栽培地点和密度对不同类型品种水稻形态特征与群体质量影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以四个类型水稻品种(杂交籼稻金优527、常规籼稻昌米011、杂交粳稻9优418、常规粳稻合系39)为材料,分别在中低海拔地区雅安(600m)和高海拔地区西昌(1590m),研究了栽培地点、栽插密度对不同品种水稻形态特征及群体质量的影响。结果表明:
     (1)水稻的叶片形态不仅在品种间有差异,还因栽培地点和种植密度而异。叶长、叶宽、叶片的长宽比雅安均大于西昌;两地上三叶的叶长和叶宽均有随着栽插密度的增加而变小的趋势;两籼稻品种上部叶片(倒1、2叶)的长宽比小于两粳稻品种;西昌点的比叶重大于雅安,雅安稀植穗前比叶重大,穗后下降快,西昌全生育期比叶重稀植均大于密植;
     雅安点剑叶的叶开角随栽插密度的增加而降低,其余两地上三叶的叶夹角在不同密度间差异不显著;两籼稻品种上三叶的叶基角和叶开角均雅安大于西昌,而两粳稻品种有相反趋势,所有品种上三叶的叶枕距雅安均显著大于西昌。两地剑叶和倒2叶的松散度均随密度增加而减小,上三叶的松散度均是雅安大于西昌,特别是籼型品种。雅安点的株高显著高于西昌,特别是两籼稻品种。上述结果说明籼型品种的株叶型在不同栽培地点间的差异较大,粳型品种株叶型的环境效应相对较小。
     由于各处理间株叶型不同,田间的透光率也有差异。总体看,西昌点各处理在40cm-100cm对光的截留显著大于雅安点;高密度的透光率最低;B2的透光率较高;
     (2)水稻基部节间的长度、粗度、比茎重及抗倒伏特性在不同品种、栽培地点和种植密度间也有一定差异。雅安点基部二节节长、基部三节各节粗大于西昌点,但比茎重显著低于西昌;两地基部三节的茎粗、比茎重和秆型指数均随密度的增大而减小。两籼稻品种的比茎重和秆型指数均大于两粳型品种,杂交种大于常规种。
     西昌点基部节节间的折断弯矩(M)均极显著的大于雅安,特别是两粳稻品种,两地M值均随栽插密度的增大而减小,两粳品种的M大于两籼稻品种;西昌点基部三节节间的弯曲力矩(WP)值均极显著的小于雅安点,雅安基部三节节间WP随栽插密度的增大均先增大后减小,而西昌基部三节节间WP均随栽插密度的增大而减小,两杂交品种的WP大于两常规品种;雅安点基部三节的倒伏指数均极显著的大于西昌点,雅安点基部三节各节间L工均随栽插密度的增大而增大,西昌基部基部一节的LI差异不显著,西昌基部二、三节各节间的LI随栽插密度的增大,均先增大后减小,雅安两粳稻品种的LI较低(尤其是B3),西昌点两杂交稻的LI较低。
     (3)栽培地点和种植密度对各品种的分蘖成穗、源库关系和物质的积累与运转也有一定影响。最高苗数、颖花量西昌点高于雅安点;两地的最高苗和颖花量均随栽插密度增大而增多。西昌点穗前LA工大于雅安,但穗后下降快;两地的LA工均随密度增大而提高。抽穗期粒叶比西昌与雅安差异不显著,成熟期西昌显著高于雅安;雅安三个密度间粒叶比相差不显著,西昌点的粒叶比随着密度的增加而提高;从总体上看,两个籼稻品种的粒叶比大于两个粳稻品种,特别是雅安。
     西昌干物质积累量极显著大于雅安,干物质积累量随着栽插密度的增大而增大,栽插密度对雅安干物质积累的影响大于西昌;干物质积累量在地点间的差异杂交种大于常规种,籼稻大于粳稻,常规种和粳稻的稳定性更高。叶片的干物质分配率雅安点高于西昌点,籼稻品种低于粳稻品种,两地各品种有随密度增加而减小的趋势,特别是穗前,而茎鞘的干物质分配率则相反。叶、茎鞘的物质输出与转换率雅安高于西昌,随栽插密度的增大而先增大后减小,两常规种大于两杂交种。
     (4)水稻的产量在不同栽培地点、种植密度和品种类型间也较大差异。雅安点的有效穗数和千粒重小于西昌点,穗粒数大于西昌点;杂交种的穗粒数和千粒重高于常规种,西昌点杂交种的结实度低于常规种;随着密度的增加,有效穗增多,穗粒数下降。各品种的产量西昌均高于雅安,特别是两个常规种;密度对各品种的产量均有影响,总体两点均以中高密度产量较高。
With four rice varieties (Hybrid indica Jinyou 527, Conventional indica Cangmi O11, Hybrid Japonica 9you 418, Conventional Japonica Hexi39) as materials, in the low altitude region Ya'an (600m), high altitude region Xichang (1590m). Studies were conducted on the effect of different transplanting density to morphological characteristics and the population quality of different rice varieties in different ecological zones. The results were as follows:
     (1) Not only in the form of rice leaves are different in varieties, but also because of cultural sites and planting density varies. Leaf length, leaf width, leaf length to width ratio, were greater in Yaan than in Xichang; The leaf length and leaf width of the upper three leaves in the two places,with the increase of planting density smaller and smaller; Two indica rice cultivars upper leaf (Leaf fall 1,2) aspect ratio were less than two japonica rice; Yaan's specific leaf weight of the sparse level, bigger before heading and then decreased rapidly after heading. In Xichang, sparse's specific leaf weight was greater than dense's in the whole growth period;
     Two locations of flag leaf base angle, reduced with the increase of planting density, The upper three leaves Opening angle of Yaan also decreased with increasing density, while difference was not significant in different densities in Xichang;. The upper part of the two indica rice varieties clover leaf base angle and opening angle are greater in Yaan than in Xichang, while the opposite trend of the two japonica rice varieties. All varieties of pillows from the upper leaf clover was significantly greater in Yaan than in Xichang. Flag leaf and two leaves were loose degree decreases with increasing density in the two locations, the upper three leaves are loose degree in Yaan than in Xichang, especially in indica varieties. The height was significantly higher in Yaan than in Xichang, and in particular the two indica rice varieties, both plant height increased with planting density increases. The results suggest that indica varieties cultivated in different plant type, significant difference between locations, japonica rice plant type of environmental effect is relatively small
     As a result of treatments in different plant type, the field of light transmission rates are different. Overall, the handle 40cm-100cm light rejection in Xichang was significantly higher than in Yaan,the highest-density had the minimum transmittance; B2 had highest light transmittance.
     (2) Rice Basal length, diameter, stem weight ratio and lodging properties in different species, planting location and plant density there was a difference between. In Yaan the base of the two keeps the length of the base diameter of three sections than Xichang point, but stem weight ratio was significantly lower than the Xichang; Two sites of the three basal stem diameter, stem weight and stem-type than the index with the density increases.Two indica rice cultivars than stem weight and stem-based index of greater than two Japonica varieties, greater than the conventional hybrid species.
     Xichang base steadily between the break point moments (M) were significantly larger than Yaan, especially the two Japonica rice varieties, Two places'M-values increased with planting density decreases, the two japonica varieties of M is greater than the two indica rice varieties; Xichang base point among the three steadily bending moment (WP) values were significantly smaller than Yaan point, Yaan the base of the three inter-WP steadily increased with planting density were then decreased, while the Xichang base steadily between the three WP increased with the increase of planting density decreased, the two hybrids of WP than two conventional varieties; In Yaan,the base of the three of lodging index were significantly greater than the Xichang point, Yaan point between the base of three sections with LI are the increase of planting density, the base of a base in Xichang of LI was not significant, Xichang base 2,3 LI between sections with increasing planting density, were then decreased, In Yaan, two japonica rice varieties (especially B3) LI were lower, while two hybrid rice point lower LI in Xichang.
     (3) Planting location and plant density on the varieties of tillers, source-sink relations and material accumulation and the operation also have some impact. The highest tillers, spikelets in Xichang points higher than in Yaan point; The highest seedling and spikelets in two locations were increased with planting density increasing. LAI before heading is greater in Xichang than in Yaan, but after heading down faster in Xichang; LAI in two places are increased with the density increased. Grain-leaf ratio of the two sites, the difference was not significant in the heading,Xichang's grain-leaf ratio significantly higher than Yaan's in the mature stage; Yaan's grain-leaf ratio between the difference in the three density was not significant,Xichang's leaf ratio increased as the density increases; Overall, the two indica rice varieties of grain-leaf ratio is greater than the two rice varieties, especially Yaan.
     Xichang dry matter accumulation was significantly greater than Yaan, Dry matter accumulation is increased with the increase of planting density,planting density on dry matter accumulation of more in Yaan than in Xichang; Dry matter accumulation in the difference between locations, hybrids are greater than conventional varieties,Indica rice varieties are greater than japonica rice,conventional varieties and japonica rice varieties more stable. On leaf dry matter distribution ratio, in Yaan higher than in Xichang,Indica varieties are lower than japonica rice, Leaf, stem and sheath material output and conversion rates, higher in Yaan than in Xichang, with the increase of planting density first increases and then decreases, the two conventional varieties are more than two hybrids.
     (4) Rice production has a greater difference between different cultural locations, planting density and variety of types. Yaan point panicles and grain weight Xichang points less than the number of grains larger than Xichang point; Hybrid grain number and grain weight higher than conventional types, Xichang hybrid seed points lower than the conventional kind of degree; As the density increases, effective ear increased,while the number of grains decreased. Production of all varieties were higher in Xichang than in Yaan, especially the two conventional species; Production of all varieties were affected by density; In general, the density and high density have a higher yield in two locations.
引文
[1]郑九如,黄洪河,蔡秋华.略述稻米生产现状及未来发展对策[J].福建稻麦科技,2004,22(3):39-44
    [2]王永锐.作物高产群体生理[M].科学技术文献出版社,1991,1-87
    [3]周瑞庆,邹应斌,刘海河,等.水稻群体结构与施氮量的关系[J].作物研究,1992,6(增刊)16-20
    [4]颜振德.、杂交水稻高产群体的干物质生产的分配的研究[J].作物学报,1981,7(1):11-18
    [5]黄丕生,吴俊恩,缪宝山,等.单季杂交稻高产群体的探讨[J].江苏农业科学,1980(2):9-12
    [6]黄丕生,缪宝山.淮北地区中籼稻76-01百亩连片高产栽培特点分析[J].南京农业大学学报,1982(1):12-21
    [7]蒋彭炎.水稻“稀少平”高产栽培法[J].农业科技通讯,1985, 11
    [8]徐正进,薛亚杰,车正昭.水稻超高产品种与产量分析[J].辽宁农业科学,1992,(3):1-4
    [9]陈建,莫成伦,谌家元,王兴亮.不同海拔地区杂交水稻品种各性状表现研究[J].种子世界,2007,17
    [10]袁继超,杨世民,王明田,等.攀西地区水稻生育期的垂直变化特点及其积温效应[J].作物学报,2008,34(2):247-253
    [11]郑九如,黄洪河,蔡秋华.略述稻米生产现状及未来发展对策[J].福建稻麦科技,2004,22(3):39-44
    [12]徐正进,陈温福,张文忠,等.水稻的产量潜力与株型演变[J].沈阳农业大学学报,2000,31(6)534-536
    [13]北條良夫,星川清親.作物的形态与机能[M].农业出版社,1983,411-435,(刘兴海译)
    [14]松江勇次等.九州北部稻米食味的研究:第1报移栽和倒伏时期对稻米食味理化特性的影响[J].日本作物学会纪事,1991,60(4):490-496(徐正进译).
    [15]凌启鸿等.稻作新理论——水稻叶龄模式[M].北京科学出版社,1994,1-239
    [16]凌启鸿.作物群体质量[M].上海科技出版社.2000,1-197
    [17]蒋彭炎,姚长溪,任正龙.水稻稀播少本插高产技术的研究.作物学报,1981,7(4):241-248
    [18]曹显祖,朱庆森.水稻品种的库源特征及其类型划分的研究[J].作物学报,1987,13(4):265-272
    [19]张洪程,苏祖芳,戴其根,等.麦茬小苗单季稻改善群体质量的高产节本技术[J].江苏农学院学报,1989,10(2):1-6
    [20]王成爱,张文香等.水稻混合稀植栽培技术的研究[M].吉林农业出版社,2000,25(4):7-12
    [21]马均.杂交中稻超多集壮秧超稀高产栽培技术的研究[J].中国农业科学,2002,35(1):42-48
    [22]陶诗顺,马均.杂交水稻稀植优化栽培的理论与技术[M].四川大学出版社,2001,1-104
    [23]陈周前,吴文革.水稻稀长大栽培技术的研究[M].安徽农业出版社,1997,25(1):35-38
    [24]章家恩.作物群体结构的生态环境效应及其优化探讨[J].生态科学,2000,19(1):30-35
    [25]赵全志,高尔明,黄丕生,等.源库质量与作物超高产栽培及育种[J].河南农业大学学报,1999,33(3):226-230
    [26]苏祖芳,王辉斌,杜永林,等.水稻生育中期群体质量与产量形成关系的研究[J].中国农业科学,1998,31(5):19-25
    [27]苏祖芳,李永丰,郭宏文,等.水稻单茎鞘重与产量形成关系及其高产栽培途径的探讨[J].江苏农学院学报,1993,14(1):1-10
    [28]钟明喜,张洪程,藏其根,等.品种与密度对粳稻产量及其源库的影响[J].江苏农学院学报,1993,14(增):14-19
    [29]王夫玉,黄丕生.水稻群体源库特征及高产栽培策略研究[J].中国农业科学,1997,30(5):26-33
    [30]徐正进,陈温福,曹洪任.水稻穗颈维管束数与穗部性状关系的研究[J].作物学报,1998,24:47-54
    [31]黄璜.水稻穗颈节间组织与颖花数的关系[J].作物学报,1998,24,193-200
    [32]马均,马文波,周开达,等.水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究[J].作物学报,2002,28(2),215-220
    [33]许明子,全雪丽,石铁源.不同水稻品种穗颈维管束性状及其相关研究[J].延边大学农学学报,2000, (2)
    [34]石庆华,徐益群,张佩莲,等.籼粳杂交稻的氮素吸收特性及其对“源”“库”特征的影响[J].杂交水稻,1995(4):19-22
    [35]蒋之埙,黄仲青,李奕松,等.中粳稻播栽密度和追氮方法的扩库增源效应研究[J].江苏农学院学报,1998,19(1);35-39
    [36]李义珍,黄育民,庄占龙,等.杂交稻高产结构研究[J].福建省农科院学报,1995,10(1):1-6
    [37]杨惠杰,杨仁崔,李义珍,姜照伟,郑景生.水稻茎秆性状与抗倒性的关系[J].福建农业大学学报,2000,15(2):1-7.
    [38]杨建昌,朱庆森,曹显祖,等.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,25(4):7-14
    [39]周瑞庆,萧光玉,江大明,等.施氮量对水稻产量及构成因索的影响[J].作物研究,1992,6(增)21-26.
    [40]张宪政主编.作物生理研究法[M].北京:农业出版社,1992,1-158
    [41]李熙英,权成武,黄世臣.不同密度、插植方式对水稻生育及产量的影响[J].延边大学农学学报,2000,22(4)
    [42]李荣田,姜廷波,秋太权,等.水稻倒伏对产量影响及倒伏和株高关系的研究[J].黑龙江农业科学,1996,(1):13-17.
    [43]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳辽宁科学技术出版社,1995.168-170.
    [44]周丽华.杂交稻茎秆生理特性对其抗倒伏能力的影响[J].河南农业科学,2006,10:20-23.
    [45]郭玉华,朱四光,张龙步,等.Ⅰ不同栽培条件对水稻茎秆材料学特性的影响[J].沈阳农业大学学报,2003,34(1):47.
    [46]邓文,青先国,马国辉,等.水稻抗倒伏研究进展[J].杂交水稻,2006,21(6):6-10.
    [47]梁康迳,林文雄,王雪仁.基因型×环境互作效应对水稻茎秆抗倒性杂种优势的影响[J].福建农业大学学报,2000,15(3):27-31.
    [48]Watanable T.水稻抗倒伏育种研究:Ⅱ与抗倒伏有关的植株性状的鉴定[J]. Bulletin, National Institute of Agricultural Sciences. (36):197-210
    [49]张忠旭,陈温福,杨振玉.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报,1999,30(2):81-85
    [50]Hitaka N H Kobayashi (1962). Studies on lodging of rice plant (1), Preliminary studies on the impeded translocation in lodged stems [J]. Proc. Corp Sci, Soc, Japan,30(2):116-119
    [51]娄成后,王学臣主编.作物产量形成的生理学基础[M].中国农业出版社.2001,270-279
    [52]李寒冰,白克智,匡廷云,胡玉熹,贾旭,林金星.粗秆高产小麦茎结构特性分析[J].植物学报,2000,42(12):1258-1262
    [53]马均,马文波,田彦华,等.重穗型水稻植株抗倒伏能力的研究[J].作物学报,2004,30(2):143-148
    [54]崛内久满,古贺义昭.水稻抗倒伏性与育种[J].农业技术.1989,44(9):41-45(徐正进译)
    [54]徐正进,陈温福,张步龙等.不同穗型水稻群体生态环境的比较研究(简报)[J].植物生理学通.1990,32(9):191-195
    [55]龚振平.不同营养水平水稻株高及构成变化的研究[J].黑龙江农业科学,1997, (6):18-20
    [55]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[A].见:凌启鸿.水稻群体质量理论与实践[C].北京:中国农业出版社,1995.34-41
    [56]]袁继超,刘从军,蔡光泽,等.攀西地区优质稻产量构成因素的变异及其构成特点[J].西南农业学报,2005,18(2):144-148
    [56]孙林静.水稻理想株型及其育种模式[J].天津农业科学,1998,(4):52-54
    [57]都华.水稻茎秆抗倒性构成因素及其品种间差异的研究.沈阳农业大学硕士论文,2002
    [57]封超年,郭文善,何建华,等.高产小麦株型的指标体系[J].扬州大学学报(自然科学版),1998,1(4):24-30
    [58]张林青,苏祖芳,张亚洁,等.水稻拔节期群体茎蘖结构与叶面积指数及产量关系的研究[J].扬州大学学报(农业与生命科学版),2004,25(1):55-58
    [59]童平,杨世民,马均,等.不同水稻品种在不同光照条件下的光合特性及干物质积累[J].应 用生态学报,2008,19(3):505-510
    [60]盖钧镒主编,试验统计方法[M].北京:中国农业出版社,2000
    [61]李惠明.谷秆两用稻“201”干物质积累、分配及转运特性的研究[J].福建稻麦科技,1994(3):25-27
    [62]董祖淦,洪菊莲,蒋世懿.杂交早稻威优48-2干物质积累、分配及转运特性的研究[J].浙江农业科学,1991(2):57-60
    [63]Tu ZP, Lin XZ, Huang QM, etal. Photosynthetic characterization of rice varieties in relation to growth irradiance[J]. Australian Journal of Plant Physiology, 1988,15:277-286
    [64]杨志根,顾掌根.早粳稻和早籼稻干物质积累及转运率比较试验[J].浙江农业科学,1998(2):56-57
    [65]苏祖芳,郭宏文,李永丰,等.水稻群体叶面积动态类型的研究[J].中国农业科学,1994,27(4):23-30.
    [66]甘涛,陈大超.水稻产量与构成因素间的相关性研究.南非农业.2008,2(5)17-20
    [67]张亚洁,苏祖芳,杨连新,等.旱育中籼稻根系形态性状及其与产量构成因素关系的研究[J].扬州大学学报(农业与生命科学版),2002,23(1):59-62.
    [68]高士杰,陈温福,徐正进,等.直立穗型水稻的研究:Ⅳ.直立穗型水稻生育后期物质生产与转运[J].吉林农业科学,2001,26(6):16-19
    [69]盛敏宽,丁金海。不同种植密度对水稻产量的影响[J].安徽农学通报,2008,14(7):25-31
    [70]周开达.四川水稻超高产育种的发展趋势[J].西南农业学报,1998,11,1-6
    [71]郑家国,陆贤军,姜心禄,等.水稻强化栽培的引进创新与四川盆地超高产的技术实践[J].西南农业学报,2004,17(2):169-173
    [72]蒋之埙,黄仲青,李奕松,等.杂交中籼协优57群体性状与氮密效应的研究[J].安徽农业科学,2000,28(2):162-163,166
    [73]曹显祖,朱庆森,顾自奋.杂交水稻结实率的研究.中国农业科学.1980,(2):44-50
    [74]顾自奋,朱庆森,曹显祖.水稻结实率的研究.中国农业科学.1981, (6):38-44
    [75]段俊, 梁承邺, 黄毓文.杂交水稻结实率的研究.热带亚热带植物学报.1997,5(1):71-77
    [76]魏锦屏,张占顺.水稻结实率的研究.天津农学院学报,1997,4(4):35-39
    [77]蔡昆争,骆世明.不同生育期遮光对水稻生长发育和产量形成的影啊[J].应用生态学报,1999,10(2):193-196
    [78]崔一龙,金明淑,朴哲,等.密度对不同品种水稻生育及产量构成因索的影响[J].延边农学院学报,1996,18(1):37-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700