管流添加剂减阻的实验与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暖通空调系统中泵的能耗在整个建筑能耗中所占比例非常大,以往围绕其进行的节能降耗研究多集中在输配系统的设计及运行调节等方面。由于在液体中加入少量的高分子聚合物或表面活性剂可导致其流动阻力大幅度减少,即出现添加剂减阻现象,此时不但流体输送过程的摩阻系数显著下降,而且会因传热性能降低而减少沿程输送的热量(或冷量)损耗。如果能够将添加剂减阻技术应用于暖通空调系统,不仅能够大大降低输配系统中水泵的能耗,而且能够相应地提高水输送热量(或冷量)的能力并有助于减少输配管网的初投资,因此在我国开展此项技术的研究对暖通空调领域的节能减排工作具有重要的意义。本文将从应用基础的角度研究添加剂减阻技术在暖通空调水系统中实际工程应用的可行性。
     本文针对暖通空调水系统的专业技术特点,设计并建立了温度可控、实验管段管径可变、具有循环剪切功能的添加剂减阻实验台。该实验台的水温可控制在8℃至80℃之间、雷诺数可控制在500~100000范围内,来模拟暖通系统运行中的大多数常见的流动状态;减阻实验在循环系统中进行,便于研究不同减阻剂的抗剪切特性;实验管段部分可拆卸,以实现对常见管材不同管径的减阻效果研究。在进行减阻实验之前先进行清水实验,即在层流区以Hagen-Poiseuille定律为标准,湍流区以Prandtl-Karman定律为标准,对实验段管径进行了率定。
     采用高分子聚合物聚丙烯酰胺(PAM)和表面活性剂十六烷基三甲基氯化铵(CTAC)的水溶液分别在塑料管(PVC管)和紫铜管中进行减阻实验来研究减阻液的减阻起始点、浓度效应、温度效应、管径效应及抗剪切性能等特性。实验结果显示,浓度为200ppm的PAM水溶液在紫铜管中最大减阻百分比在温度10℃时为65%,减阻效果非常突出,而在高温条件下存在明显降解现象,故PAM减阻剂在区域供冷系统中应该具有一定的应用潜力。浓度为300 ppm的表面活性剂CTAC水溶液在温度为60℃的紫铜管中其最大减阻百分比就可达到65%,同时表面活性剂CTAC水溶液的临界雷诺数随着溶液浓度的增加而增加,但是在低温下表现出一种饱和的行为,当20℃时,100ppm的表面活性剂CTAC溶液临界雷诺数约为12000,而400、500和600ppm下临界雷诺数几乎恒定在22500。实验结果显示表面活性剂CTAC具有一定的耐高温抗剪切特性,其在区域供冷及地板采暖等系统中应该具有较好的应用前景。
     暖通空调系统中大多数管道内的流动都处在湍流(紊流)状态下,其中20~30%的能量损失是由湍流中心区内大尺度旋涡的高次分叉所引起的,而70~80%的湍流能量损失却是由边界层附近的湍流猝发所引起的。通过对湍流拟序结构的研究发现,湍流猝发虽然在空间上是随机的,但却是一种带有概周期性和具有确定性结构的拟序性结构,会在边界层内形成一个振荡流场,因此在研究添加剂减阻机理时就必须观察添加剂中的大分子(可将其看做微尺度球形粒子)在此振荡流场中的动力行为。本文提出了含悬浮粒子流体振荡粘度的概念,建立了粒子与振荡流场之间相互作用的数学物理模型,推导出了微尺度球形粒子在振荡流场中运动规律及含有大分子的含悬浮粒子流体振荡粘度的解析表达式。这部分工作是对经典颗粒悬浮液粘度理论的有益扩展,同时为本文随后的添加剂减阻机理的研究奠定了基础。
     本文的研究结果表明添加剂中的粒子进入边界层附近时,会受到湍流猝发所引起的振荡流场的作用,产生振荡响应。该过程有利于减弱流场的振荡强度,更为重要的是该能量损耗会引起局部流场动态振荡粘度附加,由于粘度附加将阻碍涡管的形成和已形成涡管的发育,从而降低湍流猝发的频率和强度,抑制在湍流阻力中起着最主要贡献的湍流猝发,最终达到宏观减阻效果。利用本文得到的振荡粘度解析表达式就可以计算粒子尺寸、密度、圆频率等对含悬浮粒子流体粘度的影响,例如10wppmPEO(WSR-301)溶液在能谱峰值频率时动态振荡粘度将比纯水粘度约增加7.14%,此时可获得接近于最大的宏观减阻效果。含悬浮粒子流体局部动态振荡粘度是时空的函数,在边界层附近其值越大,对湍流猝发的抑制能力越强,减阻效果就越显著。这就是本文提出的关于减阻机理新的解释。
In the building HVAC system, the pumps consume a large proportion of the total building energy, and the former energy saving research was mainly focused on the design of the distribution system and operation adjustments. Because the additive drag-reduction phenomenon, which can lead to great reduction of friction drag by adding a little high polymer or surfactant into the fluid, could not only significantly reduce the friction coefficient during the fluid distribution process, but also decrease the heat loss (or cold loss) along the distribution network due to the reduction of the heat transfer. Applying additive drag-reduction to HVAC systems could largely reduce the pump power in the distribution systems, meanwhile increase the capability of water carrying on the heat and as a result, the initial cost of the distribution network drops. So it is of great significance for energy conservation in HVAC field to investigate additive drag-reduction. This paper studies on the feasibility of applying the additive drag-reduction technology to practical engineering project in water system of HVAC.
     Based on the characteristics of water distribution system in HVAC, we design and set up an experiment-table for additive drag-reduction with controlled temperature, alternative pipe diameters and circulation mechanical degradation. The temperature is controlled from 10℃to 80℃and the Reynolds number alters in the range of 500~100,000 so as to simulate the majority of flow regimes in HVAC systems. We conduct drag-reduction experiments in circulation system convenient for researching the performance of withstanding mechanical degradation of different drag-reduction additives. Parts of the pipes are dismountable so that we could investigate the drag-reduction effect of different pipe diameters. Before starting the drag-reduction experiments we experimentize with water to calibrate inner diameter of the experiment pipes, using Hagen-Poiseuille law for laminar flow and Prandtl-Karman law for turbulence as standard.
     To explore the characteristics of drag-reduction solution, such as drag-reduction onset、concentration effect、temperature effect、diameter effect and performance of withstanding mechanical degradation, the drag-reduction experiments conducted in the PVC and copper pipes with PAM and CTAC solution are designed and implemented. The experiment results show that the maximum percentage of drag-reduction of 10℃,200ppm PAM solution flowing in copper pipes could be 65%,which indicates significant effect of drag-reduction, but degradation is observed under high temperature condition. Therefore, PAM drag-reduction additive can be potentially applied in the chilled water delivery systems. The experiment results also demonstrate that the maximum percentage of drag-reduction of 60℃,300ppm CTAC solution flowing in copper pipes could be 65% and meanwhile, the critical Reynolds number of CTAC solution increases with the increasing of the solution concentration, however, saturation behaviour is observed when the CTAC solution is under low-temperature condition. For instance, the critical Reynolds number of 100ppm CTAC solution is about 12000 while the critical Re number of 400,500 and 600 ppm CTAC solution is almost a constant at 22500. Since it shows that CTAC has a certain characteristics of withstanding high temperature and mechanical degradation, its promising application in district cooling and under-floor heating systems is expected.
     Most of the pipe flows in the HVAC systems are turbulent flow, in which 20~30% of the energy loss is caused by the high order bifurcation of large scale vortex in turbulence central area while 70~80% energy loss is caused by turbulent bursting near boundary layer. Based on the research of turbulent coherent structure, we find that although the turbulent bursting is stochastic in space, it is a coherent structure with probable periodicity and determinacy structure, which could form an oscillation flow field in the boundary layer. So it is necessary to observe the dynamic behavior of macromolecule, viewed as microscale globose particles, in oscillation flow field when we research on mechanism of drag-reduction. This paper brings forward the conception of“oscillation viscosity of particle suspended fluid”, constructs a mathematical physics model of the interaction between globose particles and oscillation flow field, and deduces the analytical expression of movement laws of microscale globose particles in oscillation flow field and oscillation viscosity of particle suspended fluid. This part of work is a good extension for the classic theory of viscosity of particle suspended fluid, meanwhile establishes a solid base for succeeding research on mechanism of drag-reduction in this paper.
     The results of this research demonstrate that the particles of drag-reduction additive will generate oscillation response when they come to boundary layer and effected by oscillation flow field caused by turbulent bursting. This process is able to lower the oscillation intensity of the flow field, and what is more important, the energy loss will result in an addition in dynamic oscillation viscosity in local field. The addition viscosity can obstruct formation of vortex tube and development of formed vortex tube to reduce the frequency and intensity of turbulent bursting, and restrain the turbulent bursting which is of significant contribution in turbulence friction, finally achieves macroscopical drag-reduction effect. The influences on the viscosity of particle suspended fluid by size, density and frequency of the suspended particles could be calculated with the analytical expression of oscillation viscosity deduced in this paper. For instance, the dynamic oscillation viscosity of 10wppmPEO(WSR-301)solution at peak frequency of energy spectrum increases 7.14% compared with the pure water and the maximum macroscopical drag-reduction effect could be achieved at the same time. The local dynamic oscillation viscosity of particle suspended fluid is a function of space and time, the larger the value near the boundary layer, the more ability of restraining the turbulent bursting could be obtained, as a result, the more significant effect of drag-reduction can be achieved. This is the new explanation to mechanism of drag-reduction raised in this paper.
引文
1 B. White, J. Hemming. Drag Reduction by Additives (Review and Bibliography) [M]. BHRA. Fluid Engineering Crenfield, 1976,3~15
    2沈仲棠,刘鹤年编著.非牛顿流体力学及其应用[M].高等教育出版社1989, 3:240~241
    3 Flemming Hammer. Manager of Development, Friction Reduction in District Heating Systems in Denmark[On line]. News from DBDH, 1999,4
    4 M. Bannai, K. Kuwabara, H. Itasaka. Energy-saving in Chilled-water Supply System for Clean Room of Semiconductor Manufacturing Plant: Variable Flow Control of Chilled-water and Addition of Drag Reduction [J]. Tran.Japan Soc.Refrigerating&Air Conditioning Eng, 2006, 23:133~143
    5 W. Althaus. Anwendung Widerstansvermindender Additive in Fernwrme systymen [D]. Dortmund, Gemany Universtat Dortmund, 1991
    6 J. Pollert, J. L. Zakin, J. Myska, K. Kratochvil. Use of Friction Reducing Additives in District Heating System Field Test at Kladno-Krocehlavy [C]. In:Proc Czech Republic Conf.Int. Seattle,USA,DHCAssociation, 1994,85:141~156
    7 S. Ezrahi, E. Tuvalu, A. Aserin. Properties,Mian Applications and Perspetives of Worm Micelles[J]. Adv.Colloid Interface, 2006, 21:77~102
    8罗兴,刘靖,张子平.减阻技术在集中供热与空调水输配系统中的应用[J].节能,2004, 12 :14~15
    9焦利芳.添加剂减阻技术在集中供暖系统中的节能应用[D].哈尔滨:哈尔滨工业大学, 2008,3
    10 B. A. TOMS. Some Obervations on the Flow of Linear Polymer Solutions through Straight Tubes at Large Reynolds Numbers [C]. Proceeding of 1st International congress on Rheology. Amsterdam: North Holland, 1948:135~138
    11 P. S. Virk, D. Lwagger. Aspects of Mechanisms in Type B Drag Reduction Structure of the Turbulence and Drag Reduction[C]. IUTAM Symposium,Zurich, Suitzarland: Springer-verlay, 1989: 25~28
    12哈尔滨建筑工程学院水力学教研室.应用聚氧化乙烯降低湍流阻力的实验研究[J].力学, 1976, 4:213~219
    13董正方,顾卫国,张红霞等.表面活性剂减阻流体传热与阻力关系试验研究[J].水动力学研究与进展(A辑), 2006, 21(4):494~498
    14焦利芳,李风臣,苏文涛等.表面活性剂减阻剂在集中供热系统中的应用试验研究[J].节能技术, 2008, 3(26):195~201
    15宋昭峥,张雪君,葛际江.原油减阻剂的研究概况[J].油气田地面工程, 2000, 19(6):7~9
    16胡通年.减阻剂在我国输油管道上的应用试验[J]. 1997, 16(6):11~14
    17沃良华,廖其奠.添加剂分子结构对减阻性能的影响及减阻效果的试验结果[J].上海机械学院学报, 1991, 13(1):9~10
    18王耀林,代加林.高分子减阻剂-结构与性能[J].油田化学, 1990, 7:98~106
    19蔡伟华.聚丙烯酰胺水溶液减阻特性实验研究[D].哈尔滨:哈尔滨工业大学,2008
    20 Mengsheng Z, Weihua C, Hui W, Pinghua Z. Experimental Study of Drag Reduction by aqueous Polyacrylamide Solution[C]. 7th International Conference on Sustainable Energy Technologies, Seoul, Korea, August, 2008
    21 P.W.Li, H. Daisaka, Y. Kawaguchi, et al. Turbulence Structure of DragReduction Surfactant Solution in Two-dimensional Channel with Additional Enhancement Method[C]. ASME Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego(USA), 1999:15~19
    22 A.White. Some Observations on the Flow Characteristics for Certain Dilute Macromolecular Solutions[C]. Proc Symp on Viscous Drag Reduction,Dallas(USA): Plenum Press, N.Y, 1969:297~311
    23王辉.表面活性剂减阻特性实验研究[D].哈尔滨:哈尔滨工业大学, 2008
    24孙寿家,王军,毛莹.层流附面层粘性减阻作用分析[J].哈尔滨工业大学学报, 1994, 26(1): 53~58
    25 Suksamranchit S, Sirivat A. Influence of Ionic Strength on Complex Formation between Poly(ethylene oxide) and Cationic Surfactant and Turbulent Wall Shear Stress in Aqueous Solution[J]. Chemical Engineering Journal, 2007, (128):11~20
    26 H. Yuntao, E. F. MATTHYS. Effect of Metal Ions and Compounds on the Rheological Properties of a Drag-Reducing Cationic Surfactant Solution Exhibiting Shear-Induced Structure Formation[J]. Journal of Colloid and interface science, 1997, (186):352~359
    27何钟怡.高分子稀溶液减阻机理的研究进展[J].水动力学研究与进展,1993, (4): 381~387
    28 K. A. Smith, E. W. Merrill, H. S. Mickley, P. S. Virk. Influence of Molecular Weight upon Drag Reduction by Polymers. Chemical Engineering Science, 1967, 4(22):619~626
    29 J.W. Hoyt. Turbulent Flow of Drag-Reducing Suspentions[J]. U.S.Naval Undersea R & D Centre Rep.NUC TP, 1972, 7:299~300
    30韦新东.对高聚物减阻机理的探讨[J].吉林建筑工程学院学报, 1994, 4:63~69
    31邓明毅.聚合物稀溶液紊流减阻作用机理综述[J].钻井液与完井液, 1997,(14)1:36~39
    32窦国仁.紊流力学(上册)[M].高等教育出版社. 1984
    33窦国仁.紊流力学(下册)[M].高等教育出版社. 1987
    34何钟怡,史守峡.线性剪切流中大分子的动力模型[J].哈尔滨建筑大学学报,1999, 1:51~56
    35 F. H. Abernath, Z.Y. He. Polymer Indnced Velocity Flnctnations in Dilute Drag- reducing Pipe Flow[J]. IAHR Drag Reduction, 1984, B-8
    36 F. H. Abernath, Z.Y. He. Velocity and Spectra Measurements with a Small Scattering Volume LDV System[C]. Bienial Symposium on Turbulence, 1984
    37 Z. Y. He. Experimental Study of Characteristic of the Maximum Asymptote in Drag Reduction[C]. Proceeding of China-Japan International Conference on Rheology, 1991:288~292
    38何钟怡.聚合物溶液的两种层流状态与减阻机理[J].力学进展, 1992, (3):310~317
    39 P.S. Virk. Drag Reduction Fundamentals[J]. AICHE Journal, 1975, 21(4):625~656
    40许鹏,王德忠.低浓度CTAC减阻流体流动性能试验研究[J].热能动力工程, 2002 17(6):585~588
    41王德忠,胡友情,王松平等.表面活性剂减阻流体湍流空间结构试验研究[J].热能动力工程, 2004, 19(2): 140~143
    42 Y. Kawaguchi, T. Segawa, Z. P. Feng, P. W. Li. Experimental Study on Drag-reducing Channel Flow with Surfactant Additives: Spatial Structure of Turbulence Investigated by PIV System. International Journal of Heat and Fluid Flow, 2002, (23): 700~709
    43 F. C. Li, Y. Kawaguchi, K. Hishid et al. On the Turbulence Contribution to Frictional Drag in Wall-bounded Turbulent Flow[J]. Chinese Physics Letters, 2006, 23(5):1226~1229
    44 F. C. Li, Y. Kawaguchi, K. Hishida, et al. Investigation of Turbulence Structures in a Drag-reduced Turbulent Channel Flow with Surfactant Additive Using Stereoscopic Particle Image Velocimetry[J]. Experiments in Fluids, 2006, 40:218~230
    45 I. Harwigsson, M.Hellsten. Environmentally Acceptable Drag-reducingSurfactants for District Heating and Cooling[J]. Journal of the American Oil Chemists’Society, 1996, 7:32~47
    46 D.Michael, Warholic. The Influence of a Drag-reducing Surfactant on a Turbulent Velocity field[J]. Journal of Fluid Mechanics, 1999, 388:1~20
    47 Hellsten, Martin. Drag-reducing Surfactants[J] Journal of Surfactants and Detergents .2002, 5(1):302~310
    48张维佳.胶束溶液减阻的实验研究[J].东北力学, 1992, 8:123~25
    49马祥馆,陶进.表面活性剂管道减阻及传热特性的研究[J].水动力学研究与进展(增刊), 1993, 12:636~642
    50 F.K.Schmitt. Surfactant Additives in Pipe Flows under Cyclic Heating Conditons[M]. Drag Reduction in Fluid Flow, 1989:205~213
    51 J. Myka, P. Stern. Properties of a Drag Reducing Micelle System[J]. Colloid & Polymer Science, 1994, 5:52~60
    52 Artur Steiff, Paul-Michacel, et al. Application of Drag Reducing Additives in District Heating Syetem-present State of Investigations[M]. Drag Reduction in Fluid Flow, 1989:247~254
    53 K. Gasljevic, E. F. Matthys. Improved Quantification of the Darg Reduction Phenomenon through Turbulence Reduction Parameters [J]. J. Non-Newtonian Fluid Mechanics, 1999, 84(2-3):123~130
    54 F. C. Li, Y. Kawaguchi, K. Hishida. Investigation on the Characteristics of Turbulence Transport for Momentum and Heat in a Drag-reducing Surfactant Solution[J]. Physical of Fluids, 2004, 16(9):3281~3295
    55 F. C. Li, Y. Kawaguchi, B. Yu, et al. Experimental Study of Drag-reduction Mechanics for a Dilute Surfactant Solution flow[J]. International Journal of Heat and Mass Transfer, 2008, 51: 835~843
    56 F. C. Li, Y. Kawaguchi, T. Segawa, et al. Reynolds-number Dependence of Turbulence Structures in a Drag-reducing Surfactant Solution Channel Flow Investigated by Particle Image Velocimetry[J]. Physics of Fluids, 2005, 17(7):75~104
    57 F. C. Li, D. Z. Wang, Y. Kawaguchi. Simultaneous Measurements of Velocity and Temperature Fluctuations in Thermal Boundary Layer in a Drag-reducing Surfactant Solution Flow[J]. Experiments in Fluids, 2004, 36(1):131~140
    58 F. C. Li, Y. Kawaguchi, K. Hishid. Structual Analysis of Turbulent Transport in a Heated Drag-reducing Channel Flow with Surfactant Additives[J]. International Journal of Heat and Mass Transfer, 2005, 48(5):965~973
    59周静瑜,王德忠,张伟骏等.集中空调水系统减阻流体性能研究[J].暖通空调, 2004, 34(7):82~87
    60 Zhou T, Leong K C, Yeo K H. Experimental Study of Heat Transfer Enhancement in a Drag-reducing Two-dimensional Channel Flow[J]. International Journal of Heat and Mass Transfer, 2006, 49: 1462~1471
    61魏进家,川口靖夫, David J.Hart.在一种新型两性界面活性剂的减阻特性[J].化工学报, 2006, 11(57):2750~2754
    62 Zhang Y, Schmidt J , Talmon Y, Zakin J L. Co-solvent effect s on drag eduction , rheological properties and micelle microst ructures of cationic surfactants. J ournal of Col loi dand I nter f ace Science , 2005 , 286 (2) : 696-709
    63焦利芳,李凤臣.添加剂湍流减阻流动与换热研究进展综述.力学进展, 2008, 38(3): 340-355
    64王喆.减阻剂是输油管道快速、经济的增输手段.油气储运, 1988, 7(6): 13~18
    65柴业森.石油输送管道减阻技术浅议.石油商技, 1998, 1: 46~48
    66陈东浩.应用减阻技术增加石油输量.现代化工, 1985, 4: 38~39
    67于慎卿.减阻技术在我国石油管道上的应用.油气储运,1990, 2: 16~22
    68蒲家宁.成品油管道应用减阻增输剂效果分析.油气储运,2001, 20(11): 5~9
    69张国庆,王旭东,靳红梅等.高效减阻剂在二连油田的应用.内蒙古石油化工,2004, 5(30): 130-132
    70王季芳,靳素海,刘艳芬等.减阻剂在二连油田的应用.内蒙古石油化工2002, 27: 244~255
    71尹国栋,赵帆,张明等.油基减阻剂的研制与应用.石油规划设计2006, 17(4):20~22
    72王贺友,才德权,潘子幡.南输成品油管道应用国产减阻剂试验.油气输运2004, 23(7): 59~62
    73李宁会,朱志强.靖咸输油管道增输降耗的措施及应用效果.油气储运, 2004, 23(12): 16~-20
    74臧国君,屈建宏,赵宏涛等.靖安-咸阳管道减阻增输试验研究.石油规划设计, 2005, 16(5): 24~26
    75罗旗荣,曹旦夫,丁友等.临濮输油管道添加剂运行现场试验.油气储运, 2005, 24(6): 31~34
    76王峰,张晓东. HG减阻剂在输油管道中的应用HSE安全技术, 2006, 6(6): 20~22
    77杜秀霞,王志亮.减阻剂用于东辛输油管线.油气田地面工程, 2006, 25(4),20~21
    78赵学瑞,钟声玉,沈承龙等. PW-30稀溶液的管内减阻研究.上海机械学院学报, 1979, 1(0): 53~63
    79马祥琯,韦新东.高聚物在明渠水流中减阻的实验研究水利学报, 1990, 12: 44~48
    80 I.Harwigsson, M.Hellsten. Environmentally Acceptable Drag-reducing Surfactants for District Heating and Cooling[J]. Journal of the American Oil Chemists’Society, 1996, 7:32~47
    81 M. Jiri, M. Vaclav. Application of a Drag Reducing Surfactant in the Heating Circuit[J]. Energy and Buildings 2003, (35):813~819
    82 M. Jiri, M. Vaclav. Application of a Drag Reducing Surfactant in the Heating Circuit[J]. Energy and Buildings 2003, (35):813~819
    83 Zzhou T, Leong K C, Yeo K H. Experimental Study of Heat Transfer Enhancement in a Drag-reducting Two-dimensional Channel Flow. International Journal of Heat and Mass Transfer,2006,49:1462~1471
    84 P. K. Ptasinski, F. T. M Nieuwstadt, B. H. A. A Van Den Brule, et al. Experiments in Turbulent Pipe Flow with Polymer Additives at Maximum Drag Reducion[J]. Flow, Turbulence and Combustion, 2001, 66:159~182
    85 C. F. Li, V. K. Gupta, R. Sureshkumar, et al. Turbulent Channel Flow of Dilute Polymeric Solutions: Drag Reduction Scaling and an Eddy Viscosity Model[J].Journal of Non-Newtonian Fluid Mechanics, 2006, 139: 177~189
    86 N.V. Kikitin. Turbulent Channel Flow with an Artificial Two-dimensional Wall Layer[J]. Fluid Dynamics, 2003, 38(6):854~861
    87 Zakin J L, Myska J, Chara Z. New Limiting Drag Reduction and VelocityProfile Asymptotes for Nonpolymeric Additives Systems. AICHE Journal 1996, 42: 3546-3554.
    88 J. W. Hoyt, A. G. Fabula. The Effect of Additives on Fluid Friction[J]. Proc 5th Nav. Hydrodynamics. Bergen, Norway, Office of Naval Research ACR-112, 1964:947~951
    89 R.W.Peterson, F. H. Abernathy. Turbulenct Flow Drag Reduction and Degradation with Dilute Polymer solutions[J]. Journal of Fluid Mechanics,1970, 43(4):689~710
    90 O. R. Oliver, S. I. Bakhtiyarov. Drag Reduction in Exceptionally Dilute Polymer Solution[J]. Journal of Non-Newtonian Fluid Mechanics, 1983, 12:113~124
    91王国兵,窦国仁.高分子聚合物减阻的试验研究[J].水利水运科学研究, 1988, 2:1~11
    92陈瑞芳,江志东,吴嘉.高分子减阻流场湍流结构实验研究[J].大连理工大学学报, 1998, 38(5):525~528
    93 Subhash N. Shah, Ahmed Kamel, et al. Drag Reduction Characteristics in Straight and Coiled Tubing-An Experimental Study[J]. Journal of Petroleum Science and Engineering, 2006, (53): 179~188
    94 M. P. Escudier, F. Prest, S. Smith. Drag Reduction in the Turbulent Pipe Flow of Polymers[J]. Journal of Non-Newtonian Fluid Mechanics,1999, (81):197~213
    95 TorgeirNakken , Morten Tande , Bo Nystroom.Effects of Molar Mass, Concentration and Thermodynamic Conditions on Polymer-induced Flow Drag Reduction. European Polymer Journal, 2004, (40):181~186
    96 W. Matthew, Liberatore, J. Emily et al. Shear Induced Structure Formation in Solutions of Drag-reducing Polymers. J. Non-Newtonian Fluid Mech, 2003, (113): 193~208
    97 E.P. Vrahopoulou, A. J. McHugh,Shear-thickening and Structure Formation in Polymer Solutions. J.Non-Newton.Fluid, 1987,(25):157~175
    98 A. J. Kishbaugh, A. J. McHugh. Arheo-optical Study of Shear-thickening and Structure Formation in Polymer Solutions.PartI. Experimental, Rheol. Acta, 1993 (32):9~24
    99 R. Larson. Flow-induced Mixing,Demixing,and Phase Transitions in Polymeric Fluids, Rheol.Acta, 1992 (31):497~520
    100虞崇正.稀薄高分子溶液的减阻机理研究[J].中国科学, 1980, 1:26~41
    101 Larson R G. Analysis of Polymer Turbulent Drag Reduction in Flow Past a Flat Plate[J]. Journal of Non-Newtonian Fluid Mechanics, 2003, (111):229~250
    102 V.N.Kalashnikov. Dynamical Similarity and Dimensionless Relations for Turblent Drag Reduction by Polymer Additives. J. Non-Newtonian Fluid Mech., 1998, (75):209~230
    103 C. A. Kim , J. T. Kim , K. Lee, et al. Mechanical Degradation of Dilute Polymer Solutions under Turbulent Flow. Polymer2000 (41):7611~7615
    104 K. Gasljevic, G. Aguilar, E. F.Matthys. An Improved Diameter Scaling Correlation for Turbulent Flow of Drag-reducing Polymer Solutions. J. Non-Newtonian Fluid Mech, 1999, (84):131~148
    105 J. A. Lescarboura. Drag Reduction with a Polymeric Additive in Crude Oil Pipeline[J]. Happya Wahi Member: Aime, 1971, 11:229~235
    106 J. F. Motier, D. J. Prilutski. Case Histories of Polymer Drag Reduction in Crude Oil Lines[J]. Pipe Line Industry, 1985, 62:33~34,37
    107俎铁林.一个引人注目的课题:添加剂减阻[J].力学学报, 1973,1:23~25
    108 Liaw, Zakin. The Effects of Molecular Characteristics of Polymers on Drag Reduction [J]. AICHEJ, 1971, 17: 391
    109 Millan M, Hershey, H C, Baxter R A. Effects of Aging water, Concentration, Temperature, Method of Preparation and other Variables on the Drag Reduction of Aluminium Disoaps in Tolune[J]. Chem.Eng.Prog, Symp, Series, 1971, 67: 7
    110 K. C. Lee, J. L. Zakin. Drag Reduction in Hydrocarbon Aluminium Soap Polymer System [J]. Chem.Eng.Prog.Symp.Series, 1973, 69:45
    111 Vocel J, Myska J. Investigation of a Micellar Additive in Drag Reduction[J]. Acta Technica GSAV, 1980:715
    112 Kawaguchi Y, Segawastudynn T. Feng Z P , Li P W. Drag-reducing Channel Flow with Surfactant Additives-spatial Structure of Turbulen Ceinvestigated by PIV System[J]. International Journal Heat Fluid Flow, 2002 .23 (5):700~709
    113 Ohlendorf D, InterIhal W,Hoffmann H. Surfactant Systems for Drag Reductbn: Physico-chemical Properties and Rheobgical Behaviour[J]. RheolActa, 1986, 25(5): 468~486
    114 H. W. Bewersdoff, D. Ohlendorf. The Behaviour of Drag-reducing Cationic Surfactant Srlutant[J]. Colbid Polym Sci, 1988, 266(10):941~953
    115 T. Zhou, K. C. Leong, K. H. Yeo. Experimental Study of Heat Transfer Enhancement in a Drag-reducing Two-dimensional Channel Flow[J]. International Journal of Heat and M ass Transfer, 2006, 49(7):1462~1471
    116 Hartrnann V, CresselyR Linear and Nonlinear Rheobgy of a Worm like Micellar System in Presence of Sodium Bsylate [J]. Rheol Acta, 1998, 37 (2): 115~121
    117 Z. Q. Lin, J.L. Zakin, Y. Zheng, et al. Comparison of the Effects of Dinethyl and Dichbro Benwate Counterbns on Drag-reduction, Rheobgical Behaviors, and Microstmctures of a Cationic Surfactant[J]. Journal of Rheobgy, 2001, 45 (4): 963~981
    118 M. Jiri, M. Vaclav. Degradation of Surfactant Solutions by Age and by a Flow Singularity. Chemical Engineering and Processing, 2004, (43):1495~1501
    119 G. Hetsroni, M. Gurevich, A. Mosyak, et al. Drag Reduction and Heat Transfer of Surfactants Flowing in a Capillary Tube. International Journal of Heat and Mass Transfer, 2004,(47):3797~3809
    120 S. H. Cho, C. S. Tae, M. Zaheeruddin.Effect of Fluid Velocity, Temperature,and Concentration of Non-ionic Surfactants on Drag Reduction. Energy Conversion and Management, 2007, (48):913~918
    121 Y. Qi, K. Linda, Weavers, J. L. Zakin. Enhancing Heat-transfer Ability of Drag Reducing Surfactant Solutions with Ultrasonic Energy. J. Non-Newtonian Fluid Mech. 2003, (116):71~93
    122 M. Jiri, Z. Q. Lin, P. Stepanek, J. L. Zakin. Influence of Salts on Dynamic Properties of Drag-reducing Surfactants. J. Non-Newtonian Fluid Mech, 2001, (97): 251~266
    123 K. Sato, N. Furuichi, N. Matsumoto, et al. Effects of Non-isothermal Heating on Drag Reduction in Surfactant Aqueous Solution Flow [J]. International Journal of Heat and Mass Transfer, 2004, (47):4569~4577
    124 Ohlendorf D, Interthal W, Hoffmann H. Surfactant System for Drag Reduction: Physico-chemical Properties and Rheological Behavior[J]. Rheologica Acta, 1986, 25:468~486
    125范岱年等编译.爱因斯坦文集(第二卷)[M].北京商务印书馆, 1994: 54~71
    126 G. K. Batchelor, J. J. Green. The determination of the Bulk Stress in a Suspension of Sherical Particles to Order c2[J]. Journal of Fluid Mechanics, 1972, (56):401
    127 Anubhav T,Andreas A. Viscous Resuspension in a Bidensity Suspension[J]. International Journal of Multiphase Flow, 1999, 25:1~14
    128 C. Schepper. Viscosity and Rheological Behavior of Concentrated Colloidal Suspensions. International Journal of Thermoph, 1994,15:1179~1188
    129 E. G. D. Cohen, R.Verberg. Newtonian Viscosity and Visco-elastic Behavior of Concentrated Neutral Hard-sphere Colloidal Suspensions[J]. International Journal of Multiphase Flow, 1997, (23)4:797~807
    130 Batchelor,G.K.:Batchelor,G.K.:The Stress System in a Suspension of Force-Free Particles,J.Fluid Mech.,1970,41 (3):545~570
    131易家训.流体力学[M].高等教育出版社, 1983
    132 S.J. Kline. The Structure of Turbulent Boundary layers, J. Fluid Mech, 1981(107):297~338
    133林建忠编著.湍流的拟序结构[M].北京:机械工业出版社,1995
    134王晋军,符松,孟庆国等,湍流研究最新进展[M].科学出版社, 2001
    135 Pearson, C. F. and Abernathy, F. H., Evolution of The Flow Field Associated With a Streamwise Diffusive Vortex, J. Fluid Mech., 146 (1984), 271-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700