天然气管输减阻剂的开发与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当代世界能源消费结构中,天然气能源占据着越来越重要的地位,天然气工业随之进入了一个高速发展阶段,天然气工业的发展对相应的管道输送技术提出了更高的要求。提高天然气管道的输送能力一方面可以通过兴建新型管道,完善天然气管道网,另一方面可以通过管道内减阻的方式实现。天然气管输减阻剂技术作为相对经济的内减阻手段近年来备受关注。
     本文根据天然气管输减阻剂的减阻机理设计了四种具有减阻开发潜力的化学品:苯乙酮-甲醛-二正丁胺曼尼希碱,苯乙酮-甲醛-十八胺曼尼希碱,硬脂酸咪唑啉、油酸咪唑啉。通过对苯乙酮-甲醛-二正丁胺曼尼希碱合成工艺的考察优化出曼尼希碱合成的两个工艺参数:pH值2,反应温度95℃;通过对硬脂酸咪唑啉合成工艺的考察优化出咪唑啉合成的两个工艺参数:减压环化温度170℃,减压环化时间3h。利用优化出来的工艺参数合成了这四种备选减阻剂,红外谱图(IR)验证了四种产品的化学结构。
     对四种备选减阻剂溶液浸泡过的钢片进行电镜分析,可以看出钢片粗糙度明显降低,成膜性能良好,具有潜在的减阻性能;对其中两种样品成膜稳定性的考察也显示了良好效果;通过电化学极化曲线分析可以看出,四种备选减阻剂都有较好的吸附成膜能力,其成膜能力强弱顺序为:苯乙酮-甲醛-十八胺曼尼希碱>硬脂酸咪唑啉>苯乙酮-甲醛-二正丁胺曼尼希碱>油酸咪唑啉。?
Natural gas is playing a more and more important role in the structure of international energy consumption. As a result, industry of natural gas is stepping into a fast developing stage. The fast developing industry of natural gas needs the transportation technology of pipeline to be greatly enhanced. There are two methods to solve this problem. One is to improve network of gas transportation pipeline, and the other is to decrease the pressure loss in pipeline which is a more economical method. In research area of the second method, Drag Reducing Agent as one of the most efficient technology is widely studied around the world in recent years.
     In this paper, four DRAs are designed based on the mechanism that has been established before. The four DRAs are: acetophenone-formaldehyde-dibutylamine mannich base, acetophenone-formaldehyde-octadecylamine mannich base, heptadecylimidazoline, oleic imidazoline. Two synthesis conditions of mannich base are optimized by the experiments of synthesis of acetophenone-formaldehyde-dibutylamine mannich base: pH value is 2, reaction temperature is 95℃; two synthesis conditions of imidazoline are optimized by the experiments of synthesis of heptadecylimidazoline: vacuum cyclization temperature is 170℃,vacuum cyclization duration is 3h. Four chemicals are synthesized under such conditions. Their chemical structures are testified by IR spectrum analysis.
     Four steel straps soaked by corresponding DRAs are analyzed by SEM, and the roughness of these straps is significantly reduced. These DRAs are proved to have good performance at film forming, and they are considered to have the potential of industrial development. Two of these DRAs are testified to have good film forming stability in related experiments. These DRAs are also analyzed by electrochemistry polarization curve method, and their film forming ability is testified again. Their film forming ability's intensity sequence is: acetophenone-formaldehyde-octadecylamine mannich base > heptadecylimidazoline > acetophenone-formaldehyde-dibutylamine mannich base > oleic imidazoline.
引文
[1]李婷,周跃忠.国内外天然气市场特征[J].天然气技术, 2008, 2(3):7-10.
    [2]宋玉春.世界石油天然气管道建设再掀高潮[J].中国石油和化工, 2005, 8 :74-79.
    [3]阎光灿.世界长输天然气管道综述[J].天然气与石油,2000, 18(3):9-19.
    [4]吴长春,张孔明.天然气的运输方式及其特点[J].油气储运, 2003, 22(9):39-43.
    [5]宋艾玲,梁光川,王文耀.世界油气管道现状与发展趋势[J].油气储运, 2006, 25(10):1-6.
    [6]刘雯,邹晓波.国外天然气管道输送技术发展现状[J].石油工程建设, 2005, 31(3):20-23.
    [7]李鹤林.天然气输送钢管研究与应用中的几个热点问题[J].焊管, 2000, 23(3):43-61.
    [8]张城,耿彬.天然气管输与安全[M].北京:中国石化出版社, 2009 :1.
    [9]李树清.中国油气管道建设五十年掠影(一)[J].石油与装备, 2009, 4 :106-108.
    [10]刘贺群,余洋.我国天然气管网发展现状和趋势[J].当代石油化工, 2005, 13(12):11-14.
    [11]王功礼,王莉.油气管道技术现状与发展趋势[J].石油规划设计, 2004, 15(4):1-7.
    [12]郑洽徐,鲁钟琪.流体力学[M].北京:机械工业出版社, 1980 :103-105.
    [13]沈善策.输气管道采用内壁覆盖层时的工艺设计问题[J].油气储运, 2000, 19(7):19-24.
    [14] Sletfjerding E., Gudmundsson J. S., Sj?en K. Friction factor in high-pressure gas pipelines in the North Sea[R]. Canada: Society of Petroleum Engineers, 2000.
    [15] Kut S.. High Performance Coating for the Oil and Gas Industry-Internal and External Liquid Coatings for Pipelines[J]. Corrosion in the Oil and Gas Industry, 1989, 3 :41-46.
    [16]钱成文,刘广文,王武,等.天然气管道的内涂层减阻技术[J].油气储运, 2001, 20(3):1-6.
    [17]林竹,秦延龙,黄骁卓,等.天然气管道减阻耐磨涂料的研究和应用进展[J].腐蚀与防护, 2003, 24(5):206-209.
    [18]林竹,刘本华,刘书国.输气管道减阻涂料现状及发展趋势[J].上海涂料, 2004, 42(1):16-18.
    [19]吴宏.西气东输管道工程介绍(上)[J].天然气工业, 2003, 23(6):117-122.
    [20]吴宏.西气东输管道工程介绍(下)[J].天然气工业, 2004, 24(1):80-85.
    [21]林竹,张丽萍,袁中立,等.减阻型涂料在天然气管道中的应用[J].焊管, 2002, 25(6):1-4.
    [22]李国平,刘兵,鲍旭晨,等.天然气管道的减阻与天然气减阻剂[J].油气储运, 2008, 27(3):15-21.
    [23]张其滨,范云鹏,林竹,等.天然气管道输送减阻剂研究[J].天然气技术, 2008, 2(1):48-50, 82.
    [24] Lowther F. E.. Drag Reduction Method for Gas Pipeline[P]. U.S. Patent :4958653, 1990-09-25.
    [25] McConkey G. B.. Transportation of Normally Gaseous Fluids in Pipeline System[P]. U.S. Patent :2958205, 1960-11-01.
    [26] Li Y. H.. Drag Reduction Method For Gas Pipelines[P]. U.S. Patent :5020561, 1991-06-04.
    [27] Li Y. H., Chesnut G. R., Richmond R. G., et al. Laboratory Tests and Field Implementation of Gas-Drag-Reduction Chemicals[J]. SPE Production & Facilities, 1998, 13(1):53-58.
    [28] Randi N?ss. Pressure Loss in GasPipe with Adsorbed Layers[R]. Norway :Department of Petroleum Engineering and Applied Geophysics of NTNU, 1999.
    [29] Randi N?ss. Drag Reduction Agents for Natural Gas Flow in Pipelines[D]. Norway :Department of Petroleum Engineering and Applied Geophysics of NTNU, 1999.
    [30] Chen H. J., Kouba G. E., Fouchi M. S., et al. Field Application of A Drag Reducing Agent to Increase Gas Production [J]. Corrosion, 2000, 73 :1-9.
    [31]张其斌,范云鹏,林竹,等.天然气输送管道用减阻剂及制造方法[P].中国专利:200610080840, 2007-11-21.
    [32]刘兵,李国平,李春漫,等.一种输气管道减阻剂及其制备方法[P],中国专利:200710117601, 2008-12-24.
    [33]李国平,徐海红,刘兵,等.一种气体管道减阻组合物及其制备方法[P].中国专利: 200710119097, 2008-12-24.
    [34]李春漫,刘兵,鲍旭晨,等.一种气体管道减阻剂及其制备方法[P].中国专利:200710119099, 2008-12-24.
    [35]李国平,李春漫,鲍旭晨,等.一种气体输送管道减阻剂及其制备方法[P].中国专利:200710119098, 2008-12-24.
    [36]张志恒,李国平,艾慕阳,等.吡啶盐类输气管道减阻剂及其制备方法[P].中国专利:200810106237, 2009-11-11.
    [37]李国平,张志恒,常维纯,等.硫酸酯类输气管道减阻剂及其制备方法[P].中国专利:200810106239, 2009-11-11.
    [38]张志恒,艾慕阳,李国平,等.咪唑盐类输气管道减阻剂及其制备方法[P].中国专利:200810106238, 2009-11-11.
    [39]申丽霞.天然气减阻剂的合成及减阻性能测试装置的设计[D].济南:山东大学, 2006.
    [40]赵宁.天然气减阻剂的合成及雾化减阻性能测试装置的设计[D].济南:山东大学, 2007.
    [41]许超.天然气减阻剂的合成及减阻性能测试装置的改进与应用[D].济南:山东大学, 2008.
    [42]张雷.天然气减阻剂的研制及减阻性能测试[D].济南:山东大学, 2009.
    [43]万道正.曼尼希反应和曼尼希碱化学[M].北京:科学出版社, 1986 :18-25.
    [44] Thompson B. B.. Mechanism of Mannich Reaction[J]. European Journal of Pharmaceutical Science, 1968, 57(4):715.
    [45]杨永飞,姚军,赵修太.曼尼希碱和季铵盐高温酸化缓蚀剂性能对比[J].西南石油大学学报, 2009, 31(2):121-124.
    [46]王京光,于洪江,李谦定.一种曼尼希碱型盐酸酸化缓蚀剂的研制[J].西安石油大学学报, 2007, 22(3):77-79.
    [47]吴大康,李克华,黄芹.一种曼尼希碱酸化缓蚀剂的合成及性能研究[J].化学与生物工程, 2007, 24(10):65-66.
    [48]于建辉,彭乔.咪唑啉型酸洗缓蚀剂的研究现状[J].腐蚀与防护, 2003, 24(11):473-476.
    [49]方云.两性表面活性剂[M].北京:中国轻工业出版社, 2001 :242.
    [50]陈卓元,王凤平.咪唑啉缓蚀剂的缓蚀性能的研究[J].材料保护, 1999, 32(5):37-39.
    [51]刘瑞斌,陈慧玉,王慧龙,等.烷基咪唑啉中间体合成的最佳反应条件的研究[J].渤海大学学报:自然科学版, 2004, 25(3):213-216.
    [52]郑家燊,吕战鹏,彭芳明.新型咪唑啉类缓蚀剂的合成,结构表征及缓蚀性能研究[J].油田化学, 1994, 11(2):163-167.
    [53]颜红侠,张秋禹,马晓燕,等.盐酸酰洗咪唑啉型缓蚀剂IM的研究[J].应用化工, 2001, 30(3):21-22.
    [54]罗喆媛,俞敦义,屈人伟.改性咪唑啉缓蚀剂在H2S-3%Nacl-H20体系中缓蚀性能的研究[J].腐蚀与防护, 2000, 21(8):345-346.
    [55]黄光团. HO-8咪唑啉型油田注水缓蚀剂研制及其机理研究[D].上海:华东化工学院, 1992.
    [56]何耀春,王汪,黄步耕,等.咪唑啉衍生物MC, MP的合成及在油田回注水中的缓蚀阻垢作用[J].油田化学, 1997, 14(4):336-339.
    [57]郭鹤桐,覃奇贤.电化学教程[M].天津:天津大学出版社, 2000 :204-206.
    [58]王京光.曼尼希碱型高效酸化缓蚀剂的合成及应用研究[D].西安:西安石油大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700