型来近似代替可能会产生25%以上的误差。
     最后,提出了盾构掘进与邻近受荷被动桩相互作用的精细模拟思路及实现方法。首先针对目前商业程序中处理桩土界面的缺陷,提出了各种界面模型的统一数值实现方法,并采用FISH语言编制了相应的子程序。随后,全面考察了盾构隧道施工的各个细节,给出了盾构掘进的精细模拟方法。分析实例表明,所提出的精细模拟方法能够较好地适应不同的分析工况,并能有效地考虑砂土中桩身环箍应力的深度效应。
During the past few years, a large number of researches have been conducted to investigate soil excavation-induced environmental problems. However, in recent years, buiding collapse accidents induced by tunnelling or deep excavation happened again and again. Most often, the reason for these accidents is that some aspects about this problem are not well understood or considered by researchers and engineers, for example, pile-soil load transfer history, interface slip characteristics and coupling effect of longitudinal and lateral deformations of the pile shaft etc. And previous displacement control standards adopted by most unban underground structures lack of theoretical basis and pertinency. In order to overcome these deficiencies, systemic researches are carried out in this dissertation to establish more accurate and applicable methods for predicting soil excavation-induced responses of adjacent on-service pile foundations.
     Firstly, methods for predicting the free-field soil movement due to tunnelling and deep excavation are further improved. In consideration of the actual features of modern deep excavations, such as great excavation depth, strong support structure and strict control standard of soil displacement etc., a modified "m" method is presented to calculate the deflection of the enclosure structure. This modified "m" method can take into account the development processes of earth pressures within the active and passive regions with the deflection of the enclosure structure. Then by utilizing Sagaseta's solution, an analytical method is proposed to evaluate the diaplacement of the outside soil on the basis of the deflection curve of enclosure structure. Meanwhile, almost 200 analysis conditions are performed to investigate the three-dimentional (3D) deformation of the soil ahead of the tunnel face using the elastoplastic numerical simulation method. The results show that the horizontal intrusive displacement of the tunnel face basically follows Gaussian distribution. The relationship between the maximum dimentionless intrusive displacement of the tunnel face and the stability number is almost unique for different conditions, and it will not be influenced by the embedded depth of the tunnel, excavation diameter and undrained shear strength of the soil. Based on these conclusions, a normalized mode of intrusive displacement of the tunnel face is established and a semi-analytical method is proposed for estimating the equivalent gap parameter due to 3D deformation of the tunnel face. The results of verification examples domenstrate that the proposed methods for predicting the free-field movements induced by soil excavations are reliable.
     Secondly, analysis methods applicable to passive single piles and pile groups are focused on. According to the mechanical characteristics of passive single piles, an improved nonlinear two stage analysis method (TSAM) is proposed. This improved method can more factually take into account the nonlinear characteristics of the pile-soil interaction, load history of the pile-soil interface and deformation coupling effect of the pile shaft etc. And a MATLAB program is compiled to implement the proposed method. Through a series of parametric studies, it can be found that the influence of the prophase working load on vertical response of the pile shaft in the passive stage is significant. Also, for the passive piles, it is necessary to consider the deformation coupling effect, and the relative error between the results from the decoupled and coupled methods may be up to 25%. Then, in consideration of pile-pile interaction within pile groups, a solving approach is put forward for the shield effect of the pile groups by using the displacement transfer coefficients. Subsequently, the method for passive single piles is successfully extended to those for passive pile groups with and without rigid elevated caps. These methods are then employed to carry out some parametric studies. The calculated results indicate that the shield effect in the vertical direction is evident and must be considered. In contrast, the shield effect in the horizontal direction is not obvious, it can be neglected when the soil is not very soft, and accordingly, the bending moment of the pile shaft beyond the influence range of the pile cap can be calculated by treating it as a single pile.
     Thirdly, analysis methods for the cases that slip displacement is possible at pile-soil interface are discussed. On the basis of achievements of structure-soil interface tests, modified hyperbolic and damage model, which can rationally consider the cyclic shear behaviour of the interface, are proposed. Subsequently, a "double springs"-"elastic foundation beam" model is established. This model is applicable to any pile-soil interface model. According to this "double springs"-"elastic foundation beam" model, a calculation program which can factually deal with the potential slip effect of the pile-soil interface is developed. The results of case studies show that when the interface strength factor is less than 0.7, the interface slip effect should be considered regardless of whether there is working load on the pile head or not. Also, it is necessary to take into account the shear dilatancy effect of interface. If an elastic-perfect plastic is adopted to substitute the damage model, the relative deviation may exceed 25%.
     Finally, the elaborate simulation measures and implement methods for the interaction problem between the on-service pile foundations and soil excavations are concentrated on. Existing numerical simulation methods tend to neglect some details of pile-soil interface. Aiming at these deficiencies, an numerical implement method is developed, and the corresponding subprogram is compiled by using FISH language embedded in FLAC3D. This subprogram is applicable to all the interface models. Then, after comprehensively investigating the construction details of shield tunnels, an elaborate simulation method is proposed to simulate the advancing of shield machines. The results of case studies domenstrate that the proposed elaborate simulation method can well consider the depth effect of the confining stress along the pile shaft in sand and be applicable to different analysis conditions.
引文
[1]Legge N B, Bloodworth A G. Surface and subsurface structural response on the city of London cable tunnels project. In:Proceedings of International Conference on Response of Buildings to Excavation-induced Ground Movements, London, CIRIA/ Thomas Telford,2001:79-85
    [2]Franzius J N, Addenbrooke T I, Da'Silva T M. Extending the relative stiffness method for predicting tunneling-induced building deformation. In:Proceedings of International Conference on Response of Buildings to Excavation-induced Ground Movements, London, CIRIA/Thomas Telford,2001:112-116
    [3]Rots J G, Schat B J, Hart C M P. Prediction and measurement of excavation-induced damage to buildings in Amsterdam. In:Proceedings of International Conference on Response of Buildings to Excavation-induced Ground Movements, London, CIRIA/ Thomas Telford,2001:217-222
    [4]Park K H. Elastic solution for tunnelling-induced ground movements in clays. International Journal of Geomechanics,2004,4(4):310-318
    [5]Park K. H. Analytical solution for tunnelling-induced ground movement in clays. Tunnelling and Underground Space Technology,2005,20:249-261
    [6]姜忻良,赵志民,李圆.隧道开挖引起土层沉降槽曲线形态的分析与计算.岩土力学,2004,25(10):1542-1544
    [7]Yang J S, Liu B C, Wang M C. Modelling of tunnelling-induced ground movements using stochastic medium theory. Tunnelling und Underground Space Technology,2004, 19:113-123
    [8]Lin D G, Tseng C T, Phienwej N, et al.3-D deformation analysis of earth pressure balance shield tunnelling in Bangkok subsoil. Journal of the Southeast Asian Geotechnical Society,2002,4:13-27
    [9]Addenbrooke T I, Potts D M. Twin tunnel interaction:surface and subsurface effects. International Journal of Geomechanics,2001,1(2):249-271
    [10]Chehade F H, Shahrour I. Numerical analysis of the interaction between twin-tunnels: influence of the relative position and construction procedure. Tunnelling and Underground Space Technology,2008,23(2):210-214
    [11]齐震明,李鹏飞.地铁区间浅埋暗挖隧道地表沉降的控制标准.北京交通大学学报,2010,34(3):117-121
    [12]Peck R B. Deep excavations and tunnelling in soft ground. In:Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 1969:225-281
    [13]Rowe R K, Lo K Y, Kack G J. A method of estimating surface settlement above tunnels constructed in soft ground. Canadian Geotechnical Journal,1983,20:11-22
    [14]Rowe R K, Kack G J. A theoretical examination of the settlements induced by tunnelling:four case histories. Canadian Geotechnical Journal,1983,20:299-314
    [15]Lee K M, Rowe R K. Finite element modelling of the three dimensional ground deformations due to tunnelling in soft cohesive soils. Part I. Methods of analysis. Computers and Geotechnics,1990,10(2):87-110
    [16]Lee K M, Rowe R K. Finite element modelling of the three dimensional ground deformations due to tunnelling in soft cohesive soils. Part II. Results. Computers and Geotechnics,1990,10(2):111-138
    [17]Lee KM, Rowe RK, Lo KY. Subsidence owing to tunnelling. I. Estimating the gap parameter. Canadian Geotechnical Journal,1992,29:929-940
    [18]Rowe RK, Lee KM. Subsidence owing to tunnelling. II. Evaluation of a prediction technique. Canadian Geotechnical Journal,1992,29:941-954
    [19]Clough G W, Schmidt B. Design and performance of excavation and tunnels in soft clay. In:Soft Clay Engineering, edited by Brand E W and Brenner R P, Elsevier Amsterdam,1981:569-634
    [20]Attewell P B, Woodman J P. Predicting the dynamics of ground settlement and its derivatives by tunnelling in soil. Ground Engineering,1982,15(8):13-22
    [21]O'Reilly M P, New B M. Settlement above tunnels in the United Kingdom-their magnitude and prediction. In:Proceedings of Tunnelling'82 Symposium, London, 1982:173-181
    [22]Fujita K. On the surface settlements caused by various methods of shield tunnelling. In: Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, Mexico City,1981:239-246
    [23]Mair R J, Taylor R N, Bracegirdle A. Subsurface settlement profiles above tunnels in clay. Geotechnique,1993,43(2):315-320
    [24]Jacobsz S W, Standing J R, Mair R J. Tunnelling effects on pile groups in sand. In: Proceedings of International Conference on Advances in Geotechnical Engineering, London,2004:1056-1067
    [25]李早.隧道开挖对邻近群桩基础影响分析[博士学位论文].上海:同济大学,2007
    [26]Ou C Y. Deep Excavation Theory and Practice. Routledge, Taylor & Francis Group, USA,2006
    [27]Mana A I, Clough G W. Prediction of movements for braced cut in clay. Journal of the Geotechnical Engineering Division, ASCE,1981,107(6):750-777
    [28]O'Rourke T D. Ground movements caused by braced excavation. Journal of the Geotechnical Engineering Division, ASCE,1981,107(9):1159-1178
    [29]杜金龙.邻近基坑桩基性状与计算方法研究[博士学位论文].上海:同济大学,2008
    [30]Clough G W, O'Rourke T D. Construction-induced movements of in-situ walls. In: Proceedings of Design and Performance of Earth Retaining Structures, ASEC Special Conference, Ithaca, New York,1990:439-470
    [31]Hsieh P G, Ou C Y. Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal,1998,35(6):1004-1017
    [32]Ou C Y, Hsieh P G, Chiou D C. Characteristics of ground surface settlement during excavation. Canadian Geotechnical Journal,1993,30(5):758-767
    [33]Ou C Y, Liao J T, Cheng W L. Building response and ground movements induced by a deep excavation. Geotechnique,2000,50(3):209-220
    [34]杨敏,冯又全,王瑞祥.深基坑支挡结构的力学分析及与实测结果的比较.建筑结构学报,1999,(2):68-75
    [35]EN 1997-1:2004 Eurocode 7. Geotechnical Design. Part 1. General Rules. CEN/TC 250-European Committee for Standardization,2004
    [36]JGJ120-99建筑基坑支护技术规程.北京:中国建筑工业出版社,1999
    [37]刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997
    [38]Long M. Database for retaining wall and ground movements due to deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,127(33): 203-224
    [39]Moormann C. Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database. Soils and Foundations,2004,44(1):87-98
    [40]李琳,杨敏,熊巨华.软土地区深基坑变形特性分析.土木工程学报,2007,40(4):66-72
    [41]Sagaseta C. Analysis of undrained soil deformation due to ground loss. Geotechnique, 1987,37 (3):301-320
    [42]Mindlin R D. Force at a point interior of a semi-infinite solid. Physics,1936,7: 245-256
    [43]Schmidt B. Discussion to Sagaseta(1987). Geotechnique,1988,38(4):647
    [44]Sagaseta C. Author's reply to Schmidt(1988). Geotechnique,1988,38(4):647-649
    [45]Verruijt A, Booker J R. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique,1996,46(4):753-756
    [46]Sagaseta C. On the role of analytical solutions for the evaluation of soil deformation around tunnels. In:Proceedings of Application of Numerical Methods to Geotechnical Problems, Santander, Spain,1998:3-24
    [47]Loganathan N, Poulos H G. Analytical prediction for tunnel-induced ground movements in clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124 (9):846-856.
    [48]Gonzalez C, Sagaseta C. Patterns of soil deformations around tunnels:Application to the extension of Madrid Metro. Computers and Geotechnics,2001,28:445-468
    [49]Bobet A. Analytical solution for shallow tunnels in saturated ground. Journal of Engineering Mechanics,2001,127(12):1258-1266
    [50]Chou W I, Bobet A. Prediction of ground deformations in shallow tunnels in clay. Tunnelling and Underground Space Technology,2002,17(1):3-19
    [51]Park K H. Elastic solution for tunnelling-induced ground movements in clays. International Journal of Geomechanics,2004,4(4):310-318
    [52]Park K H. Analytical solution for tunnelling-induced ground movement in clays. Tunnelling and Underground Space Technology,2005,20:249-261
    [53]王立忠,吕学金.复变函数允析盾构隧道施工引起的地基变形.岩土工程学报,2007,29(3):319-327
    [54]Zhang Z G, Huang M S, Zhang M X. Theoretical prediction of ground movements induced by tunnelling in multi-layered soils. Tunnelling and Underground Space Technology,2011,26:345-355
    [55]张治国,黄茂松,王卫东.层状地基中隧道开挖对临近既有隧道的影响分析.岩土工程学报,2009,31(4):600-608
    [56]张治国,黄茂松,张孟喜.层状地基中盾构隧道开挖非均匀收敛引起临近管道变形预测.岩石力学与工程学报,2010,29(9):1867-1876
    [57]钟阳,殷建华.弹性层状体的求解方法.北京:科学出版社,2007
    [58]朱忠隆,张庆贺,易宏伟.软土隧道纵向地表沉降的随机预测方法.岩土力学,2001,22(1):56-59
    [59]施成华,彭立敏,刘宝琛.盾构法施工隧道缴向地层移动与变形预计.岩土工程学报,2003,25(5):585-589
    [60]魏纲,张世民,齐静静等.盾构隧道施工引起的地面变形计算方法研究.岩石力学与工程学报,2006,25(S1):3317-3323
    [61]施成华,彭立敏,雷明锋.盾构法施工隧道地层变形时空统一预测方法研究.岩土力学,2009,30(8):2379-2384
    [62]魏纲.顶管工程土与结构的性状及理论研究[博士学位论文].杭州:浙江大学,2005
    [63]姜忻良,赵志民.镜像法在隧道施工土体位移计算中的应用.哈尔滨工业大学学报,2005,27(6):801-803
    [64]陈枫,胡志平.盾构偏航引起的地表位移预测.岩土力学,2004,25(9):1427-1431
    [65]Caspe M S. Surface settlement adjacent to braced open cut. Journal of the Soil Mechanics and Foundations Division, ASCE,1966,92(SM4):51-59
    [66]Hashash Y M A, Whittle A J. Ground movement prediction for deep excavations in soft clay. Journal of Geotechnical Engineering,1996,122(6):474-486
    [67]Phienwej N, Gan C H. Characteristics of ground movements in deep excavations with concrete diaphragm walls in Bankok soils and their prediction. Journal of the Southeast Asian Geotechnical Society,2003,24(9):167-175
    [68]刘纯洁,刘国彬,侯学渊.考虑时空效应的软土深基坑墙后土体水平位移场计算.地下工程与隧道,1999,(3):20-24
    [69]刘兴旺,益德清,施祖元等.基坑开挖地表沉陷理论分析.土木工程学报,2000,33(4):51-55
    [70]Roboski J. Three-dimensional performance and analysis of deep excavation [Ph.D. Dissertation]. Evaston, Illinois:Northwestern University,2004
    [71]Roboski J, Finno, R J. Distributions of ground movements parallel to deep excavations in clay. Canadian Geotechnical Journal,2006,43:43-58
    [72]施成华,彭立敏.基坑开挖及降水引起的地表沉降预测.土木工程学报,2006,39(5):117-121
    [73]Xu K J, Poulos H G. Theoretical study of pile behaviour induced by a soil cut. In: Proceedings of GeoEng 2000, Melbourne,2000
    [74]Zhang R J, Zheng J J, Pu H F et al. Analysis of excavation-induced responses of loaded pile foundations considering unloading effect. Tunnelling and Underground Space Technology,2011,26(2):320-335
    [75]Osman A S, Bolton M D. Ground movement predictions for braced excavations in undrained clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2006,132(4):465-477
    [76]Ghaboussi J, Ranken R E, Karshenas M. Analysis subsidence over soft ground tunnels. In:Peoceedings of Evaluation and Prediction of subsidence, ASCE, New York,1978: 182-196
    [77]詹美礼,钱家欢,陈绪禄.黏弹塑性有限单元法及其在隧道分析中的应用.土木工程学报,1993,26(3):13-21
    [78]Bernat S, Cambou B. Soil-structure interaction in shield tunnelling in soft soil. Computers and Geotechnics,1998,22(3):221-242
    [79]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析.岩石力学与工程学报,2002,21(3):388-392
    [80]张海波,殷宗泽,朱俊高.盾构法隧道施工的精细模拟.岩土力学,2004,26(增):239-243.
    [81]Kasper T, Meschke G. A 3D finite element simulation model for TBM tunnelling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28:1441-1460
    [82]Kasper T, Gunther M. On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunnelling and Underground Space Technology, 2006,21(2):160-171
    [83]Kasper T, Gunther M. A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling. Computers and Geotechnics,2006, 33(4-5):234-247
    [84]Komiya K, Soga K, Akagi H et al. Soil consolidation associated with grouting during shield tunnelling in soft clayey ground. Geotechnique,2001,51(10):835-846
    [85]Akaqi, K. Finite element analysis of interaction of a pair of shield tunnel. In: Proceedings of the 14th International Conference on soil Mechanics and Foundation Engineering, Hamburg,1997:1449-1452
    [86]Pang C H, Yong K Y, Chow Y K. Three-dimensional numerical simulation of tunnel advancement on adjacent pile foundation. In:Peoceedings of Underground Space Use: Analysis of the Past and Lessons for the Future, London,2005:1141-1148
    [87]Moller S C, Vermeer P A. Prediction of settlements and structural forces in linings due to tunnelling. In:Fifth International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Amsterdam, the Netherlands,2005: 141-149
    [88]Moller S C, Vermeer P A. On numerical simulation of tunnel installation. Tunnelling and Underground Space Technology,2008,23(4):461-475
    [89]Karakus M. Appraising the methods accounting for 3D tunnelling effects in 2D plane strain FE analysis. Tunnelling and Underground Space Technology,2007,22(1):47-56
    [90]王敏强,陈胜宏.盾构推进隧道结构三维非线性有限元仿真.岩土力学与工程报,2002,21(2):228-232
    [91]丁文其,杨林德,朱合华.盾构隧道施工中材料性态的模拟.同济大学学报,1999, 27(4):468-473
    [92]朱合华,丁文其,李晓军.盾构隧道施工力学性态模拟及工程应用.土木工程学报,2000,33(3):98-103
    [93]于宁,朱合华.盾构隧道施工地表变形分析与三维有限元模拟.岩土力学,2004,25(8):1330-1334
    [94]杨晓杰,邓飞皇,聂雯等.地铁隧道近距穿越施工对桩基承载力的影响研究,岩石力学与工程学报,2006,25(6):1290-1295
    [95]Morgenstern N R, Eisenstein Z. Methods of estimating lateral loads and deformations. In:Specialty Conference on Lateral Stresses in the Ground and the Design of Earth Retaining Structures, Ithaca, New York,1970:51-102
    [96]Clough G W, Duncan J M. Finite-element analysis of retaining wall behavior. Journal of the Soil Mechanics and Foundations Division,1971,97(12):1657-1673
    [97]Christian J T, Wong I H. Errors on simulation excavation in elastic media by finite elements. Soils and Foundations,1973,13(1):1-10
    [98]Clough G W, Mana A I. Lessons learned in finite element analysis of temporary excavations in soft clay. In:Second International Conference on Numerical Methods in Geomechanics, Blacksburg,1976:496-510
    [99]Tsui Y. A Fundamental Study of Tied-back Wall Behavior [Ph.D. Dissertation]. Durham:Duke University,1974
    [100]Clough G W, Smith E M, Sweeney B P. Movement control of excavation support systems by iterative design. In:Foundation Engineering Proceedings Congress, ASCE, Evanston,1989:869-884
    [101]Wong K S, Broms B B. Lateral wall deflections of braced excavations in clay. Journal of Geotechnical Engineering, ASCE,1989,115(6):853-870
    [102]Hashash Y M A. Analysis of Deep Excavation in Clay [Ph.D. Dissertation]. Cambridge, Massachusetts:Massachusetts Institute of Technology (MIT),1992
    [103]Ling H J, Whittle J. Discussion:Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998,124(5):458-459
    [104]Ou C Y. Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical Engineering, ASCE,1996,122(5):337-345
    [105]Ou C Y, Chiou D C, Wu T S. Closure:Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(5):459-460
    [106]Ou C Y, Liao J T, Lin H D. Performance of diaphragm wall constructed using top-down method. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(9):798-808
    [107]Lee F H, Yong K Y, Quan C N, et al. Effects of corners in strutted excavations:field monitoring and case histories. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1998,124(4):339-349
    [108]张冬霁.考虑空间与时间效应的基坑工程数值分析研究[博士学位论文].杭州:浙江大学,2000
    [109]Ukritchon B, Whittle A J, Sloan S W. Undrained stability of braced excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003, 129(8):738-755
    [110]沈健,王建华,高绍武.基于“m”法的深基坑支护结构三维分析方法.地下空间与工程学报,2005,1(4):530-533
    [111]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[博士学位论文].上海:上海交通大学,2007
    [112]Finno R J, Blackburn J T, Roboski J F. Three-dimensional effects for supported excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2007,133(1):30-36
    [113]王保建,熊巨华,朱碧堂.基坑围护结构变形模式对地面沉降的影响.结构工程师,2007,23(3):48-52
    [114]杨敏,卢俊义.基坑开挖引起的地面沉降估算.岩土工程学报,2010,32(12):1821-1828.
    [115]李佳川.软土地区地下连续墙深基坑开挖的二维分析及试验研究[博士学位论文].上海:同济大学,1992
    [116]Cording E J. Evaluation and control of ground movements around tunnels and excavations in soil. In:Proceedings of the XII international conference on soil mechanics and foundation engineering, Rio De Janeiro,1985:106-137
    [117]Cording E J, Long J H, Son M, et al. Modelling and analysis of excavation-induced building distortion and damage using a strain-based damage criterion. In: Proceedings of the international conference response of buildings to excavation-induced ground movements, London,2000:125-139
    [118]Yoo C. Behavior of braced and anchored walls in soils overlying rock. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2001,27(3):225-233
    [119]Li Y Q, Ying H W, Xie K H. On the dissipation of negative excess pore-water pressure induced by excavation in soft soil. Journal of Zhejiang University (Science), 2005,6A(3):188-193
    [120]Yoo C, Lee D. Deep excavation-induced ground surface movement characteristics-A numerical investigation. Computers and Geotechnics,2008,35(2):231-252
    [121]Franx C, Boonstra G C. Horizontal pressure on pile foundations. In:Proceedings of the Second International Conference of Soil Mechanics and Foundation Engineering, Rotterdam,1948:131-135
    [122]Heyman L, Boersma E. Bending moment in piles due to lateral earth pressure. In: Proceedings of the 5th International Conference of Soil Mechanics and Foundation Engineering, Paris,1961:425-429
    [123]Wenz K P. Large scale tests for determination of lateral loads on pile in soft cohesive soils. In:Proceedings of the 5th International Conference of Soil Mechanics and Foundation Engineering, Moscow,1973:2-12
    [124]Indraratna B. Development of negative skin friction on driven piles in soft Bangkok clay. Canadian Geotechnical Journal,1992,29:393-404
    [125]Lee R G, Turner A J, Whitworth L J. Deformation caused by tunnelling beneath a piled structure. In:Proceedings of the 13th International Conference of Soil Mechanics and Foundation Engineering, New Delhi, India,1994:873-878.
    [126]Coutts D R, Wang J. Monitoring of reinforced concrete piles under horizontal and vertical loads due to tunnelling. In:Tunnels and Underground Structures, Balkema, London,2000:198-212
    [127]Attewell P B, Yeates J, Selby A. Soil Movements Induced by Tunnelling and Their Effects on Pipelines and Structures. Blackie and Son, London,1986
    [128]朱碧堂.土体的极限抗力与侧向受荷桩性状[博士学位论文].上海:同济大学,2005
    [129]Kimmance J P, Lawrence S, Hassan G, et al. Observations of deformations created in existing tunnels by adjacent and cross cutting. In:Proceedings of International Symposium on Geotechnical Aspects of Construction in Soft Ground, London,1996: 707-712
    [130]Cooper M L, Chapman D N, Rogers C D F, et al. Movements in the Piccadilly Line tunnels due to the Heathrow Express construction. Geotechnique,2002,52(4): 243-257
    [131]Clayton C R I, Vanderberg J P, Thomas A H. Monitoring and displacements at Heathrow Express Terminal 4 station tunnels. Geotechnique,2006,56 (5):323-334
    [132]Klar A, Vorster T E B, Soga K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions. Geotechnique,2005, 55(6):461-466
    [133]Vorster T E B, Klar A, Soga K, et al. Estimating the effects of tunnelling on existing pipelines. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005, 131(11):1399-1410
    [134]Vorster T E B, Soga K, Mair R J, et al. The use of fiber optic sensors to monitor pipeline response to tunnelling. In:Proceedings of GeoCongress:Geotechnical Engineering in the Information Technology Age, Atlanta, USA,2006:192-199
    [135]贾瑞华,阳军生,马涛等.既有管线下盾构施工地层沉降监测和位移加载数值分析.岩土工程学报,2009,31(3):425-430
    [136]Morton J D, King K H. Effect of tunnelling on the bearing capacity and settlement of pile foundation. In:Proceedings of Tunnelling 79, IMM, London,1979:57-68
    [137]Poulos H G, Chen L T, Hull T S. Model tests on single piles subjected to lateral soil movement. Soils and Foundations,1995,35(4):85-92
    [138]Chen L T, Poulos H G, Hull T S. Model tests on pile groups subjected to lateral soil movement. Soils and Foundations,1997,37(1):1-12
    [139]Lee Y J, Yoo C. Behaviour of a bored tunnel adjacent to a line of load piles. In: Proceedings of Safety in the Underground Space, ITA-AITES 2006 World Tunnel Congress and 32nd ITA General Assembly 2006, Seoul,2006:102-112
    [140]Lee Y J, Bassett R H. Influence zones for 2D pile-soil-tunnelling interaction based on model test and numerical analysis. Tunnelling and Underground Space Technology, 2007,22:325-342
    [141]Meguid M A, Mattar J. Investigation of tunnel-soil-interaction in cohesive soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2009,135(7): 973-979
    [142]Bezuijon A, Sehrie J V D. The influence of a bored tunnel on pile foundations. In: Proceedings of Centrifuge 94, Balkema, Rotterdam,1994:68-75
    [143]Loganathan N, Poulos H G, Stewart D P. Centrifuge model testing of tunnelling-induced ground and pile deformation. Geotechnique,2000,50 (3):293-294
    [144]Ran X, Leung C F, Chow Y K. Centrifuge modelling of tunnel-pile interaction in clay. In:Proceedings of Underground Singapore 2003, Singapore,2003:256-263
    [145]Ong C W, Leung C F, Yong K Y, et al. Centrifuge modelling of pile responses due to tunnelling in clay. In:Proceedings of Underground Singapore 2005, Singapore,2005: 76-85
    [146]Ong C W, Leung C F, Yong K Y, et al. Experimental study of tunnel-soil-pile interaction. In:Proceedings of Underground Singapore 2007, Singapore,2007:151-162
    [147]Jacobsz S W, Standing J R, Mair R J, et al. Centrifuge modelling of tunnelling near driven piles. Soils and Foundations,2004,44 (1):49-56
    [148]Lee C J, Chiang K H. Responses of single piles to tunnelling-induced soil movements in sandy ground. Canadian Geotechnical Journal,2007,44 (10): 1224-1241
    [149]Leung C E, Chow Y K, Shen R F. Behavior of pile subject to excavation-induced soil movement. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000, 123(11):947-954
    [150]Leung C E, Lim J K, Shen R F, et al. Behavior of pile groups subject to excavation-induced soil movement. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003,129(1):58-65
    [151]Ong D E L, Leung C E, Chow Y K. Pile behaviour due to excavation-induced soil movement in clay. I:Stable wall. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(1):36-44
    [152]Vorster T E B. The effects of tunnelling on buried pipes [Ph.D. Dissertation]. UK: University of Cambridge,2005
    [153]Marshall A M, Mair R J. Centrifuge modelling to investigate soil-structure interaction mechanisms resulting from tunnel construction beneath buried pipelines. In:The 6th International Symposium TC28, Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, China,2008:547-551
    [154]Mroueh H. Shahrour I. Three-dimensional finite element analysis of the interaction between tunnelling and pile foundations. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26:217-230
    [155]Mroueh H. Shahrour I. A full 3-D finite element analysis of tunnelling-adjacent structures interaction. Computers and Geotechnics,2003,30:245-253
    [156]Lee C J, Bolton M D, Tabbaa A A. Numerical modelling of group effects on the distribution of dragloads in pile foundations. Geotechnique,2002,52(5):325-335
    [157]Lee C J, Ng W W. Development of downdrag on piles and pile groups in consolidating soil. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130(9):905-914
    [158]Ng C W W, Chan S H, Lam S Y. Centrifuge and numerical modelling of shielding effects on piles in consolidating soil. In:Proceedings of second China-Japan Geotechnical symposium, Shanghai, China,2005:7-19
    [159]张志强,何川.深圳地铁隧道邻接桩基施工力学行为研究.岩土工程学报,2003,25(2):204-207
    [160]杨敏,朱碧堂.超载软土地基主动加固控制邻近桩基侧向变形分析.建筑结构学报,2003,24(4):76-84
    [161]杨敏,朱碧堂.超载软土地基被动加固控制邻近桩基侧向变形分析.岩石力学与工程学报,2004,23(11):1912-1918
    [162]杨敏,周洪波,杨桦.基坑开挖与临近桩基相互作用分析.土木工程学报, 2005,38(4):91-96
    [163]Lee G T K, Ng C W W. Effects of advancing open face tunnelling on an existing loaded pile. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005,131(2):905-914
    [164]Lee C J, Jacobsz S W. The influence of modelling on adjacent piled foundations. Tunnelling and Underground Space Technology,2006,21(3):430-435
    [165]Hanna A M, Sharif A. Drag Force on single piles in clay subjected to surcharge loading. International Journal of Geomechanics,2006,6(2):89-96
    [166]Cheng C Y, Dasari G R, Chow Y K, et al. Finite element analysis of tunnel-soil-pile interaction using displacement controlled model. Tunnelling and Underground Space Technology,2007,22:450-466
    [167]Poulos H G Analysis of piles in soil undergoing lateral movement. Journal of Soil Mechanics and Foundation Engineering, ASCE,1973,99:391-406
    [168]Alonso E E, Josa A, Ledesma A. Negative skin friction on piles:a simplified analysis and prediction procedure. Geotechnique,1984,34(3):341-357
    [169]Wong K S, Teh C I. Negative skin friction on piles in layered soil deposits. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1995,121(6):457-465
    [170]王建华,高绍武,陆建飞.表面堆载作用下群桩负摩擦研究.计算力学学报.2003,20(2):169-174
    [171]Shen W Y, Chow Y K, Yong K Y. A variational approach for vertical deformation analysis of pile group. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21:741-752
    [172]Shen W Y, Teh C I. A variational solution for downdrag force analysis of pile groups. International Journal of Geomechanics,2002,2(1):75-91
    [173]Guo W D, Lee F H. Theoretical load transfer approach for laterally loaded piles. International Journal for Numerical and Analytical Methods in Geomechanics,2001, 25:1101-1129
    [174]Poulos H G, Chen L T. Pile response due to excavation-induced lateral soil movement. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(2): 94-99
    [175]Surjadinata J, Hull T S, Carter J P, er al. Combined finite-and boundary-element analysis of effects of tunnelling on single piles. International Journal of Geomechanics,2006,6(5):374-377
    [176]Chen L T, Poulos H G, Loganathan N. Pile responses caused by tunnelling. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(3):207-215
    [177]Loganathan N, Poulos H G, Xu K J. Ground and pile-group response due to tunnelling. Soils and Foundations,2001,41 (1):57-67
    [178]Xu K J, Poulos H G.3-D elastic analysis of vertical piles subjected to "passive" loadings. Computers and Geotechnics,2001,28:349-375
    [179]Goh A T C, Teh C I, Wong K S. Analysis of piles subjected to embankment induced lateral soil movements. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(9):792-801
    [180]栾茂田,韩丽娟,年延凯等.被动桩—土相互作用的简化分析.防灾减灾工程学报,2004,24(4):370-374
    [181]Kitiyodom P, Matsumoto T, Kawaguchi K. A simplified analysis method for piled raft foundations subjected to ground movements induced by tunnelling. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29: 1485-1507
    [182]李早,黄茂松.隧道开挖对群桩竖向位移和内力影响.岩土工程学报,2007,29(3):398-402
    [183]黄茂松,张陈蓉,李早.开挖条件下非均质地基中被动群桩水平反应分析.岩土工程学报,2008,30(7):1017-1023
    [184]Huang M S, Zhang C R, Li Z. A simplified analysis method for the influence of tunnelling on grouped piles. Tunnelling and Underground Space Technology,2009, 24 (4):410-422
    [185]Butterfield R, Banerjee P K. The elastic analysis of compressible piles and pile groups. Geotechnique,1971,21(1):43-60
    [186]Poulos H G. Piled raft foundations:design and applications. Geotechnique,2001, 51(2):95-113
    [187]Poulos H G. Analysis of the settlement of pile groups. Geotechnique,1968,18(1): 449-471
    [188]Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soils. Geotechnique,1998,48(1):55-72
    [189]陈明中.群桩沉降计算理论及桩筏基础优化设计研究[博士学位论文].杭州:浙江大学,2000
    [190]Rondolph M F, Worth C P. Analysis of deformation of vertically loaded pile. Journal of Geotechnical Engineering Division, ASCE,1978,104(12):1465-1488
    [191]Cooke R W, Price G, Tarr K. Jacked piles in London clay:interaction and group behaviour under working conditions. Geotechnique,1980,30(2):97-136
    [192]Cooke R W. Piled raft foundation on stiff clays-A contribution to design philosophy. Geotechnique,1986,36(2):169-203
    [193]胡德贵,罗书学,赵善锐.加筋效应对群桩沉降计算的影响.工业建筑,2000,30(11):38-42
    [194]石名磊,战高峰.群桩荷载位移特性研究.岩土力学,2005,26(10):1607-1611
    [195]Teh C I, Wong K S. Analysis of downdrag on pile groups. Geotechnique,1995,45(2): 191-207
    [196]梁发云,陈龙珠,李镜培.加筋效应对群桩相互作用系数的影响.岩土力学,2005,26(11):1757-1760
    [197]Poulos H G. Modified calculation of pile-group settlement interaction. Journal of Geotechnical Engineering,1988,114(6):697-706
    [198]Costanzo D, Lancellotta R. A note on pile interaction factors. Soils and Foundations, 1998,38(4):251-253
    [199]Chow Y K. Analysis of vertically loaded pile groups. International Journal for Numerical and Analytical Methods in Geomechanics,1986,10:59-72
    [200]林永国,周正茂,刘国彬.单桩沉降遮拦效应的研究.同济大学学报,2001,29(5):520-525
    [201]黄茂松,李早,杨超.隧道开挖条件下被动群桩遮拦效应分析.土木工程学报,2007,40(6):69-74
    [202]李早,黄茂松,戴兵.层状地基中刚性承台群桩竖向力学分析.同济大学学报(自然科学版),2007,35(4):446-450
    [203]Potyondy J G. Skin friction between various soils and construction materials. Geotechnique,1961,11(4):339-353
    [204]Clough G W, Duncan J M. Finite element analysis of retaining wall behaviour. Journal of the Soil Mechanics and Foundations Division, ASCE,1971,97(SM12): 1657-1672
    [205]Gomez J E, Filz G M, Ebeling R M. Development of an improved numerical model for concrete-to-soil interfaces in soil-structure interaction analysis. Technical Report ITL-99-1, US Army Engineer Research and Development Center, Vicksburg, Miss 2000
    [206]Kishida H, Uesugi M. Tests of the interface between sand and steel in the simple shear apparatus. Geotechnique 1987; 37(1):45-52
    [207]Zhang G, Zhang J M. Test study on behavior of interface between structure and coarse grained soil. In:XVth International Conference on Soil Mechanics and Geotechnical Engineering, Tokyo, Japan,2005:128-134
    [208]Brandt J R T. Behaviour of Soil-Concrete Interfaces [Ph. D. Dissertation]. Edmonton, Canada:University of Alberta,1985
    [209]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟.岩土工程学报,1994,16(3):87-95
    [210]Hu L M, Pu J L. Testing and Modelling of Soil-Structure Interface. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(8):851-860
    [211]D'Aguiar S C. Elastoplastic constitutive modelling of soil-structure interfaces under monotonic and cyclic loading. Computers and Geotechnics,2011,31 (In press)
    [212]钟闻华.深长桩荷载传递特性与相互作用理论及应用研究[硕士学位论文].南京:东南大学,20052005
    [213]罗耀武,胡 琦,凌道盛等.桩—土界面特性对砂土地基中抗拔桩承载特性影响的模型试验研究.岩土力学,2011,32(3):722-727
    [214]梁发云,姚国圣,陈海兵等.土体侧移作用下既有轴向受荷桩性状的室内模型试验研究.岩土工程学报,2010,32(10):1603-1609
    [215]Bobet A. Analytical solutions for shallow tunnels in saturated ground. Journal of Engineering Mechanics, ASCE,2001,127(12):1258-1266
    [216]Chou W I, Bobet A. Predictions of ground deformations in shallow tunnels in clay. Tunnelling and Underground Space Technology,2002,17:3-19
    [217]Randolph M F, Wroth C P. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division, ASCE,1978,104(12):1465-1488
    [218]Mylonakis G, Gazetas G. Settlement and additional internal forces of grouped piles in layered soil. Geotechnique,1998,48(1):55-72
    [219]Vesic A S. Ultimate loads and settlements of deep foundations in sand. In: Proceedings of the Symposium on Bearing Capacity and Settlement of Foundation, Durham,1965:53-68
    [220]Kondner R L. Hyperbolic stress-strain response:cohesive soils. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE,1963,89(SM1):115-143
    [221]Reese L C, Cox W R, Koop F D. Analysis of laterally loaded piles in sand. In: Proceedings of the 6th Annual Offshore Technology Conference, Houston,1974: 473-483
    [222]Comodromosa E M, Anagnostopoulosb C T, Georgiadisb M K.. Numerical assessment of axial pile group response based on load test. Computers and Geotechnics,2003,30:505-515
    [223]Xu K J, Poulos H G. User's Manual for Program GEPAN Version 2.0. Sydney, Australia:The University of Sydney,1998
    [224]Ghaboussi J, Wilson E L, Isenberg J. Finite element for rock joints and interfaces. Journal of the Soil Mechanics and Foundation Division,1973,99(10):833-848
    [225]陈慧远.摩擦接触面单元及其分析方法.水利学报,1985,30(4):44-50
    [226]张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用.岩土工程学报,1998,20(6):62-66
    [227]Desai C S, Ma Y. Modelling of joints and interfaces using the disturbed-state concept. International Journal of Numerical and Analytical Method in Geomechanics,1992, 16:623-653
    [228]沈珠江.结构性粘土的弹塑性损伤模型.岩土工程学报,1993,15(3):21-28
    [229]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究.岩土工程学报,2001,23(4):431-435
    [230]胡黎明,濮家骝.土与结构物接触面损伤本构模型.岩土力学,2002,23(1):6-11
    [231]Poulos H G, Davis E H. Pile Foundation Analysis and Design. Wiley & Sons Inc: New York,1980
    [232]朱俊高,Shakir R R,杨有莲等.土—混凝土接触面特性环剪单剪试验比较研究.岩土力学,2001,32(3):692-696
    [233]张海波,殷宗泽,朱俊高.盾构法隧道施工的精细模拟.岩土力学,2004,25(增2):280-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700