裂隙岩体中隧道注浆加固理论研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对裂隙岩体中的隧道进行注浆加固是保证隧道工程成功建设和安全运营的关键问题,也是一个具有挑战性的研究课题。这将有助于丰富和发展隧道力学理论,解决岩溶、断层破碎带地区隧道工程技术难题以及建立相关规范与标准提供理论依据和技术支持;并将为隧道工程建设提供参考,扩大其在铁路隧道、地铁及地下工程的应用范围。本文以注浆理论研究为基础,首先通过对几种经典渗透注浆理论的分析研究,建立了渗透注浆流体模型,推导了注浆过程中浆液流量、注浆压力和渗透系数的解析解及相互影响,并对各种流体在岩土体中渗透和劈裂注浆力学机理进行了分析;然后通过劈裂注浆机理模型实验研究,对注浆实验参数进行了设计、对注浆机理进行了分析、并对注浆效果进行了检测;最后将注浆量验收标准和注浆质量检测方法以及上述研究成果成功应用于实际工程中。本文通过理论分析、实验验证和工程实例分析取得了如下主要研究成果:
     (1)根据渗透注浆理论建立了渗透注浆流体模型,推导了注浆过程中浆液流量、注浆压力和渗透系数的解析解;深入研究了多孔同时注浆的相互影响,得出了多孔同时注浆时在某点的注浆压力值等于单孔各自注浆时注浆压力在该点的叠加和圆形布置注浆孔时圆心位置的加固效果最差;推导了在控制注浆压力下等间距布孔时最优注浆孔的数量。
     (2)推导了浆液压缩土体的弹塑性区解析解和塑性区半径及最终注浆压力公式;采用能量耗散分析方法研究裂隙岩体劈裂注浆压力设计计算,并对影响注浆压力设计计算的各参数进行了敏感性分析。
     (3)通过劈裂注浆机理模型实验研究,得出了注浆压力时程曲线、注浆速率时程曲线和劈裂注浆的一般规律;分析了水泥注入量、注浆过程的力学机理和浆液加固岩土体的效果;并将实验成果成功应用于实际工程中,验证了本文理论研究的准确性和可行性。
     (4)通过对注浆量控制理论的研究,提出了一种注浆量验收的控制方法,并制定一套注浆控制标准及其适用范围。
     (5)对现有的注浆加固检测方法的工作原理、基本特点、应用范围和检测效果进行了综合分析研究;结合岩土体注浆加固的特点,提出一种以钻孔取芯、注浆流量和压力控制为主要手段,以水泥注入量分析鉴定、探坑开挖、钻孔取芯试验和地质雷达探测为辅助手段的隧道围岩注浆加固综合质量检测方法。
     (6)通过注浆加固工程实例分析,按照劈裂注浆机理模型实验得出的研究成果设计注浆参数是行之有效的;从而验证了本文注浆理论研究和注浆机理分析的准确性,为同类工程注浆加固技术应用提供了理论依据。
As a challenging research topic, reinforcement for fractured rock through grouting plays an important and key role in construction successful and operation safety of tunnel engineering. Researches in this domain can promote the development of mechanical theory, as well as propose solutions for tunnel construction in karst region and fracture zone. Standards and criterions can be built on the principles and technical supports obtained from these researches. These researches can also support tunnel constructions, as well as expand the scope of application in railway tunnel, subway, and other underground engineering. This paper is based on grouting theory. At the first stage, a fluid model for percolation grouting is built on the analysis of several classic percolation grouting theories. Relationships among parameters as well as their solutions of flow rate of grout, grouting pressure and permeability coefficient are deduced in the grouting procedure. The analyses of mechanical mechanism are carried out for percolation grouting and fracturing grouting. After that, testing parameters are set based on the analysis of grouting mechanism model. Grouting mechanism is studied, and the grouting effects are tested at the same time. Finally, the acceptance criteria of grouting volume, testing approaches for grouting quality, and results from this research are applied in practical engineering. Contributions of this research can be summarized as follows:
     (1) A fluid model for percolation grouting is built on percolation grouting theory. Solutions of flow rate of grout, grouting pressure and permeability coefficient are deduced in the process of grouting. The relationships in the process of multi-hole grouting are studied. It can be concluded that:a) For a given point, in the process of multi-hole grouting, its grouting pressure equals the superimposed value of single-hole grouting; b) When grouting holes are in circular distribution, the center of the circle can get the worst effect for reinforcement. Optimal quantity of grouting holes for uniform distribution is deduced in condition that the grouting pressure is under control.
     (2) Solutions for elastic-plastic zone caused by fluid compressing soil, the formula of radius in plastic zone, as well as final formula for grouting pressure calculation, are deduced.The energy dissipation method is employed to calculate the pressure of fracturing grouting in fractured rock. And a simultaneous sensitivity analysis is carried out for the impact parameters related to the design of grouting pressure.
     (3) The time travel curves of grouting pressure, time travel curves of grouting rate, as well as general laws for fracturing grouting are obtained from the study of fracturing grouting mechanical model experiment. Injection rate of cement, mechanical mechanism of grouting, and effects of reinforcement in rock and soil are analyzed. Results are successfully applied in practical engineering. Thus, the veracity and reliability of this research are validated.
     (4) A control testing method for grouting quality is presented through studying in grouting volume control theory. A grouting control standard and its applicable scope are set.
     (5) Analysis is carried out for the principle of existing testing approaches, general features, applicable scopes, and detection effects. An improved method is introduced for quality testing of tunnel grouting reinforcement, which is based on boreholing core, grouting volume and pressure control, analysising injection rate of cement, testing of boreholing core and geological radar detection.
     (6) From the grouting reinforcement case analysis, the design parameters,which obtained from fracturing grouting mechanical model experiment, are effective. Thus, the study of grouting theory and the analytical method of grouting mechanism developed by this research is validated, which can be referenced to other practical applications in the field of grouting reinforcement.
引文
[1]郑金龙.穿煤隧道压煤及其对隧道稳定性影响的研究[D].重庆:重庆大学,2000:27-53
    [2]《煤炭科研参考资料组》编.国外注浆技术概况[J].1972:22-43
    [3]梁仁友.国内外工程灌浆的发展概况[J].勘察科学技术,1987(1):42-48
    [4]孙钊.大坝岩石基础灌浆施工[M].北京:水利电力出版社,1987:39-82
    [5]《大坝化学灌浆技术经验汇编》小组编.《大坝化学灌浆技术经验汇编》[M].北京:水利电力出版社,1977:92-123
    [6]葛家良.注浆技术的现状与发展趋势[J].矿业世界,1995(1):28-33
    [7]白俊平.GIN法灌浆技术试验研究[D].太原:太原理工大学硕士学位论文,2003:36-56
    [8]葛家良.注浆技术的现状与发展趋向综述[J].首届全国岩石锚固与灌浆技术学术讨论会,北京,1995:82-89
    [9]吴兆兴.欧美注浆近况[J].隧道工程,1983(3):78-83
    [10]Nose.M.,郭玉花译.日本大坝灌浆新技术[J].现代灌浆技术译文集.北京:水力电力出版社,1991:112-136
    [11]Yonekura R…Recent chemical grouting engineering for underground construction. Proc. Of the Iniernational Symposium on Anchoring and Grouting Teehniques.Dee., Guangzhou,1994:97~113
    [12]Association Francaise des Travaus en Souervain. Recommendations on grouting for undergroud works.Tunnelling and Undergrounding space Technology,1991,6 (4):383~481
    [13]N. Matsumoto.. Development of Grouting Material for Cement Powder Grouting. Proceed-ings of IS-TOKYO 96/the Seecnd Intenational Conference on Ground Improvement Geosystems,1996:59~64
    [14]Shimoda and Ohmori. Ultra fine grouting material. Proc. Conf. on Grouting in Geotech. Engrg. [J].ASCE, New Orleans, La.,1982:77~91
    [15]Hakansson. Rheological properties of microfine cement grouts. Tunnelling and Undergrounding space Technology,1992,7(4):59~ 64
    [16]杨米加.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839-841
    [17]韦汉道.化学灌浆材料的现状与未来[J].广州:91年全国灌浆技术学术讨论会论文集[C],1991:1-10
    [18]熊厚金.中国化学灌浆的过去、现在与未来[J].1991年全国灌浆技术学术讨论会论文集[C],1991:126-132
    [19]熊厚金.中国化学灌浆的成就[J].国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社,1996:156-161
    [20]王民寿.湿磨超细水泥高深度灌浆技术[J].四川水利,1994,15(4):18-20
    [21]刘嘉材.裂缝灌浆扩散半径研究[J].中国水利水电科学院科学研究论文集(第8期).北京:水利出版社,1982:186-195
    [22]马建民.软土地基注浆加固的理论和实践[J].建筑施工,1992(2):35-38
    [23]葛家良.软岩巷道注浆加固机理及注浆技术若干问题的研究[D].中国矿业大学博士学位论文,1995:46-82
    [24]潘家铮,包银鸿.中国坝土灌浆的成就[J].国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社,1996:33-82
    [25]郝哲.岩体注浆行为研究及其计算机模拟[D].东北大学博士学位论文,1998:16-52
    [26]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].中国矿业大学博士学位论文,1999:1-92
    [27]徐颖.软弱带爆炸注浆机理及应用研究[D].中国科学技术大学博士学位论文,2003:1-85
    [28]王国际.注浆技术理论与实践[M].徐州:中国矿业大学出版社,2000:10-86
    [29]杨坪.砂卵(砾)石层模拟注浆试验及渗透注浆机理研究[D].中南大学博士学位论文,2005:1-42
    [30]Graf, Edward D. Compaction Grouting Technique and Observations, Journal of the Soil Mechanics and Foundations Division, ASCE,1969:1151~ 1158
    [31]Brown, Douglas R. and Warner, James, Compaction Grouting, Journal of the Soil Mechanics and Foundations Division, ASCE,1973:589~595
    [32]Baker, W. H., E. J. Cording, and H. H. Macpherson, Compaction Grouting to Control Ground Movements During Tunneling, Underground Space, 1982,7(3):205-213
    [33]李向红.CCG注浆技术的理论研究与应用研究[博士后论文].上海:同济大学,2002:1-73
    [34]丁金粟,孙亚平.土体水力劈裂力学机理剖析[J].第五届土力学及基础工程学术会议论文选集[M],中国建筑工业出版社,1990,2:534-542
    [35]白云,候学渊.软土地基劈裂灌浆加固的机理和应用[J].岩土工程学报,1991,3:89-93
    [36]陈愈炯.压密和劈裂灌浆加固地基的原理和方法[J].岩土工程学报,1994,16(2):22-28
    [37]邝健政,咎月稳,王杰,等.岩土注浆理论与工程实践.北京:科学出版社,2001:15-73
    [38]王广国,杜明芳,苗兴城.压密注浆机理研究及效果检验[J].岩石力学与工程学报,2000,19(5):670-673
    [39]周海林.振动注浆中的砂土振动响应研究[博士论文].长沙:中南大学,2002:5-53
    [40]谢定义.土动力学.西安:西安交通大学出版社,1988:35-62
    [41]Finn, W. D. L., Liquefaction Potential:Developments Since 1976.Proceedings International Conference on Recent Advances in Geotechnical Earthquake Engeering and Soil Dynamics,1981:75~82
    [42]汪闻韶.饱和砂土振动孔隙水压力试验研究.水利学报,1962(2)112-118
    [43]Sangrey, D.A., Castro, G., Poulos S.J Cyclic Loading of Sands、 Silts and Clays, roceeding, ASCE Speciality Conference of Earthquake Engineering and Soils Dynamics, Pasadena.1978:145~152
    [44]Finn, W. D. L and Bhatia, S. K. Prediction of seismic pore water pressure, Proc.10th ICSMFE,1981. Vol.3:72~79
    [45]Prater, E. G. and Studer, J., Some Consideration on the seismic Behavior of Rockfill Dams, Thirteenth International Congress on Large Dams, 1979, Vol.2:55~63
    [46]Bjerrum, L., Geotechnical Problems Involved in Foundations of Structures in the North Sea, Geotechnique,1973, Vol 23:319~358
    [47]SeedH.B., Martin, P.P.and Lysmer, J., Iddiss I M.Pore-water pressure changes during soil liquefaction, JGED,1976,102(4):73~82
    [48]杨灿文,周胜平.等应变幅下饱和砂土动力特性动三轴试验研究.全国土工建筑物及地基抗震学术会议论文集,1986:125-132
    [49]何广讷.砂土振动孔隙水压力的研究.水利学报,1983(8):45-52
    [50]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹性模型.土工程学报,1980,2(3):125-122
    [51]沈珠江.砂土动力液化变形的有效应力方法.南京水利科学研究所研究报告.1982:1-22
    [52]徐志英,沈珠江.地震液化的有效应力二维动力分析法.华东水利学院学报,1981(3):25-34
    [53]Wang J. N. Pore pressure development during nonuniform cyclic loading Soils and Foundations,1989,29(2):48~52
    [54]Chang,C.S., Residual Pore Pressure and Deformation Behavior of Soil Samples under Variable Cyclic Loading, Procedings, International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,1981:105~112
    [55]谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型.土木工程学报,1990,23(3):51-60
    [56]Ishihara, K., Tatsuoka, F. and Yasade, S. Undrained deformation and Liquefaction of Sand under Cyclic Stresses, Soil and Foundation,1975 45-51
    [57]Martin, G. B., Finn, W. D. L., Seed H. B. Fundamentals of Liquefaction of Sand under Cyclic Stresses, Soil and Foundations,1975: 95~101
    [58]杨秀竹.静动力作用下浆液扩散理论与试验研究[D].中南大学博士学位论文,2005:1-32
    [59]陈伟.裂隙岩体灌浆压力及其稳定性控制方法研究[D].中南大学博士学位论文,2008:1-21
    [60]何忠明.裂隙岩体复合防渗堵水浆液试验及作用机理研究[D].中南大学博士学位论文,2007:1-35
    [61]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].徐州:中国矿业大学博士学位论文,1999:1-43
    [62]周维垣,杨若琼.二滩拱坝注浆电镜扫描结果及分析[A].见熊厚金编.国际岩土灌浆及锚固新进展[C].北京:中国建筑工业出版社,1997:65-91
    [63]韩立军,贺永年.破裂岩体注浆加锚特性模拟数值试验研究[J].中国矿业大学学报,2005,34(4):418-422
    [64]邹金峰.扩孔问题的线性与非线性解析及其工程应用研究[D].中南大学博士学位论文,2007:1-92
    [65]罗平平.裂隙岩体可灌性及灌浆数值模拟研究[D].河海大学博士学位论文,2006:1-62
    [66]Lars Hassler, Ulf Hakansson, Hakan Stille. Computer-Simulated Flow of Grouts in Jointed Rock[J]. Tunneling and Underground Space Tech.,1992,7 (4):441~446
    [67]杨米加,贺永年,陈明雄.裂隙岩体网络注浆渗流规律[J].水利学报,2001(7):41-46
    [68]郝哲,王介强,何修仁.岩体裂隙注浆的计算机模拟研究[J].岩土工程学报,1999,21(6):727-730
    [69]韩金田.复合注浆技术在地基加固中的应用研究[D].中南大学博士学位论文,2007:1-42
    [70]孙忠弟.高等级公路下伏空洞勘察危害程度评价及处治研究报告集[R].北京:科学出版社,2000:1-72
    [71]韩延清.浅埋采空区加固技术及工程管理[J].本溪冶金高等专科学校学报.2001,3(1):30-33
    [72]哈米提.乌-奎高速公路煤层采空区治理试验工程实录[J].西部探矿工程,1997,9(6):31-32
    [73]武承玺,张巨川.乌-奎高速公路煤层采空区注浆治理工程问题[J].中国地质灾害与防治学报,2004,15(1):90-93
    [74]杨绍波.高速公路隧道穿越采空区的处治方法[J].山西建筑,2004,30(3):99-100
    [75]文浩雄,田军.用灌浆法处理高速公路采空区路基[J].湖南交通科技,2003,29(2):15-16,54
    [76]卫军,杨磊,林大能等.松散破碎围岩两部耦合注浆技术与浆液扩散规律[J].中国矿业,2006,15(3):70-73
    [77]王联芳,马立峰,刘桂君.粉煤灰水泥流态回填在唐津高速公路采空区的应用[J].粉煤灰综合利用,1999(4):34-35
    [78]王茂文.京珠高速公路耒宜段下伏采空区的处理[J].中南公路工程,2001,26(2):16-18
    [79]雷雳鸣,张诚,赵美华.太祁高速公路采空区处治监理[J].山西交通科 技,2001,145(5):49-51
    [80]刘涛.太佳高速公路下伏采空区注浆研究[D].西北大学硕士学位论文,2010:1-52
    [81]刘嘉材.裂缝灌浆扩散半径研究[J].中国水利水电科学院科学研究论文集(第8期).北京:水利出版社,1982:186-195
    [82]Baker C.. Comments on Paper Rock Stabilization in Rock Mechanics [J]. Muler, Springer-Verlag NY,1974:95~103
    [83]石达民,吴理百.关于注浆参数研究的一点探索[J].矿山技术,1986(2):76-83
    [84]张良辉.岩土灌浆渗流机理及渗流力学[D].北京:北方交通大学,1996:1-61
    [85]郑长成.裂隙岩体灌浆的模拟研究[D].长沙:中南工业大学,1999:1-46
    [86]阮文军.浆液基本性能与岩体裂隙注浆扩散研究[D].吉林:吉林大学,2003:1-72
    [87]郑玉辉.裂隙岩体注浆浆液与注浆控制方法研究[D].吉林:吉林大学,2005:1-78
    [88]杨晓东.水泥浆材灌入能力研究[J].水利水电科学研究院科学研究论文集第27集,1985:72-81
    [89]葛家良.基岩结构面特征及其注浆浆液扩散的GJL二维模型[J].广州化学增刊,2002,27:65-72
    [90]G..Lombardi..水泥灌浆浆液是稠好还是稀好[J].现代灌浆技术译文集,北京:水利电力出版社,1991:76-81
    [91]卢什尼科娃,吴理云译.注浆工程中最佳注浆压力状态的选择[J].国外金属矿采矿,1986:5):105-113
    [92]基帕科等,剑万禧译.大喀斯特溶洞的注浆堵水[J].世界煤炭技术,1986(2):126-132
    [93]Wittke.采用膏状稠水泥浆灌浆新技术[J].现代灌浆技术译文集,北京:水利电力出版社,1991:48-58
    [94]卢什尼科娃,贺江秋译.根据钻孔流量仪测定资料确定岩石的裂隙性质[J].国外煤田地质,1987(2):125-133
    [95]Hassler. Simulation of grouting in Jointed rock. Proc[J].6th Int. Conf. on Rock Mech., V. Z.,1987:65~74
    [96]Hassler. Computer-simulated flow of grouts in jointed rock[J]. Tunnelling & under-ground Space Technology,1992:78~85
    [97]郝哲等,岩体渗透注浆的理论研究[J].岩石力学与工程学报,2001,20(4):492-496
    [98]Hoek E, Carranze-Torres C, Corkum B. Hoek-Brown failure criterion-2002 edition. Proceedings of the North American Rock Mechanics Society meeting, Toronto, July 2002:267~273
    [99]沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989:15-52
    [100]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994:72-82
    [101]曾国熙.地基处理手册[M].北京:中国建筑工业出版社,1988:55-72
    [102]徐光黎.岩石质量指标RQD的估算方法[J].水文地质工程地质.1991,18(6):43-45
    [103]阮文军.基于浆液粘度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报.2005,24(15):2709-2714
    [104]Umlauf R. Rheological characterization of microfine cement suspensionexamination with a shear stress controller rheometer[A]. In: Grouting in Rock and Concrete [C]. Rotterdam:A. A. Balkema,1993:175~ 192
    [105]孔祥言.高等渗流力学[M].北京:中国科学技术大学出版社,1999:51-73
    [106]杨秀竹,雷金山,夏力农,王星华.幂律型浆液扩散半径研究.岩土力学,2005(11):78-87
    [107]Aliakbar Golshani, Thanh Tran-Cong. Energy Analysis of Hydraulic Fracturing[J]. Journal of Civil Engineering,2009,13(4):219~224
    [108]谢兴华,速宝玉,高延法,等.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993
    [109]邹金锋,李亮,杨小礼,等.劈裂注浆扩散半径及压力衰减分析[J].水利学报,2006,37(3):314-319
    [110]邹金锋,李亮,杨小礼,等.劈裂注浆能耗分析[J].中国铁道科学,2006,27(2):52-55
    [111]陈愈炯.压密和劈裂灌浆加固地基的原理和方法[J].岩土工程学报,1994,16(2):22-28
    [112]周书明,陈建军.软流塑淤泥质地层地铁区间隧道劈裂灌浆加固[J].岩土工程学报,2002,24(2):222-224
    [113]丁金粟,孙亚平.土体水力劈裂力学机理剖析[A].第五届土力学及基础工程学术会议论文选集[C],北京:中国建筑工业出版社,1990,534-542
    [114]邹金峰,李亮,杨小礼,等.土体劈裂灌浆力学机理分析[J].岩土力学,2006,27(4):625-628
    [115]曹作忠,朱君星,黄婉宣.劈裂注浆的机理及实践.矿业快报,2000,4(8):3-4
    [116]高俊合,刘国楠.挖孔桩双液注浆截水帷幕原位试验及施工[J].岩土工程学报.2003,5(4):479-482
    [117]高永涛等.含高承压水黄土层中注浆堵水的理论与实践.有色金属(季刊),1997,(2):96-112
    [118]卢文阁,陈晨.静压与劈裂注浆加固铁路路基的效果分析[J].水文地质工程地质,1999,26(4):54-57
    [119]罗长军.紫山灰坝迎灰坡裂缝成因分析及灌浆防治对策[J].岩土力学,2004,25(4):666-670
    [120]罗长军.土坝坝体劈裂式灌浆施工技术的商榷[J].岩石力学与工程学报,2005,24(9):1605-1611
    [121]黄诚,杨维好,王宗胜,冯向东.超深部土体地面高压射孔注浆现场实测研究[J].岩石力学与工程学报.2005,27(4):442-447
    [122]郭汉申,詹锦泉,徐素健.锚杆劈裂注浆试验研究[J].煤炭学报,1999,24(5):471-476
    [123]张旭芝,符飞跃,王星华.南京地铁软-流塑淤泥质地层劈裂灌浆试验研究[J].水文地质工程地质,2004,31(1):67-70
    [124]王哲,龚晓南,程永辉,张玉国.劈裂注浆技术在运营铁路软土地基处理中的应用[J].岩石力学与工程学报,2005,24(9):1619-1623
    [125]周书明,陈建军.软流塑淤泥质地层地铁区间隧道劈裂灌浆加固[J].岩土工程学报,2002,24(2):222-224
    [126]罗长军,李伟,卢冰等.灌浆技术在紫山灰场粉煤灰地层中的应用[J].岩土工程学报,2002,24(3):332-335
    [127]蒋楚生,周德培.二次劈裂注浆锚索承载力的计算[J].岩石力学与工程学报,2005,14(3):2414-2419
    [128]李利平.高风险岩溶隧道突水灾变演化机理及其应用研究[D].济南:山东大学,2009:1-98
    [129]李利平,李术才,张庆松.岩溶地区隧道裂隙水突出力学机制研究[J].岩土力学,2010,31(2):2292-2296
    [130]盛金昌,赵坚,速宝玉.高水头作用下水工压力隧洞的水力劈裂分析[J].岩石力学与工程学报,2005,24(7):1226-1230
    [131]谢兴华,速宝玉,高延法,等.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993
    [132]谢兴华,速宝玉.裂隙岩体水力劈裂研究综述[J].岩土力学,2004,25(2):330-336
    [133]陈卫忠,杨建平,杨家岭,等.裂隙岩体应力渗流耦合模型在压力隧洞工程中的应用[J].岩石力学与工程学报,2006,25(12); 2384-2391
    [134]李利平,李术才,崔金生.岩溶突水治理浆材的试验研究[J].岩土力学,2009,30(12):3642-3648
    [135]YANG Xiao-Li, ZOU Jin-Feng. Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics & Mining Sciences.2006, 43(6):1146-1152
    [136]Dos Santos JS, Ballestero TP, da Silva Pitombeira E. An Analytical Model for Hydraulic Fracturing in Shallow Bedrock Formations [J]. Ground Water,2010,21(6):1~11
    [137]Aliakbar Golshani, Thanh Tran-Cong. Energy Analysis of Hydraulic Fracturing [J]. KSCE Journal of Civil Engineering,2009,13(4): 219-224.
    [138]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573-576
    [139]王成,邓安福.岩体节理内压致裂解析研究[J].岩石力学与工程学报,2002,21(5):640-643
    [140]李宗利,张宏朝,任青文,等.岩石裂纹水力劈裂分析与临界水压计算[J].岩土力学,2005,26(8):1216-1220
    [141]PAPANASTASIOU P. An efficient algorithm for propagating fluid driven fractures [J]. Computational Mechanics,1999,24(4):258~267
    [142]王建秀,胡力绳,张金,等.高水压隧道围岩渗流-应力耦合作用模式研究[J].2008,S(11):237-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700