利用回交重组自交系分析水稻株型与穗部性状的遗传基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理想的植株形态是高产的生理基础,株型改良对水稻超高产育种具有重要的作用。本研究以优良杂交稻亲本9311和珍汕97B的回交重组自交系(BRILs)群体为材料,构建了分子遗传连锁图谱,并利用该群体(BE_1F_8)的244个株系对剑叶、叶间距、穗抽出度等8个株型性状与穗重等5个穗部性状进行了两年考察及株型等性状QTL分析,取得的主要结果如下:
     1、利用122个SSR标记和2个InDel标记对BRILs 244个单株进行基因型分析并构建遗传连锁图谱,该连锁图共覆盖水稻全基因组1,349.3cM的遗传距离,标记间平均图距为10.9cM。在124个标记中,87个位点上等位基因频率符合1:3的分离比率,37个标记表现偏分离(P<0.05),占29.8%,并且存在明显的偏分离热点,它们分布于除第5、9以外的10条染色体上,其中16个偏向珍汕97B,1个偏向9311。
     2、8个株型相关性状(株高、剑叶宽、剑叶长、剑叶面积、剑叶角、叶间距、穗长、穗抽出度)除了剑叶角外其余均与穗重在两年试验中都呈现极显著相关性;在株型性状和穗部性状内也存有显著的相关性,表明株型相关性状的改良可能对单产提高有着重要的作用。
     3、两年共检测到影响8个株型性状的62个QTL(LOD>2.4),它们主要分布在第1、3、7、8、11染色体上。其中叶面积qFS-1α的效应最大,两年分别解释37.73%/26.62%的叶片面积变异,来自珍汕97B等位基因能使叶片面积减少5.60cm~2/9.20cm~2。
     4、两年共检测到34个影响穗部相关性状(一次枝梗数、二次枝梗数、粒长、粒宽、穗重)的QTL(LOD>2.4),它们分布于除第9染色体外的其余染色体上。其中粒宽qGW-5的效应最大,为65.37%/56.90%,其来自9311的等位基因降低粒宽。
     5、12条染色体上共定位到18个多效性QTL区间,其中12个QTL区间同时影响株型和穗部性状,4个重叠QTL区间同时影响穗部相关性状,如第1染色体存在多效性区间RMl51-RM8083同时控制剑叶长、剑叶宽、剑叶面积、二次枝梗和穗重,该区间QTL解释表型变异的范围为7.28%~37.73%,而且这5个性状间两年均呈极显著相关,表明多效性QTL可能是性状显著相关的遗传基础。
Ideal plant type is one of the physiological bases of high yield potential in crops. Improvement of the plant type may play an important role for super-high yield breeding of rice. In this study, a population consisting of 244 BC_1F_8 lines (backcross recombinant inbred lines) derived from the cross of 9311 and Zhenshan97B, both elite indica hybrid rice parents, were developed for quantitative trait loci (QTL) mapping. A genetic linkage map was constructed using this population, and phenotypic data of eight plant type traits such as flag leaf length, distance between flag leaf and second-leaf, panicle exsertion and five panicle traits such as panicle weight in this population were collected from two year trials. The main results of the QTL mapping are as follows:
     1. Two hundred forty-four lines of the BRILs (backcross recombinant inbred lines) were analyzed by 122 SSR (simple sequence repeat) and 2 InDel (insert-deletion marker) to construct a genetic linkage map, which covers a total of l,349.3cM with an average interval of 10.9cM between adjacent loci. Among the 124 marker loci, the allele frequency at 87 loci is according with the ratio of 1:3, meanwhile, the allele frequency of 37 loci (29.8%) are significantly skewed from the ratio as tested by Chi-square (p<0.05). Moreover, there are obvious hot chromosomal spots of the distorted segregation loci, which distribute on all of the 12 chromosome excluding chromosome 5 and 9, and 16 of the loci distort to zhenshan97B, only one of them distorts to the parent 9311.
     2. Coefficients of pairwise correlations between 8 plant type traits (PH、FW、FL、FS、FA、FD、PL、PNL) and panicle weight (PW) are highly significant excluding FA; There are also significant correlations within the plant type traits and the panicle traits, which suggest that improvement of the plant type traits may be a good way to increase yield potential in rice.
     3. Sixty two QTLs for the eight plant type traits are detected (LOD>2.4) in the two year trials, and distribute mainly on the chromosome 1、3、7、8、11. Among of the QTLs, qFS-1a for flag leaf area has the largest effect with the explained phenotypic variation of 37.73% in Hainan and 26.62% in Wuhan, and the allele from Zhenshan97B can reduce the flag leaf area about 5.60cm and 9.20cm in Hainan and Wuhan respectively.
     4. Thirty four QTLs for panicle traits (PBN、SBN、GL、GW、PW) are identified, and mapped on almost all the chromosomes except of chromosome 9. The qGW-5 for grain width has the largest phenotypic variation with 65.37% in Hainan and 56.90% in Wuhan, and the allele from 9311 reduces the grain width about 0.2cm in Hainan and Wuhan trials.
     5. Eighteen pleiotropic or overlapping QTLs regions in the 12 chromosomes are also observed, of which 12 affected the plant type traits and the panicle traits simultaneously, 4 QTL regions each involve the different panicle traits, and 2 pleiotropic QTLs regions affected the different plant type traits. For instance, the marker interval RM151-RM8083 on chromosome 1 controlling simultaneously the five traits (FL、FW、FS、SBN and PW), and the range of the explained phenotypic variation is 7.28% to 37.73%. The results are consistent with the highly significant correlations among the five traits, suggesting that the pleiotropic QTLs should be the genetic basis of the significant correlation of the investigated traits.
引文
1.王建林,徐正进,魏树和.水稻株型育种生理生态特性的研究现状与展望.辽宁农业科学,2000,(4):23-27
    2.王一平,曾建平,郭龙彪,邢永忠,徐才国,梅捍卫,应存山,罗利军.水稻顶部三叶与穗重的关系及其QTL分析.中国水稻科学,2004,19(1):13-20
    3.王功伟.广亲合品种Dular的f5、f6及02428的S5等位基因的广亲合性、基因效应及f5-Du的精细定位研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    4.吕川根,宗寿余,邹江石,姚克敏.水稻叶片形态因子及其在F1代的遗传.作物学报,2005,31(8):1074-1079
    5.吕川根,谷福林,邹江石,陆曼丽.水稻理想株型品种的生产潜力及其相关特性研究.中国农业科学,1991,24(5):15-23
    6.张启军,梁永书,叶少平,邓其明,王玲霞,李平,虞德容,邹江石,吕川根.利用已测序水稻品种分析其农艺性状基因座.作物学报,2006,32(10):1503-1510
    7.张光恒,张国平,钱前,徐律平,曾大力,滕胜,包劲松.不同环境条件下稻谷粒形数量性状的QTL分析.中国水稻科学,2004,18(1):16-22
    8.邢永忠,徐才国,华金平,谈移芳.水稻穗部性状的QTL与环境互作分析.遗传学报,2001,28(5):439-446
    9.汪得凯,张红心,胡国成,付亚萍,斯华敏,孙宗修.一个水稻大叶角度突变体lla的遗传分析及基因克隆.科学通报,2005,50(4):399-401
    10.周开达,汪旭东,李仕贵等.亚种间重穗型杂交稻研究.中国农业科学,1997,30(5):91-93
    11.邹江石,姚克敏,吕川根,胡雪琼.水稻两优培九株型特征研究.作物学报,2003,29(5):652-657
    12.杨守仁,张龙步,王进民.水稻理想株型育种的理论和方法初论.中国农业科学,1984,3:6-12
    13.杨守仁.籼粳稻杂交育种的进展与前景.中国农业科学,1986,19(5):15-18
    14.杨守仁,张龙步,陈温福,徐正进,王进民.水稻超高产育种的理论和方法.沈阳农业大学学报,1996,27(1):1-7
    15.陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型×环境互作效应研究.中国农业科学,1998,31(4):1-7
    16.陈小荣,钟蕾,贺晓鹏,傅军如,熊康,贺浩华.稻穗枝梗和颖花形成的基因型及播期效应分析.中国水稻科学,2006,20(4):424-428
    17.陈温福,徐正进,张文忠等.水稻新株型创造与超高产育种.作物学报,2001,27(5):665-672
    18.松岛省三著,肖连成泽.水稻栽培新技术.长春:吉林人民出版社,1973,38-56
    19.陆定志,潘裕才,马跃芳等.杂交水稻抽穗结实期间叶片衰老的生理生化研究.中国农业科学,1988,21(3):21-26
    20.岳兵.水稻后期抗旱性遗传基础研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    21.范楚川.稻米品质性状的遗传基础研究以及粒长基因GS3的图位克隆.[博士学位论文].武汉:华中农业大学图书馆,2006
    22.邱福林,邵国军,蔡继新,王先俱.不同产量水平粳稻品种枝梗分布差异.辽宁农业科学,2003(6):5-6
    23.封超年,郭文善,何建华等.高产小麦株型的指标体系.扬州大学学报(自然科学版),1998,1(4):24-30
    24.唐启义,冯明光.实用统计分析及其DPS数据处理系统.科学出版社,2002
    25.徐云碧,朱立煌.分子数量遗传学.中国农业出版社,1994
    26.袁隆平.杂交水稻超高产育种.杂交水稻.1997,12(6):1-6
    27.晏月明,王绪信,籼粳稻杂交的剑叶形态的遗传研究.遗传,1990,12(1):1-4
    28.殷宏章,王天铎,李有则等.稻麦群体研究论文集.上海科学技术出版社,1961
    29.黄耀祥.半矮秆、早长根深、超高产、特优质中国超级稻生态育种工程.广东农业科学,2001,(3):2-6
    30.韩龙植,张三元,乔永利,金钟焕,徐福荣,曹桂兰,南钟浩,戴陆园,芮钟斗,高熙宗.不同生长环境下水稻结实率数量性状位点的检测.作物学报,2006,32(7):1024-1030
    31.董国军,藤本宽,滕胜,胡兴明,曾大力,郭龙彪,钱前.水稻剑叶角度的QTL分析.中国水稻科学,2003,17(3):219-222
    32.潘学彪,韩月澎,陈宗祥,张洪熙.水稻植株形态遗传改良的研究进展.扬州大学学报,2004,(25)1:36-40
    33.Ashikari M,Sakakibara H,Lin SY,Yamamoto T,Takashi T,Nishimura A,Angeles ER,Qian Q,Kitano H,Matsuoka M.Cytokinin oxidase regulates rice grain production.Science,2005,309:741-745
    34.Bolle C.The role of GRAS proteins in plant signal transduction and development.Planta,2004,218:683-692
    35.Botstein B,White RL,Skolnick M,Davis RW.Construction of a genetic linkage map using restriction fragment length polymorphisms.Am J Hum Genet,1980,32:314-331
    36.Cui KH,Peng SB,Xing YZ,Yu SB,Xu CG,Zhang Q.Molecular dissection of the genetic relationships of source,sink and transport tissue with yield traits in rice.Theor Appl Genet,2003,106:649-658
    37. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994,138: 963-971
    38. Chuck G, Muszynski M, Kellogg E, Hake S. and Schmidt RJ. The control of spikelet meristem identity by the branched silklessl gene in maize. Science, 2002, 298:1238-1241
    39. Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu ZH, Ronald PC, Hamington SE, Second G, McCouch SR, Tanksley SD. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994,138:1251-1274
    40. Donald CM. The breeding of crop ideotypes. Euphyica, 1968,17:385-403
    41. Dong YJ, Hiroshi K, Tsugufumi O, Eiji T, Hiroyuki T, DongZL, and Mitsuhiro M. Mapping of QTLs for leaf developmental behavior in rice (Oryza sativa L). Euphytica, 2004, 38:169-175
    42. Engledow FL, Wadham SM. Investigation on yield in the cereals. Part I . J Agrisoi, 1923,13:16-19
    43. Falconer R. Introduction to Quantitative Genetics. New York: Ronald Press, 1960
    44. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171
    45. Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G and Theres K. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev. 2003, 17:1175-1187.
    46. He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Research. 2006, 16:618-626
    47. He P, Li JZ, Zheng XW, Shen LS, Lu CF, Chen Y and Zhu LH. Comparison of molecular linkage maps and agronomic trait loci between DH and RIL populations derived from the same rice cross. Crop science, 2001,41:1240-1246
    48. Hong Z, Ueguchi TM, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H and Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003,15:2900-2910
    49. Internationdal Rice Research Institute (IRRI). IRRI towards 2000 and beyond. Manila:IRRI, 1989, 36-37
    50. Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R. Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics? Journal of Experimental Botany, 2001, 52:1827-1833
    51. Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function. Plant physiology, 2003,133:1083-1090
    52. Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994,136:1447-1455
    53. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics, 1999,152:1203-1216
    54. Kashiwagi T and Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiology, 2004, 34:676-683
    55. Khush GS, Coffman WR and Beachell HM. The history of rice breeding: IRRI's contribution. In 'Rice Research and Production in the 21st Century: Symposium Honoring Robert F. Chandler, Jr.'. (Ed. W.G. Rockwood), 2001, pp. 117-135 (International Rice Research Institute)
    56. Komatsu M, Maekawa M, Shimamoto K and Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Dev. Biol, 2001, 231:364-373
    57. Komatsu M, Chujo A, Nagato Y, Shimamoto K and Kyozuka J. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 2003, 130:3841-3850
    58. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuta A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8:365-376
    59. Lander ES, Bosstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185-199
    60. Lemieux B. Overview of DNA chip technology. Mol Breed, 1998, 4:277-289
    61. Lincoln S, Daley M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. 1992, Whitehead Institute Technical Report, 3rd edn. Whitehead Institute, Cambridge
    62. Li JM, Thomson M and McCouch SR. Fine Mapping of a Grain-Weight Quantitative Trait Locus in the Pericentromeric Region of Rice Chromosome 3. Genetics, 2004,168:2187-2195
    63. Li P, Zeng D, Li J and Qian Q. Mapping and characterization of a tiller-spreading mutant lazy-2 in rice. Chin. Sci. Bull., 2003, 48:2715-2717
    64. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X., Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B and Li J. Control of tillering in rice. Nature, 2003, 422:618-621
    65. Li ZK, Pinson SRM., Stansel JW, Paterson AH. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Molecular Breeding, 1998,4: 419-426
    66. Li ZK, Paterson AH., Pinson SRM., Stansel JW. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L). Euphytica, 1999,109:79-84
    67. Li ZK, Paterson AH., Pinson SRM., Khush GS. A major gene, Ta1 and QTLs affecting tiller and leaf angles in rice. Rice Genet Newsl, 1999,15:154-156
    68. Litt M, Luty JA. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet, 1989, 44:399-401
    69. Mather K, Jinks JL. Biometrical Genetics. Ithaca, NY: Cornell Univ Press, 1971
    70. Murray MG, Thompson WF. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res, 1980, 8:4321
    71. McCouch SR., Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ, Zhang QF, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, and Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 2002, 9:199-207
    72. McCouch SR, Cho YG, Yano M, Paul E, Blinstruub M. Report on QTL nomenclature. Rice Genet Newslettk, 1997, 14:11-13
    73. Mei HW, Li ZK, Shu YQ, Guo LB, Wang YP, Yu XQ, Ying CS, Luo LJ. Gene action of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110:649-659
    74. Monna L, Lin HX, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet, 2002,104:772-778
    75. Okogbenin E, Fregene M. Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in Cassava (Manihot esculenta Crantz). Theor Appl Genet, 2003, 107:1452-1462
    76. Paterson AH, Lander SE, Hewitt JD, Peterson S, Lincoln HD, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism. Nature, 1988, 335:721-726
    77. Peng S, Khush GS, Cassman KG. Evolution of the new plant ideotype for increased yield potential. Cassman KG. Breaking the yield Barrier. Manila:IRRI, 1994, 5-20
    78. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD and Harberd NP. "Green revolution" genes encode mutant gibberellin response modulators. Nature, 1999, 400:256-261
    79. Price AH. Believe it or not, QTLs are accurate! TRENDS in Plant Science, 2006, 11:5
    80. Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali Aj. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers. Euphytica, 2004,137:325-332
    81. Richards DE, Peng J and Harberd NP. Plant GRAS and metazoan STATs: one family? Bioessays, 2000, 22:573-577
    82. Saghai MMA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer length polymorphisms in barley:Mendelian inheritance, chromosomal location, and population, and population dynamics. Proc Natl Acad Sci, USA, 1984, 81:8014-8018
    83. Sasaki A, Ashikari M, Ueguchi TM, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H and Matsuoka M. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416:701-702
    84. Schumacher K, Schmitt T, Rossberg M, Schmitz G and Theres K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA, 1999, 96:290-295
    85. Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR. Identification of quantitive trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003,107:1419-1432
    86. Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian LL, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, and Yang ZN. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiology, 2004,135:1198-1205
    87. Spielmeyer W, Ellis MH, and Chandler PM. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci, USA, 2002, 99:9043-9048
    88. StatSoft Statistica. StatSoft Incorporated, Tulsa, Oklahoma, 1999
    89. Takahashi M. Linkage groups and gene schemes of some striking morphological characters in Japanese rice. Internal Rice Research Institute, Elsevier, Amesterdam, 1963, 215-236
    90. Takahashi M, Kinoshita T and Takeda K. Character expression and caudal genes of some mutants in rice. plant. J. Fac. Agric. Hokkaido Univ. 1968, 54:496-512.
    91. Takahashi YJ, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci, USA, 2001, 98:7922-7927
    92. Tanksley SD, Medina HH, Rick CM. Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity, 1982,49:11-25
    93. Temnykh S, Park WD, Ayres NM, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000,100:697-712
    94. Temnykh S, DeCklerck G, Lukashova A, Lipovich L, Cartinhiur S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001,11:1441-1452
    95. Wang SC, Zeng ZB. Windows QTL Cartographer 2.0. 2004, Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004. http://statgen. ncsu. edu /qtlcart/WQTLCart. htm
    96. Wang YH, Li JY. The plant architecture of rice (Oryza sativa). Plant Molecular Biology, 2005, 59:75-84
    97. Weller JI. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, 42:627-640
    98. Williams JGK, Kubelic AR, Livak KJ, Rafalsci JA, Tingey SV. DNA polyorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res, 1990,18:6531-6535
    99. Xiao J, Li J, Yuan L, Identification of QTL affecting traits of agronomic important in a recombinant inbred population derived from a subspection rice cross. Theor Appl Genet, 1996, 92:230-244
    100.Xu Y. Quantitative trait loci: separating, pyramiding and cloning. Plant Breeding Reviews, 1997,15:85-139
    101.Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H and Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 2000,12:1591-1606
    102.Yoshida S. Physiological aspects of grain yield. Anal Rev Plant Physiol, 1972, 23:437-464
    103.Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, Cao ML, Liu J, Sun JD, Tang JB, Chen YJ, Huang XB, Lin W, Ye C, Tong W, Cong LJ, Geng JN, Han YJ, Li L, Li W, Hu GQ, Huang XG, Li WJ, Li J, Liu ZW, Li L, Liu JP, Qi QH, Liu JS, Li L, Li T, Wang XG, Lu H, Wu TT, Zhu M, Ni PX, Han H, Dong W, Ren XY, Feng XL, Cui P, Li XR, Wang H, Xu X, Zhai WX, Xu Z, Zhang JS, He SJ, Zhang JG, Xu JC, Zhang KL, Zheng XW, Dong JH, Zeng WY, Tao L, Ye J, Tan J, Ren XD, Chen XW, He J, Liu DF, Tian W, Tian CG, Xia HG, Bao QY, Li G, Gao H, Cao T, Wang J, Zhao WM, Li P, Chen W, Wang XD, Zhang Y, Hu JF, Wang J, Liu S, Yang J, Zhang GY, Xiong YQ, Li ZJ, Mao L, Zhou CS, Zhu Z, Chen RS, Hao BL, Zheng WM, Chen SY, Guo W, Li GJ, Liu SQ, Tao M, Wang J, Zhu LH, Yuan LP, Yang HM. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296:79-92
    104.Yue B, Xue WY, Luo LJ, Xing YZ. QTL analysis for flag characteristics and their relationships with yield and yield traits in rice. Acta Genetica Sinica, 2006, 33:824-832
    105.Yue B, Cui KH, Yu SB, Xue WY, Luo LJ, Xing YZ. Molecular marker-assisted dissection of quantitative trait loci for seven morphological traits in rice (Oryza sativa L.).Euphytica, 2006,150: 131-139
    106.Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. Patent Application World intellectual Property Organization, 06239.1993-09-03
    107.Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci, USA, 1993, 90:10972-10976
    108.Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468
    109.Zhang YS, Luo LJ, Xu CG, Zhang QF, Xing YZ. Quantitative trait loci for panicle, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa.L). Theor Appl Genet, 2006,113:361-368
    110.Zhuang J, Lin H, Lu J, Qian H. Analysis of QTL x environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95:799-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700