玉米灌浆期不同阶段籽粒品质性状及灌浆速度的QTL动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用我国当前推广面积最大的玉米杂交种农大108(黄C×许178)的一套重组近交系为基础材料,在许昌、郑州、浚县三地点对玉米灌浆期不同阶段品质性状和灌浆速度进行了遗传分析,主要结论如下:
     1)构建了包含161个SSR标记的遗传连锁图谱,覆盖玉米10条染色体,总长度为2326.8cM,平均区间长度12.78 cM。
     2)利用近红外反射光谱(NIRS)定量分析模型,测定了重组自交系群体的籽粒粗蛋白、粗淀粉、粗脂肪和赖氨酸4个品质性状的百分含量。
     3)利用复合区间作图法,在三个试点五个时期共检测到47个玉米籽粒品质的非条件QTL,其中12个与籽粒粗蛋白含量有关的非条件QTL,位于除第4和第9染色体外的8条染色体上; 10个与粗淀粉含量有关的非条件QTL,集中于第5、6、7三条染色体上;11个与油分含量有关的非条件QTL,分布在第1、2、5、6、7、9染色体上;14个与赖氨酸含量有关的非条件QTL,分布在除了第3、8和10以外的7条染色体上。
     4)在对籽粒品质进行条件QTL检测时,三个试点五个时期共检测到42个条件QTL,8与粗蛋白含量有关的条件QTL,分布在第1、6、7、9染色体上;12个与粗淀粉含量有关的条件QTL,分布在除了第5和10以外的8条染色体上;14个与油分含量有关的条件QTL,分布在除了第4和8以外的8条染色体上;8与赖氨酸含量有关的条件QTL,分布在第1、2、5、6、7染色体上。
     5)在对籽粒品质非条件和条件QTL检测进行对比时,发现有2个与淀粉含量有关、1个与蛋白含量有关、1个与脂肪含量有关和3个与赖氨酸含量有关QTL同时被检测到。
     6)对灌浆速度进行QTL检测时,三地点五时期共检测到11个非条件OTL,分布在第2、4、5、9和10染色体上。不同时期不同地点间,共检测到2个相同的QTL。同时也检测到13个条件QTL,分布在除了第6和8染色体上,不同时期和地点间没有检测到相同的条件QTL。在对与灌浆速度有关的非条件和条件QTL进行对比时,发现有2个QTL,在相同地点和相同时期出现,1个在不同地点不同时期出现。
     7)通过对灌浆速度与籽粒品质包括非条件和条件的QTL对比,发现灌浆速度与淀粉有5个相同的QTL,占淀粉QTL总数(19个)的26.32%;与蛋白相同的QTL有5个,占蛋白总数(18个)的27.78%;与油分相同的QTL 4个,占总数(24个)的16.67%;与赖氨酸相同的2个,占总数(19)的10.53%。
In this investigation, a set of incombant inbred line (RIL) population which derived from an elite maize hybrid Nongda108,were used to dissect the genetic basis of four main nutritional components in maize kernels under different filling stages, the RIL population was evaluated at three locations including Xuchang, Zhengzhou and Xunxian in Henan province. The results were as follows:
     1) A genetic linkage map with 161 marker loci was constructed including 10 chromosomes; the total length was 2326.8cM, with an average interval length of 12.78cM.
     2) Four nutritional components of kernel protein,starch, oil and lysine in seed were measured by using NIRS in five filling stages.
     3)A total of 47 QTL associated with nutritional components in maize kernels were detected using composite interval mapping method (CIM) in RIL population. There were 12 QTL associated with protein content, and the QTL lied on all chromosomes except 4 and 9. There were 10 QTLs associated with starch content, and the QTL located on chromosomes 5, 6 and 7. For oil content, 11 QTL were identified, which lied on chromosomes1, 2, 5, 6, 7 and 9, respectively. For lysine, 14 QTL were identified, which lied on all chromosomes except 3, 8 and 10.
     4) Through conditional QTL analysis, a total of 42 QTL associated with nutritional components in maize kernels were detected.8 QTL was detected for protein contentd in five filling stages, and the QTL lied on chromosomes 1, 6, 7and 9, respectively. There were 12 QTL associated with starch content, which lied on all chromosomes except 5 and 10. For oil content, there were 14 QTL identified, which lied on all chromosomes escept 4 and 8. For oil content, there were 8 QTL identified, which lied on chromosomes 1, 2, 5, 6 and 7 respectively.
     5) The comparison between unconditional and conditional QTL, show that 2 starch QTL, 1 protein QTL, 1 oil QTL and 3 lysine QTL were identified under two conditions.
     6) A totle of 11 QTL associated with filling speed in maize kernels were detected, and located on chromosomes 2, 4, 5, 9 and 10, respectively. 2 QTL were identified in different locates and different filling stages. Through conditional QTL analysis, a total of 13 QTL associated with filling speed in maize kernels were detected and the OTL lied on all chromosomes excepe 6 and 8. No same QTL was identified in different locates and different filling stages.Compare between nonconditional and conditional QTL, there were 2 QTL identified in same locates or stages, and 1 QTL identified in different locates and stages.
     Comparison between filling speed QTL and nutritional components QTL, which contains unconditional and conditional QTL, show that 5 same QTL identified between filling speed and starch QTL, accounts 26.32% of all starch; 5 same QTL between filling speed and protein QTL, accounts 27.78% of all protein QTL; 4 same QTL between filling speed and oil QTL, accounts 16.67% of all oil QTL; 2 same QTL between filling speed and lysine QTL, accounts 10.53% of all lysine QTL.
     The results suggested that the expression of the QTL controlling nutrient component was different in different developing period, which has significant interaction with environment.
引文
[1]朱玉贤,李教.现代分子生物学[M].第二版,北京:高等教育出版社,2002:371—376
    [2]聂书萍,代林远.分子标记的发展及应用.河南职工医学院学报2006.18(6),526-528
    [3]Shrimpton, A .E .and Robertson, A .1988.The isolation of polygenic factors controlling bristle score in Drosophila Melanogaser I Allocaiton of third chromosome sternopleural bristle effects to chromosome sections .Genetics.118:437-444
    [4] Shrimpton, A .E .and Robertson, A .1988.The isolation of polygenic factors controlling bristle score in Drosophila Melanogaser I Allocaiton of third chromosome sternopleural bristle effects to chromosome sections .Genetics.118:445-459
    [5]Falxoner, D .S .and Mackay, T. F. C .1996.Inrtoduciton to quantitative g enetics.4th Edition Longman Group Ltd .Harlow .Essex
    [6]Geldermann, H .1975.Investigations on inheritance of quantitative characters in animals by gene markers .H .Expected effects .Theor. Appl. Genet. 88 :573-580
    [7]华金平.2001.汕优63“永久F2”群体构建及其杂种优势的遗传研究.华中农业大学博士论文.22-23
    [81]方宣钧,吴为人,唐继良.作物DNA分子标记辅助育种.北京:科学出版社,2002,57~59
    [9]华金平.2001.汕优63“永久F2”群体构建及其杂种优势的遗传研究.华中农业大学博士论文.17-18
    [10]Hua J. P, Xing Y. Z, Xu C. G., Sun X. L., Yu S. B., Zhang Q.F., Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162:1885-1895
    [11] Hua J. P, Xing Y. Z., Wu W. R., Xu C. G., Yu S. B., Sun X. L., Zhang Q. F.,Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. PNAS, 2003, 100:2574-2579.
    [12] Lander E.S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    [13]Zeng Z.B.Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    [14]朱军.遗传模型分析方法.北京:中国农业出版社,1997: 88-97
    [15]Paterson A H, Lander ES, etal. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymor- phisms. Nature, 1988, 335:721-726.
    [16] Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 12(1): 185-199.
    [17]胡中立.QTL遗传分析的若干理论研究及其应用.武汉大学博士论文,2000,Y391781:13-14
    [18]Sax K .The association of size difference with seed-coat pattern and pigmentation in Phaseolus vulgaris.Genetics,1923, 8:552-560.
    [19]Luo Z.W, Kearsey M.J. Maximum likelihood estimation of linkage between a marker gene and quantitative locus II Application to backcross and doubled haploid population Heredity, 1991, 66:117-124
    [20]Kao C .Ii, Zeng Z.B, Teasdale R D, Multiple interval mapping for quantitative, trait loci. Genetics, 1999, 152:1203-1216
    [21]吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.中国农业大学学报,1996, 25 (4): 394-39
    [22]朱军,1999,运用混合线性模型定位复杂数量性状基因的方法,浙江大学学报(自然科学版),33(3):327-335
    [23]Zhu, H., Gilchfst, L., Hayes, P., Kleinhofs, A., Kudma, D., Liu, Z., Steffenson, B., Prom, L., Tocjinda, T., and Vivar, H. Function follows form: Coincident QTLs are determinants of plant architecture traits and Fusarium head blight(FHB) resistance in a doubled haploid population of barley. Theor .Appl .Genet, 1999, 99:1221-1232.
    [24]周元昌等.作物QTL定位研究进展,福建大学学报,2000,29(2):138-144.
    [25]吴为人,李维明,卢浩然.数量性状基因座位的动态定位策略.生物数学学报,1997,12(15):490-495
    [26]包劲松,何平,夏英武,等.不同发育阶段水稻苗高的QTL分析,遗传,1999,21(5):38-40
    [27]何慈信,朱军,严菊强,等.水稻穗千物质重发育动态的QTL定位中国农业科学,2000,33(1):24-32
    [28]Yan J.Q, Zhu J, He C.X, et al. Quantitative trait loci analysis for developmental behavior of tiller number in rice (Oryza saliva L.). Theor Appl Genet, 1998x, 97: 267-274
    [29]Yan J.Q, Zhu J, He C.X,et al. Molecular dissection of developmental behavior of plant height in rice(Oryza saliva L.). Theor Appl Genet, 1998b, 150: 1257-1265
    [30]许智宏,刘春明,植物发育的分子机理,北京:科学出版社,1998,151-160
    [31]彭华正,潘建伟,朱睦元.基因网络研究进展.生物化学与生物物理进展,2001,28(6):815-818
    [32]Ruane,J. and Collesu ,J .J. 1995.Marker-assisted selection for genetic improvement of animal population when a single QTL is marked .Genet .Res.66 :71-83
    [33] Kashi,丫,Hallerman, E.and Soller, M. 1990. Marker-Assisted Selection of Candidate Bulls for Porgeny Testing Programmers .Anim .Prod .51:63-74
    [34]. Gimelfarb, A. and Lande, R. 1994. Simulation of marker-assisted selection in hybrid population .Genet .Res .63:39-47
    [35]. Moreau, L., Charerosset, A,Hospotal, F., Gallais, A. 1998. Marker-assisted selection efficiency in populations of finite size .Geneitcs.148:1353-1365
    [36].Whitaker,J. G .,Cumow ,R .N .,Haley ,C .S .and Thompson ,R.1995.Using marker-maps in marker-assisted selection .Genet .Res.66:255-265
    [37]Spelman,R .and Bovenhuis ,H .1998.Genetice response from marker assisted selection in an out bred population for differing marker bracket sizes and with two identified quantitative trait loci .Genetics.14 8:13 89-1396
    [38]张凯.2005.不同品种普通玉米淀粉性质的研究沈阳农业大学硕士论文2005. TS213.4
    [39]张泽明,于正坦,牛连杰,等.不同年代玉米杂交种子粒营养成分的分析.中国农学通报,1997,13(4):11-13.
    [40]白永新,陈保国,张润生,等.普通玉米品质育种的现状分析与综合评价.玉米科学,2003,11(2):50-53.
    [41]伶屏亚.玉米科技史.北京:中国农业科技出版社.2000
    [42] Lubberstedt .T ,Melchinger A E,Schon C C,Utz H F Klein D.QTL mapping in testcrosses of European flint lines of maize:1.Comparison of different testers for forage yield traits. Crop Science,1997,37(3):921-931.
    [43] SONG Xiu-Fang .Identification of QTL for kernel oil content and analysis of related traits in maize[Dissenation].China Agricultural University,2003:59~60.
    [44] GoldmanI L,et a1 . Quantitativetraitlociinfluencingproteinandstazeh concentration in minois long—term selection maize strains .Theo.App.Genet,1993,87:217-224.
    [45]Goldmanl L,RochefordTR,Dudley JW.Molecularn'uu~erassoei.ated with maize kernel oil concentration in an Illinois hlsh protein and Illinois low protein cross :Crop Sci.,1994,34:908-915.
    [46] BerkeT.G,RochefordT.R.Quantitative trait loci for flowering,plant ear height and kernel traits in maize .Crop Sci.,1995,35:1542-l549.
    [47]宋同明.脉冲核磁共振仪对作物种子含油量的快速测定,作物学报,1989, 15(3): 160.
    [48]魏良明,姜海鹰,李军会,严衍禄,戴景瑞.玉米杂交种品质性状的近红外光谱分析技术研究,光谱学与光谱分析,2005,25(9):1404-1407.
    [49]Kim H.O,Williams P.C. Determination of starch and energy in feed grains by near-infrared reflectance spectroscopy. Journal of Agricultural Food Chemistry, 1990, 38: 682-688.
    [50]Orman B.A, Schumann Jr R.A. Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil, and starch in maize grain. Journal of Agricultural Food Chemistry,1991,39: 883-888.
    [51]Campbell M.R,Brumm T.J,Glover D.V.Whole grain amylose analysis in maize using near-infrared transmittance spectroscopy. Cereal Chemistry,1997,74 (3):300-303.
    [52]吴建国,石春海,张海珍,樊龙江.应用近红外反射光谱法整粒测定小样品油菜籽含油量的研究.作物学报,2002,28(3):421-425.
    [53]曹干,谭中文,梁计南,龙永惠,周学秋.蔗汁品质成分的傅里叶变换近红外分析数学模型.中国农业科学,2003,36(3):254-258.
    [54]Zimmer E,Gurrath P.A,Buxton D.R.Euphytica.1990,48:73.
    [55]Jung H.G,Mertens D.R,et a1 Forage quality variation among maize inbreds: in vitro fiber digestion kinetics and prediction with NIRS Crop Sci.1998,38:205.
    [56]De Boever J.L , Vanacker J.M, De Brabander D.L. Rumen degradation characteristics of nutrients in corn silages and evaluation of laboratory measurements and NIRS as predictors. . Anim Feed Sci Technol , 2002 , [101] : 73-86.
    [57]Cozolino D,Fassio A,Gimenez A.J.Sci.Food Agric.,2001,81:14.
    [58]Albandl E,Phixats J,Ferret A.J.Sci.Food Agric.,1995,69:269.
    [59]白棋林,陈绍江,董晓玲,孟庆祥,严衍禄,戴景瑞. 2004近红外漫反射光谱法测定玉米秸秆NDF与ADF含量,光谱与光谱分析24 (11):1345-1347.
    [60]闫淑琴.玉米籽粒灌浆速度研究进展.杂粮作物, 2006,26(4):285-28.
    [61]王忠孝等,玉米籽粒成熟的标志一乳线的研究,山东农业科学。1968 (4)
    [62]王忠孝.北京:中国农业出版社,1999.151-152.
    [63]高荣歧,粒发育过程中淀粉积累与粒重关系[J].山东农业大学学报, 1993, (1): 647- 648.
    [64]李绍长,盛茜,陆家惠,等.玉米籽粒灌浆生长分析[J].石河子大学学报(自然科学版), 1999, 3(增刊):1-5.
    [65]马冲,邹仁峰,苏波,等.不同熟期玉米籽粒灌浆特性研究[J].作物研究,2000,(4):17-19.
    [66]王河成,段运平,石红卫,等.玉米大粒自交系选育与灌浆速率关系的研究[J].玉米科学. 1996, 4(2):30-32.
    [67]魏永超,刘虎成,刘希忠,等.温度与光照因子对夏玉米灌浆及产生的影响[J].河南职技师院学报,1989,17(1):1-6.
    [68]张凯.不同品种普通玉米淀粉性质的研究.沈阳农业大学硕士论文. 20050601
    [69]魏良明,姜海鹰,李军会,严衍禄,戴景瑞.玉米杂交种品质性状的近红外光谱分析技术研究,光谱学与光谱分析,2005,25( 9 ):1404-1407.
    [70] Atchley W.R, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice.Genetics, 1997, 147: 765-776
    [71]朱军,数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报(农业与生命科版),2000,26(1):1-6
    [72]陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型×环境互作效应研究.Scientia中国农业科学, 1998, 31 (4) :1-7.
    [73]石春海,何慈信,朱军,陈建国.籼稻稻米外观品质性状的遗传主效应和环境效应分析.中国水稻科学, 1999 ,13(3):179-182.
    [74]Zhuang J. Y, Lin H.X, Lu J. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95:799-808.
    [75]廖自基.环境中微量重金属元素的污染危害与迁移转化.北京:科学出版社,1989.
    [76] GoldmanI L,et a1 . Quantitativetraitlociinfluencingproteinandstazeh concentration in minois long—term selection maize strains .Theo.App.Genet,1993,87:217-224.
    [77]Goldmanl L,RochefordTR,Dudley JW.Molecularn'uu~erassoei.ated with maize kernel oil concentration in an Illinois hlsh protein and Illinois low protein cross :Crop Sci.,1994,34:908-915.
    [78] BerkeT.G,RochefordT.R.Quantitative trait loci for flowering,plant ear height and kernel traits in maize .Crop Sci.,1995,35:1542-l549.
    [79]Alrefai R,Berke TG and Rocheford TR.Quantitative trait locus analysis of fatty acid concentrations in maize .Genome,1995,38: 894-901.
    [80] Senior M.L,Heum M.Mapping maize microsatelites and polymerase chain reaction confirmation of the targeted repeats using CT primer.Genome,1993,36:884-889.
    [81]杨文鹏.与玉米奥帕克-6位点连锁的RFLP标记.作物学报,1998,24(1):34-41.
    [82]柯枫英,石永剐,郑用链,等.玉米淀粉修饰基因du的RAPD标记研究.作物学报,1999,25(1):l-7.
    [83] Helentjaris T, Slocum M, Wright S et.al. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms.Theor.Appl.Genet, 1986, 72:761-769.
    [84]魏良明,姜海鹰,李军会,严衍禄,戴景瑞.玉米杂交种品质性状的近红外光谱分析技术研究,光谱学与光谱分析,2005,25( 9 ):1404-1407.
    [85] Groh S, Gonzalez-Leon D, Khairallah M.M, etal.QTL Mapping in tropical maize:Genomic regions for resistance to Diatraea spp.and associated traits in two RIL polulation.Crop sci 1998,38:1062-1072.
    [86] Wu W.R, L I.W,Tang D.Z,et.al .Time 2related mapping of quantatitive trait loci underlying tiller number in rice ,Genetics,1999,151:297-303.
    [87]陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型×环境互作效应研究.中国农业科学, 1998 , 31 (4) : 1-7
    [88]石春海,何慈信,朱军,陈建国.籼稻稻米外观品质性状的遗传主效应和环境互作效应分析.中国水稻科学, 1999 ,13(3):179-182.
    [89]滕胜,曾大力,钱前,国广泰史,藤本宽,黄大年,朱立煌.水稻根系活力的遗传分析.中国水稻科学, 2002 , 16 (2):119–123
    [90]曹立勇,朱军,颜启传,何立斌,魏兴华,程式华.水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析中国水稻科学,2002, 16(3) :221-224.
    [91] Zhuang J.Y, Lin H.X, Lu J. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 199.
    [92] Beavis W. D, Smith O. S, et al. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34:882-896.
    [93] Schon C. C, Lee M, et al. Mapping and characterization of quantitative traitloci affecting resistance against 2nd-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993,70:648-659.
    [94] Melchinger A.E, Utz H, Schon C. C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149(1):383-403.
    [95]闫淑琴.玉米籽粒灌浆速度研究进展.杂粮作物, 2006,26(4):285-28.
    [96]任忠义,王满富,李洪,等.玉米灌浆特性的遗传研究[J].玉米科学,1993,(4):4-7
    [97]秦泰辰.玉米籽粒发育性状的遗传及产量性状关系的研究[J].作物学报,1991,17(3): 185- 191.
    [98]王忠孝.山东玉米[M].北京:中国农业出版社,1999.151-152.
    [99]高荣歧.夏玉米籽粒发育过程中淀粉积累与粒重关系[J].山东农业大学学报, 1993, (1): 647- 648.
    [100]李绍长,盛茜,陆家惠,等.玉米籽粒灌浆生长分析[J].石河子大学学报(自然科学版), 1999, 3(增刊):1-5.
    [101]马冲,邹仁峰,苏波,等.不同熟期玉米籽粒灌浆特性研究[J].作物研究,2000,(4):17-19.
    [102]王河成,段运平,石红卫,等.玉米大粒自交系选育与灌浆速率关系的研究[J].玉米科学. 1996, 4(2):30-32.
    [103]魏永超,刘虎成,刘希忠,等.温度与光照因子对夏玉米灌浆及产生的影响[J].河南职技师院学报,1989,17(1):1-6.
    [104]Claudine t.elizabeth s.et al. QTLS for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize.jourmal of Experimental Botany, 2005, 56(413): 945-958.
    [105]Lincoln S,Daly M,Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0 Cambridge: Whitehead institute Technical Report, 1992.
    [106]Wang S,Basten C J.Zeng Z B (2001-2004).Windows QTL Cartographer 2.0.Department of Statistics,North Carolina State University,Raleigh,NC.
    [107]Raja V.Effect of nitrogen and plant population on yield and quality of super sweet corn.Indian Journal of Agronomy, 2001.46(2):246-249.
    [108]兰进好,褚栋.玉米株高和穗位高遗传基础的QTL剖析.遗传, 2005, 27(6): 925-934.
    [109]汤华,严建兵,黄益勤等.玉米5个农艺性状的QTL定位.植物遗传学, 2005, 32(2): 203-209
    [110]陈建国,朱军.籼粳杂交稻米外观品质性状的遗传及基因型×环境互作效应研究.Scientia中国农业科学, 1998, 31 (4) :1-7.
    [111]石春海,何慈信,朱军,陈建国.籼稻稻米外观品质性状的遗传主效应和环境效应分析.中国水稻科学, 1999 ,13(3):179-182.
    [112]Zhuang J. Y, Lin H.X, Lu J. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95:799-808.
    [113]Tanksley S. D, Ahn N, Causse M. RFLP mapping of the rice genome. In : Rice GeneticsⅡ. Los Banos, Laguna: IRRI, 1991, 435-442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700