汉族人群肺癌易感基因及其快速检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌严重威胁人类健康,是我国发病率和死亡率上升最快的恶性肿瘤之一。本研究采用配对病例-对照的流行病学研究方法,检测比较了汉族人群CYP1A1、CYP1B1、CYP2C19、CYP2D6、CYP2E1、GSTM1、GSTT1、GSTP1、mEH、NAT2、NQO1、XPA、XPD、XRCC1、XRCC3、hOGG1等代谢酶和修复酶基因的遗传多态性分布及其与该人群肺癌易感性之间的关系,并调查分析了汉族人群肺癌发生的环境危险因素,通过多因素的统计学分析与单纯病例研究方法,初步确定了基因-基因,基因-环境在汉族人群肺癌发生中存在的交互作用。同时还探讨了两个新发展的SNP快速检测技术——diASA-AMP技术和双色荧光杂交芯片技术在人群中进行肺癌相关基因筛检的可行性,以期为肺癌病因学研究,高危人群筛检,以及肺癌的一级预防提供理论依据和技术平台。
     本论文具体内容如下:
     1.代谢酶基因多态性和肺癌易感性关系的研究
     按配对病例-对照研究原则选择原发性肺癌患者及对照227对,每例收集血液3ml,提取基因组DNA。运用PCR-RFLP、diASA-AMP及双色荧光杂交芯片技术对CYP1A1、CYP1B1、CYP2C19、CYP2D6、CYP2E1、GSTM1、GSTT1、GSTP1、mEH、NAT2、NQO1等代谢酶基因进行多态性分析。研究结果表明,携带CYP1A1突变基因型,GSTT1缺失基因型, NAT2 M3等位基因可增加患肺鳞癌的危险性,OR值分别为2.07(95%CI=1.10-3.92),1.90(95%CI=1.09- 3.30),1.63(95%CI=1.03-2.59)。携带CYP2C19突变基因型者患肺癌的危险性增加2.07倍(95%CI =1.34-3.17)。经组织病理学分类后分析发现,CYP2C19突变基因型可同时增加患肺鳞癌和腺癌的危险性,但以患肺鳞癌的危险性增加较多(OR=2.25,95%CI=1.14-4.44)。CYP1B1、CYP2D6、CYP2E1、GSTM1、GSTP1、mEH、NQO1基因在肺癌组和与对照组之间的基因型分布无显著性差异。CYP1B1基因多态性与汉族人群肺癌易感性的关系为首次报道。
     2.修复酶基因多态性和肺癌易感性关系的研究
     运用PCR-RFLP、diASA-AMP及双色荧光杂交芯片技术对XPA、XPD、XRCC1、XRCC3、hOGG1修复酶基因进行多态性分析。研究结果表明,携带XRCC1突变基因型可增加患肺腺癌的危险性(OR=1.91, 95%CI=1.12-3.23)。携带XPD突变基因型者患肺癌的危险性增加3.13倍(95%CI=1.78-5.49)。经组织病理学分类后分析发现,XPD突变基因型可同时增加患肺鳞癌和腺
     癌的危险性, OR值分别为3.20(95%CI=1.57-6.51)和3.00(95%CI=1.19-7.56)。XPA、XRCC3、hOGG1基因在肺癌组和与对照组之间的基因型分布无显著性差异。XPA与XRCC3基因多态性与汉族人群肺癌易感性的关系为首次研究,其中XPA A23G位点突变频率在汉族人群的分布为首次报道。
     3.代谢酶基因与修复酶基因多态性在肺癌发生中的交互作用研究
     应用Logistic多元回归模型分析基因-基因交互作用,在α=0.05水平上发现,CYP1A1突变基因型与GSTM1缺失基因型(OR=2.23),CYP2C19突变基因型与NQO1突变基因型(OR=2.61),mEH-exon3突变基因型与NQO1突变基因型(OR=2.47),CYP2C19突变基因型与XPA突变基因型之间对肺癌的发生存在协同作用(OR=4.55),同时携带两种突变基因型者患肺癌的危险性比单独携带其中任何一个突变基因型明显增加。
     4.肺癌环境危险因素的病例对照研究
     对所有病例-对照以回顾性问卷询问的方式进行肺癌环境危险因素的流行病学调查,主要内容包括:一般社会学特征、肺部疾病史、吸烟状况、烹调油烟接触状况、职业接触史、煤烟接触状况、家族肿瘤史等19项环境危险因素。结合组织病理学的诊断结果,通过单因素及多因素Logistic回归统计分析,对江苏汉族人群肺癌发生的危险因素进行筛检和危险度评估。研究结果表明,结果表明肺部疾病史、吸烟指数、职业有害物质接触史是肺鳞癌发生的主要环境危险因素,同时消除这些因素其发病可减少67.24%;肺部疾病史、吸烟指数、烹饪时厨房充满油烟味、煤炉使用年限、肿瘤家族史是肺腺癌发生的主要环境危险因素,同时消除这些因素其发病可减少58.92%。
     5.基因-环境在肺癌发生中交互作用的单纯病例研究
     应用单纯病例研究分析了基因-环境交互作用,结果表明,CYP1A1基因多态性、hOGG1基因多态性分别与吸烟对肺癌的发生存在有协同作用。携带CYP1A1突变基因型或hOGG1突变基因型而又同时吸烟者发生肺癌的危险性明显增加,OR值分别为2.29(95%CI=1.31-3.98)和2.30(95%CI=1.00-5.27)。GSTP1基因多态性、XPD基因多态性分别与煤炉使用年限对肺癌的发生存在有协同作用。携带GSTP1突变基因型或XPD突变基因型可增加接触煤烟不超过20年者肺癌发生的危险性,OR值分别为2.23(95%CI=1.09-4.54)和3.12(95%CI=1.42-6.85)。
     6.人工修饰双等位基因特异性引物扩增法(diASA- AMP)在肺癌易感基因筛选中的应用
     本研究首次应用课题协作组成员华东医学生物技术研究所周国华教授等发明的一种新的快速基因多态性检测方法-diASA-AMP技术(发明专利公开号:1446928)对汉族人群肺癌相关易感基因CYP1B1、GSTP1、hOGG1和XPD进行检测和筛选,并对该技术应用于人群SNP筛检的可行性进行了论证。结果表明对照组各等位基因频率(CYP1B1: C 84.1%, G 15.9%; GSTP1: A 77.1%, G 22.9%; hOGG1: C 39.4%, G 60.6%; XPD: A 93.3%, C 6.7%),与现有的中国人资料结果相近(CYP1B1: C 83.0%,G 17%; GSTP1: A 75.6%, G 24.4%; hOGG1: C 44.9%, G 55.1%; XPD: A 92.8%, C 7.2%)。CYP1B1、GSTP1、hOGG1基因各随机选取15例样本进行测序,结果与diASA-AMP法结果完全相符。XPD基因随机抽取115例样本进行PCR-RFLP分型,结果两种检测方法有4例不相符,二者检测相同结果的吻合率为96.5%,经χ2检验两种方法的基因型分型结果具有很好的关联性和一致性(Kappa=0.90,95%CI=0.81-1.00)。
     7.双色荧光杂交芯片在肺癌易感基因筛选中的应用
     本研究首次应用课题协作组成员东南大学吴健雄实验室陆祖宏教授等创建的一种新的高通量基因多态性检测方法-双色荧光杂交芯片技术对汉族人群肺癌相关易感基因CYP1A1、XRCC3进行了检测和筛选,并对该技术应用于人群SNP筛检的可行性进行了论证。结果表明152例样本的CYP1A1基因双色荧光杂交芯片技术分型结果与PCR-RFLP结果完全相符。XRCC3基因在对照组的等位基因频率(C 94.1%, T 5.9%)与现有的中国人资料结果一致(C 94.1%-95.2%,T 4.8%-5.9%)。XRCC3基因随机抽取125例样本进行PCR-RFLP分型,结果两种检测方法有2例不相符,二者检测相同结果的吻合率为98.4%,经χ2检验两种方法的基因型分型结果具有很好的关联性和一致性(Kappa=0.97,95%CI=0.92-1.01)。
     综合分析上述研究结果,可获得以下初步结论:
     1. CYP1A1、CYP2C19、GSTT1、NAT2、XPD、XRCC1基因与汉族人群肺癌易感性相关。其中CYP1A1突变基因型,GSTT1缺失基因型,NAT2 M3等位基因增加了患肺鳞癌的危险性,XRCC1突变基因型增加了患肺腺癌的危险性,CYP2C19突变基因型、XPD突变基因型同时增加患肺鳞癌和肺腺癌的危险性。CYP1A1与GSTM1,CYP2C19与NQO1,mEH-exon3与NQO1,CYP2C19与XPA基因对肺癌的发生存在交互作用,同时携带两种突变基因型个体更容易发生肺癌。
     2.肺部疾病史、吸烟指数、职业有害物质接触史是汉族人群肺鳞癌发生的主要环境危险因素,肺部疾病史、吸烟指数、烹饪时厨房充满油烟味、煤炉使用年限、肿瘤家族史是肺腺癌发生的主要环境危险因素。
     3. CYP1A1、hOGG1突变基因型与吸烟对肺癌的发生存在协同作用,GSTP1、XPD突变基因型与不超过20年煤炉使用年限对肺癌的发生存在有协同作用,两种因素同时存在时均使肺癌患病危险性升高。基因-基因,基因-环境之间的联合检测有助于筛选肺癌发生的高危人群。
     4. DiASA-AMP技术与双色荧光杂交芯片技术具有较高的特异性和准确度。与传统PCR-RFLP方法相比,diASA-AMP技术简便、快速、经济,适用于较大规模人群SNP位点的快速检测;双色荧光杂交芯片技术具有高通量和自动化的特点,在大规模人群SNP筛检中具有良好的发展前景。
The incidence and mortality of lung cancer have been increasing rapidly in recent years in China. In this study, a paired case-control epidemiological investigation was performed to determine the relationship between genetic polymorphisms of some metabolic and repair enzymes and susceptibility of lung cancer. CYP1A1, CYP1B1, CYP2C19, CYP2D6, CYP2E1, GSTM1, GSTT1, GSTP1, mEH, NAT2, NQO1, XPA, XPD, XRCC1, XRCC3 and hOGG1 genetic polymorphisms were detection by PCR- restriction fragment length polymorphism (PCR-RFLP) analysis and two new techniques for rapid genotyping of SNPs, that is di-allele-specific-amplification with artificially modified primer (diASA- AMP) and dual-color fluorescence hybridization chip. Logistic regression model was applied to screen 19 possible environmental risk factors and to analyze the gene-gene interaction to lung cancer. A case study was carried out to explore the possible gene-environment interaction in lung cancer development of Chinese Han population. Furthermore, detection efficiency and application foreground of two new methods, diASA-AMP and dual-color fluorescence hybridization chip, were evaluated in this study.
     The principal results were as follows:
     1. The relationship between the polymorphisms of metabolic enzyme genes and susceptibility to lung cancer
     A case-control epidemiological investigation was performed in which 227 hospital controls were matched to 227 original lung cancer cases by gender, ethnicity, and age(±5 years). Three milliliters of venous blood was collected from each patient and control. DNA was isolated from whole blood cells. The different gene alleles were determined by PCR-RFLP, diASA-AMP and dual-color fluorescence hybridization chips. The polymorphisms of CYP1A1, CYP1B1, CYP2C19, CYP2D6, CYP2E1, GSTM1, GSTT1, GSTP1, mEH, NAT2 and NQO1 genes were examined and analyzed statistically. The results showed that CYP1A1 mutation genotypes, GSTT1 null genotype and NAT2 M3 allele were related to the risk of lung squamous cell carcinoma and OR were 2.07(95%CI=1.10-3.92), 1.90(95%CI=1.09-3.30), 1.63(95%CI =1.03-2.59), respectively. The CYP2C19 mutation genotypes were associated with the risk of lung cancer (both squamous cell carcinoma and adenocarcinoma), especially in squamous cell carcinoma (OR=2.25,95%CI=1.14-4.44). It was shown that there was no difference in genotype distribution of CYP1B1, CYP2D6, CYP2E1, GSTM1, GSTP1, mEH and NQO1 between cases and controls. The relationship between genetic polymorphism of CYP1B1 andsusceptibility of lung cancer was first investigated in Chinese Han population.
     2. The relationship between the polymorphisms of DNA repair enzyme genes and susceptibility to lung cancer
     The different gene alleles were determined by PCR-RFLP, diASA-AMP and dual-color fluorescence hybridization chips. The polymorphisms of XPA, XPD, XRCC1, XRCC3 and hOGG1 genes were examined and analyzed statistically. The results showed that XRCC1 mutation genotypes were related to the risk of lung adenocarcinoma (OR=1.91, 95%CI=1.12-3.23). The XPD mutation genotypes were associated with a 3.13-fold increase (95%CI=1.78-5.49) in risk of lung cancer. It was associated with risk both in lung squamous cell carcinoma (OR=3.20, 95%CI= 1.57-6.51) and in lung adenocarcinoma (OR=3.00,95%CI=1.19-7.56). It was shown that there was no difference in genotypes distribution of XPA, XRCC3 and hOGG1 between cases and controls. The relationship between genetic polymorphisms of XPA and XRCC3 and susceptibility of lung cancer was first investigated in Chinese Han population. The genotype distribution of XPA A23G mutation was first reported in Chinese Han population.
     3. Study on the gene-gene interaction between the polymorphisms of metabolic enzyme and DNA repair enzyme genes to lung cancer
     The gene-gene interactions between the polymorphisms of metabolic enzyme and DNA repair enzyme genes were analyzed by multivariate logistic regression. The significant interactions of synergistic effect between CYP1A1 mutation genotype and GSTM1 null genotype (OR=2.23), CYP2C19 mutation genotype and NQO1 mutation genotype (OR=2.61), mEH-exon3 mutation genotype and NQO1 mutation genotype (OR=2.47), CYP2C19 mutation genotype and XPA mutation genotype (OR=4.55) were found respectively in the risk of lung cancer. Individuals with two mutation genotypes presented significantly higher risks to lung cancer than with only one of the two mutant genotypes.
     4. A case-control study on the environmental risk factors to lung cancer
     The data of 19 environmental risk factors related to lung cancer were collected and analyzed statistically from each case and control, which included sociodemographic characteristics, lung disease history, smoking habit, cooking oil fume intake, occupational history, coal fume intake, and family history of cancer so on with a questionnaire. Single factor analysis and conditional multiple logistic regression were applied to screen environmental risk factors. The results showed that the environmental risk factors related with squamous cell lung carcinoma were lung disease history, smoking index and occupational exposure. Summary population attributable risk for the three factors above was 67.24%. The environmental risk factors related to lung adenocarcinoma were lung disease history, smoking index, heavy oil fume in cooking, using coal stove years, family history of cancer. Summary population attributable risk for the five factors above was 58.92%.
     5. A case-only study on the gene-environment interactions to lung cancer
     A case-only study was carried out to explore the possible gene-environment interaction in lung cancer development of Chinese Han population. Combination analysis of environmental risk factors and polymorphisms of metabolic enzyme and DNA repair genes showed that there was a synergistic effect on development of lung cancer between smoking and CYP1A1 mutation genotype(OR=2.29, 95%CI= 1.31-3.98) or hOGG1 mutation genotype(OR=2.30, 95%CI=1.00-5.27), respectively. A synergistic effect between GSTP1 mutation genotype or XPD mutation genotype and using coal stove no more than 20 years was also found in the risk of lung cancer, OR was 2.23(95%CI=1.09-4.54)and 3.12(95%CI= 1.42-6.85), respectively.
     6. Application of diASA-AMP method in the detection of genetic polymorphism related with lung caner susceptibility
     DiASA-AMP was a new technique for rapid genotyping of SNPs, which was invention of our cooperation research group from professor Zhou 's laboratory in East China Research Institute for Medical and Biotechnics. DiASA-AMP method was evaluated for population screening of SNPs and applied to type CYP1B1, GSTP1, hOGG1 and XPD polymorphisms. The results showed that the allele frequencies of CYP1B1, GSTP1, hOGG1 and XPD in our control population (CYP1B1: C 84.1%, G 15.9%; GSTP1: A 77.1%, G 22.9%; hOGG1: C 39.4%, G 60.6%; XPD: A 93.3%, C 6.7%) were similar to other Chinese studies (CYP1B1: C 83.0%, G 17%; GSTP1: A 75.6%, G 24.4%; hOGG1: C 44.9%, G 55.1%; XPD: A 92.8%, C 7.2%). Furthermore, 15 samples of CYP1B1, GSTP1 and hOGG1 gene were randomly selected for DNA direct sequence. The sequencing results were consistent with diASA-AMP results. 115 samples of XPD gene were randomly selected for PCR-RFLP. The results of 4 samples were not match between diASA-AMP and PCR-RFLP. The accuracy frequency of diASA-AMP was 96.5%. The result ofχ2 test showed that diASA-AMP genotyping for SNP was a high consistent with PCR-RFLP (Kappa=0.90,95%CI=0.81-1.00).
     7. Application of dual-color fluorescence hybridization chip technique in the detection of genetic polymorphism related with lung caner susceptibility
     Dual-color fluorescence hybridization chip method was a new high-throughput approach for genotyping of SNPs for population study. It was invention of our cooperation group supervised by professor Lu of Laboratory of Molecular and Biomolecular Electronics (Southeast University). Dual-color fluorescence hybridization chip method was evaluated for population screening of SNPs and applied to type CYP1A1 and XRCC3 polymorphisms. The results showed that the results of CYP1A1 genotyping in 152 samples by dual-color fluorescence hybridization chip were consistent with PCR-RFLP results. The allele frequencies of XRCC3 gene in our control population (C 94.1%, T 5.9%) were similar to other Chinese studies (C 94.1%-95.2%, T 4.8%-5.9%). 125 samples of XPD gene were randomly selected for PCR-RFLP. The results of 2 samples were not match between dual-color fluorescence hybridization chip results and PCR-RFLP results. The accuracy frequency of dual-color fluorescence hybridization chip was 98.4%. The result ofχ2 test showed that dual-color fluorescence hybridization chip genotyping for SNP was a high consistent with PCR-RFLP (Kappa=0.97,95%CI=0.92-1.01).
     From all results described above, we can get preliminary conclusions as follows:
     1. CYP1A1, CYP2C19, GSTT1, NAT2, XPD and XRCC1 genetic polymorphisms were associated with the susceptibility to lung cancer in Chinese Han population. CYP1A1 mutation genotypes, GSTT1 null genotype and NAT2 M3 allele were related to the risk of lung squamous cell carcinoma. XRCC1 mutation genotypes were related to the risk of lung adenocarcinoma. The CYP2C19, XPD mutation genotypes were associated with risk of both lung squamous cell carcinoma and lung adenocarcinoma. The risk of lung cancer was increased significantly in individuals who carried high-risk genotypes in both CYP1A1 and GSTM1, both CYP2C19 and NQO1, both mEH-exon3 and NQO1, or both CYP2C19 and XPA.
     2. Lung disease history, smoking index and occupational exposure were environmental risk factors of squamous cell lung carcinoma. Lung disease history, smoking index, heavy oil fume in cooking, using coal stove years and family history of cancer were environmental risk factors of lung adenocarcinoma.
     3. There was a synergistic effect on development of lung cancer between CYP1A1 mutation genotype or hOGG1 mutation genotype and smoking, between GSTP1 mutation genotype or XPD mutation genotype and using coal stove no more than 20 years, respectively. The results showed that analysis of gene-gene and gene-environment interactions was helpful to identification of susceptible individuals and screening high-risk group.
     4. DiASA-AMP and dual-color fluorescence hybridization chip technique were specific and accurate on SNP genotyping. DiASA-AMP is a convenient, time-saving and cost-effective method compared with PCR-RFLP. It could be applied for a rapid detection of the gene polymorphisms related to tumor susceptibility in a middling size population. Dual-color fluorescence hybridization chip is an automatism and high-throughput tool, and is promising for SNP genotyping in a large population.
引文
1. Parkin D M, Bray F, Ferlay J,et al. Global Cancer Statistics, 2002[J]. CA Cancer J Clin, 2005, 55:74-108.
    2. Vineis P, Veglia F, Benhamou S, et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls[J]. Int J Cancer, 2003, 104(5):650-657.
    3. Taioli E, Gaspari L, Benhamou S, et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years[J]. Int J Epidemiol, 2003,32:60-63.
    4. Wrensch M R, Miike R, Sison JD, et al. CYP1A1 variants and smoking-related lung cancer in San Francisco Bay area Latinos and African Americans[J]. Int J Cancer, 2005, 113(1):141-147.
    5. Nakachi K, Imai K, Hayashi S, et al. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose [J]. Cancer Res, 1991, 51:5177-5180.
    6. Nakachi K, Imai K, Hayashi S, et al. Polymorphisms of the CYP1A1 and glutathione s-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population [J]. Cancer Res, 1993, 53: 2994-2999.
    7. Sobti R, Sharma S, Joshi A, et al. Genetic polymorphism of the CYP1A1, CYP2E1, GSTM1 and GSTT1 genes and lung cancer susceptibility in a north Indian population[J]. Mol Cell Biochem, 2004, 266(1-2):1-9.
    8. 宋南, 谭文, 唐槐静, 等. 中国人细胞色素 P450IA1 基因变异与吸烟相关性肺癌的风险[J]. 癌症, 1999,18(5):495-498.
    9. 周新文, 石云, 周宜开. CYP1A1 基因多态性与肺癌个体易感性研究[J]. 环境与职业医学, 2002, 19(6):355-357,387.
    10. 瞿永华, 石于波, 钟礼杰, 等. 非吸烟女性肺癌患者 CYP1A1 和 GSTM1 基因型[J]. 肿瘤, 1998, 18: 80-83.
    11. 汪保国, 陈思东, 周卫平,等. 细胞色素P4501A1 和谷胱苷肽硫转移酶基因多态性与肺癌关系的病例对照研究[J]. 中华肿瘤杂志,2004,26(2):93-97.
    12. 董彩婷, 杨青, 江宾,等. 四川人群中 CYP1A1 基因 Ile-Val 和 MspI 位点多态性与肺癌易感性的研究[J]. 中国肺癌杂志, 2004, 7(1):38-42.
    13. Kiyohara C, Nakanishi Y, Inutsuka S, et al. The relationship between CYP1A1 aryl hydrocarbon hydroxylase activity and lung cancer in a Japanese population[J]. Pharmacogenetics, 1998, 8(4): 315-323.
    14. Landi M T, Bertazzi P A, Shields P G, et al. Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans [J]. Pharmacogenetics, 1994, 4(5): 242- 246.
    15. Jacquet M, Lambert V, Baudoux E, et al. Correlation between P450 CYP1A1 inducibility, MspI genotype and lung cancer incidence [J]. Eur J Cancer, 1996, 32A(10):1701-1706.
    16. Shimada T, Hayes C L, Yamazaki H, et al. Activation of chemically diverse procarcinogens by human cytochrome P4501B1 [J]. Cancer Res, 1996, 56: 2979-2984.
    17. Murray G I, Taylor M C, Mcfadyen N C, et al. Tumor specific expression of cytochrome P450 CYP1B1 [J]. Cancer Res, 1997, 57:3026-3031.
    18. Watanabe J, Shimada T, Gillam E M, et al. Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer [J]. Pharmacogenetics, 2000, 10: 25-33.
    19. Zheng W, Xie D W, Jin F, et al. Genetic polymorphism of cytochrome P450-1B1 and risk of breastcancer [J]. Cancer Epidemiol Biomarkers Prev, 2000, 9: 147-150.
    20. Sasaki M, Tanaka Y, Okino S T, et al. Polymorphisms of the CYP1B1 gene as risk factors for human renal cell cancer [J]. Clin Cancer Res, 2004, 10: 2015-2019.
    21. Sasaki M, Tanaka Y, Kaneuchi M, et al. CYP1B1 gene polymorphisms have higher risk for endometrial cancer,and positive correlations with estrogen receptor αand estrogen receptorβ expressions [J]. Cancer Res, 2003, 63: 3913-3918.
    22. Tang Y M, Green B L, Chen G F, et al. Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African-Americans,Caucasians and Chinese; oestradiol hydroxylase activity; and distribution in prostate cancer cases and controls [J]. Pharmacogenetics, 2000, 10: 761-766.
    23. Ko Y, Abel J, Harth V, et al. Association of CYP1B1 codon 432 mutant allele in head and neck squamous cell cancer is reflected by somatic mutations of p53 in tumor tissue [J]. Cancer Res, 2001, 61: 4398-4404.
    24. Wu M F, Wu W J, Chang G C, et al. Increased expression of cytochrome P4501B1 in peripheral leukocytes from lung cancer patients[J]. Toxicol Lett, 2004, 150(2):211-219.
    25. Goldstein J A, Faletto M B, Romker G W, et al. Evidence that CYP2C19 is the major S-mephenytoin 4′-hydroxylase in humans[J]. Biochemistry, 1994, 33: 1743-1752.
    26. de Morais S M, Wilkinson G R, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans [J]. J Biol Chem, 1994, 269: 15419-15422.
    27. Xiao Z S, Goldstein J A, Xie H G, et al. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele[J]. J Pharmacol Experi Ther, 1997, 281: 604-609.
    28. Shu Y, Wang L S, Xiao W M, et al. Probing CYP2C19 and CYP3A4 activities in Chinese liver microsomes by quantification of 5-hydroxyomeprazole and omeprazole sulphone[J]. Acta Pharmacol Sin, 2000, 21:753-758.
    29. Brockmoller J, Cascorbi I, Kerb R, et al. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk [J]. Cancer Res, 1996, 56: 3915-3925.
    30. Shi W X, Chen S Q. Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer, stomach cancer, lung cancer and bladder cancer in Chinese population [J]. World J Gastroenterol, 2004, 10(13): 1961-1963.
    31. 赵鲁杭, 陈枢青, 余国伟, 等. 细胞色素 P4502C19 基因多态性与肺癌易感性的关系[J]. 中华结核和呼吸杂志, 1999,22(11):682.
    32. Bouchardy C, Benhamous S, Dayer P. The effect of tobacco on lung cancer risk depends on CYP2D6 activity [J]. Cancer Res, 1996,56:251-253.
    33. Kato S, Bowman K D, Harrington A M, et al. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo[J]. J Natl Cancer Inst, 1995, 87:902-907.
    34. Christensen P M, Gotzsche P C, K Brosen. The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of lung cancer: a meta-analysis [J]. Eur J Clin Pharmacol, 1997, 51(5): 389-393.
    35. 高坚瑞, 任香兰, 张桥. CYP2D6, GSTM1 遗传多态性与肺癌易感性关系[J].中华肿瘤杂志, 1998,20:185-186.
    36. Stephens E A, Taylor J A, Kaplan N, et al. Ethnic variation in the CYP2E1 gene: Polymorphism analysis of 695 African-Americans, European- Americans and Taiwanese [J]. Pharmacogenetics, 1994,4:185-192.
    37. Uemastu F, Ikawa S, Kikuchi H, t al. Restriction fragment length polymorphism of the human CYP2E1(cytochrome P4502E1) gene and susceptibility to lung cancer: possible relevance to low smoking exposure [J]. Pharmacogenetics, 1994, 4: 58-63.
    38. Hirvonen A, Husgafvel-pursiainen K, Anttila S,et al.The human CYP2E1 gene and lung cancer: DraⅠand RsaⅠrestriction fragment length polymorphisms in a Finnish study population [J]. Carcinogenesis,1993,14:85-88.
    39. 石云, 周新文, 周宜开, 等. CYP2E1、GSTM1 基因多态性与肺癌、食管癌易感性研究[J]. 华中科技大学学报(医学版), 2002, 31(1):14-17.
    40. 汪保国, 陈思东, 陈阳,等. 细胞色素 P4502E1 和 1A1 多态性与肺癌关系的病例对照研究[J]. 肿瘤防治杂志,2004,11(7): 681-684.
    41. 李代蓉, 周清华, 袁天柱, 等. GSTM1 和 CYP2E1 基因多态性与肺癌遗传易感性关系的研究[J]. 中国肺癌杂志, 2005, 8(1): 14-19.
    42. 瞿永华, 石于波, 钟礼杰, 等. 细胞色素 P4502E1 (CYP2E1)的遗传多态性与非吸烟女性肺癌的危险度[J]. 癌变畸变突变,1998, 10(6):355-358.
    43. 蓝青, 何兴舟, Debra Costa, 等.谷胱甘肽硫转移酶基因 GSTM1 及 GSTT1 缺失与肺癌发病关系的研究[J].卫生研究, 1999, 28(1): 9-11.
    44. 冷曙光, 宋文佳, 王雅文, 等. 中国汉族人口三种谷胱甘肽 S-转移酶基因多态性分析[J].中华预防医学杂志, 2001, 35(3): 159-162.
    45. Saarikoski S T, Voho A, Reinikainen M, et al. Combined effect of polymorphic GST genes on individual susceptibility to lung cancer [J]. Int J Cancer, 1998,77(4):516-521.
    46. Chen C L, Liu Q, Relling M V. Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks [J]. Pharmacogenetics, 1996,6(2): 187-191.
    47. Lihara M, Noda K. Lung cancer risk of the GSTM1 null genotype is enhanced in the presence of the GSTP1 mutated genotype in male Japanese smokers[J]. Cancer Lett, 1999, 137:53-60.
    48. Kim Y C, Park K O, Hwang J H, et al. Genetic polymorphism of epoxide hydrolase and GSTMl in lung cancer susceptibility[J].Lung cancer,2003,41:s114.
    49. Belogubova E V, Togo A V, Karpova M B, et al. A novel approach for assessment of cancer predisposing roles of GSTM1 and GSTT1 genes: use of putatively cancer resistant elderly tumor-free smokers as the referents[J]. Lung Cancer, 2004, 43(3):259-266.
    50. Nazar-Stewart V, Vaughan T L, Stapleton P, et al. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer[J]. Lung Cancer, 2003, 40(3): 247-258.
    51. Ruano-Ravina A, Figueiras A, Loidi L, et al. GSTM1 and GSTT1 polymorphisms, tobacco and risk of lung cancer: a case-control study from Galicia, Spain[J]. Anticancer Res, 2003, 23: 4333-4337.
    52. Pinarbasi H, Silig Y, Cetinkaya O, et al. Strong association between the GSTM1-null genotype and lung cancer in a Turkish population[J]. Cancer Genet Cytogenet, 2003,146(2): 125-129.
    53. 董彩婷, 杨青, 王绵珍, 等. CYP1A1 基因多态性和 GSTM1 缺失与肺癌易感性的关系[J]. 环境与职业医学,2004,21(6):440-442.
    54. Rebbeck T R. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1and GSTT1 in cancer susceptibility[J]. Cancer Epidemiol Biomarkers Prev, 1997, 6:733-743.
    55. 吴翠玲, 陈思东, 林广平, 等. CYP1A1 和 GSTM1 基因多态与肺癌发病关系的病例-对照研究[J]. 华南预防医学, 2003,29:13-16.
    56. Yang X R, Wacholder S, Xu Z, et al. CYP1A1 and GSTM1 polymorphisms in relation to lung cancer risk in Chinese women[J]. Cancer Lett, 2004, 214:197–204.
    57. Schneider J, Bernges U, Philipp M, et al. GSTM1, GSTT1, and GSTP1 polymorphism and lung cancer risk in relation to tobacco smoking[J]. Cancer Lett, 2004, 208: 65-74.
    58. Chan-Yeung M, Tan-Un K C, Ip M S, et al. Lung cancer susceptibility and polymorphisms of glutathione-S-transferase genes in Hong Kong[J]. Lung Cancer,2004, 45(2):155-160.
    59. Sorensen M, Autrup H, Tjonneland A, et al. Glutathione S-transferase T1 null-genotype is associated with an increased risk of lung cancer[J]. Int J Cancer, 2004, 110: 219-224.
    60. Lewis S J, Cherry N M, Niven R M, et al. GSTM1, GSTT1 and GSTP1 polymorphisms and lung cancer risk[J]. Cancer Lett, 2002,180:165-171.
    61. Benhamou S, Lee W J, Alexandrie A, et al. Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk[J]. Carcinogenesis, 2002, 23:1343-1350.
    62. 韩泽民,熊密,马志明,等. 人肺癌 GSTM1 基因多态性与 p53 突变的相关性[J]. 华中科技大学学报(医学版),2003,32:131-135.
    63. Peluso M, Neri M, Margarino G, et al. Comparison of DNA adduct levels in nasal mucosa, lymphocytes and bronchial mucosa of cigarette smokers and interaction with metabolic gene polymorphisms[J]. Carcinogenesis, 2004,25(12):2459-2465.
    64. Weiserbs K F, Jacobson J S, Beqq M D, et al. A cross-sectional study of polycyclic aromatic hydrocarbon-DNA adducts and polymorphism of glutathione S-transferases among heavy smokers by race/ethnicity[J]. Biomarkers, 2003, 8(2):142-155.
    65. Nelson H H, Wiencke J K, Christiani D C, et al. Ethnic differencer in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta[J]. Carcinogenesis, 1995, 16: 1243-1245.
    66. 朱益民, 陈坤. 谷光甘肽 S 转移酶(M1,T1)多态性与大肠癌综合危险性的 Meta 分析[J]. Journal of practical oncology, 2001,16(4): 280-281.
    67. Maria T, Francesco D, Rossana P, et al. Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia[J]. Blood, 2002, 100(8): 2703-2707.
    68. 薛开先,许林,陈森清,等. CYP1A1、GSTM1 的遗传多态性与中国人肺癌易感性的关系[J]. 癌变畸变突变, 1999,11(6):326.
    69. 陈艳,吴春玲,戴宇飞,等. 谷光甘肽 S 转移酶 T1 基因型与苯中毒遗传易感性[J].卫生毒理学杂志, 2002,16(4):216-218.
    70. Gallegos-Arreola M P, Gomez-Meda B C, Morgan-Villela G, et al. GSTT1 gene deletion is associated with lung cancer in Mexican patients[J]. Dis markers, 2003, 19(6):259-261.
    71. Sologovic J, Kalina I, Stubna J, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 as a risk factor in lung and bladder cancers [J]. Newplasma, 1998,45:L312-317.
    72. Wang J W, Deng Y F, Cheng J L, et al. GST genetic polymorphisms and lung adenocarcinoma susceptibility in a Chinese population [J]. Cancer Lett, 2003, 201: 185-193.
    73. Alexandrie A K, Nyberg F, Warholm M, et al. Influence of CYP1A1, GSTM1, GSTT1, and NQO1 genotypes and cumulative smoking dose on lung cancer risk in a Swedish population[J]. CancerEpidemiol Biomarkers Prev, 2004,13(6):908-914.
    74. Ali-Osman F, Akande O, Antoun G, et al. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytial activity of the encoded proteins [J]. J Biol Chem, 1997, 272(15): 10004-10012.
    75. Hu X, O’Donnell R, Srivastava S K,et al. Active site architecture of polymorphic forms of human glutathione S-transferase P1-1 accounts for their enantioselectivity and disparate activity in the glutathione conjugation of 7beta, 8alpha-dihydroxy-9alpha, 10alpha-oxy-7,8, 9, 10- tetrahydrobenzo(a)pyrene[J]. Biochem Biophys Res Commun, 1997,235(2):424-428.
    76. Watson M A, Stewart R K, Smith G B, et al. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution[J]. Carcinogenesis, 1998,19(2):275-280.
    77. Anttila S, Hirvonen A, Vainio H, et al. Immunohistochemical localization of glutathione S-transferases in human lung [J]. Cancer Res, 1993, 53:5643-5648.
    78. Ryberg D, Skaug V, Hewer A, et al. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk [J]. Carcinogenesis, 1997, 18: 1285-1289.
    79. Stucker I, Hirvonen A, de Waziers I, et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility [J]. Carcinogenesis, 2002, 23: 1475-1481.
    80. Lin P P, Hsueh Y M, Ko J L, et al. Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan [J]. Lung Cancer, 2003, 40: 123-129.
    81. Harris M J, Coggan M, Langton L, et al. Polymorphism of the Pi glutathione S-transferase in normal populations and cancer patients [J]. Pharmacogenetics, 1998, 8: 27-31.
    82. Wang Y F, Spitz M R, Schabath M B, et al. Association between glutathione S-transferase p1 polymorphisms and lung cancer risk in Caucasians: a case-control study [J]. Lung Cancer, 2003, 40: 25-32.
    83. Katoh T, Kaneko S, Takasawa S, et al. Human glutathione S-transferase P1 polymorphism and susceptibility to smoking related epithelial cancer: Oral, lung, gastric, colorectal and urothelial cancer [J]. Pharmacogenetics, 1999, 9:165-169.
    84. To-Figueras J, Gene M, Gomez-Catalan J, et al. Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk [J]. Cancer Causes Control, 1999, 10: 65-70.
    85. Benhamou S, Reinikainen M, Bouchardy C, et al. Association between lung cancer and microsomal epoxide hydrolase genetypes. Cancer Res, 1998,58: 5291-5293.
    86. Gsur A, Zidek T, Schnattinger K, et al. Association of microsomal epoxide hydrolase polymorphisms and lung cancer risk[J]. Br J Cancer, 2003, 89: 702-726.
    87. Smith C A, Harrison D J. Association between polymophism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet, 1997,350:630-633
    88. Cajas-Salazar N, Au W W, Zwischenberger J B, et al. Effect of epoxide hydrolase polymorphisms on chromosome aberrations and risk for lung cancer [J]. Cancer Genetics and Cytogenetics, 2003, 145:97-102.
    89. Persson I, Johansson I, Lou Y C, et al. Genetic polymorphism of xenobiotic metabolizing enzymes among Chinese lung cancer patients [J]. Int J Cancer, 1999, 81:325-329.
    90. Hung R J, Boffetta P, Brennan P, et al. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population [J].Int J Cancer, 2004,110(4): 598-604.
    91. Tsukino H, Kuroda Y , Nakao H, et al. Cytochrome P450 (CYP) 1A2, sulfotransferase (SULT) 1A1, and N-acetyltransferase (NAT) 2 polymorphisms and susceptibility to urothelial cancer[J]. J Cancer Res Clin Oncol, 2004,130(2): 99-106.
    92. 郝钢跃, 张维东, 陈永和, 等. NAT2 基因多态性与膀胱癌遗传易感性的关系[J]. 中华肿瘤杂志, 2004, 26(5):283-286.
    93. Hamasaki T, Inatomi H, Katoh T, et al. N-acetyltransferase-2 gene polymorphism as a possible biomarker for prostate cancer in Japanese men [J]. Int J Urol, 2003, 10(3): 167-173.
    94. 高建平,黄跃东,林经安,等. N-乙酰基转移酶基因多态性与肝癌易感性的关系[J].中华肝脏病杂志, 2003,11(1):20-22.
    95. Hel O L, Peeters P H, Hein D W, et al. NAT2 slow acetylation and GSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women [J]. Pharmacogenetics, 2003, 13(7):399-407.
    96. 何路军, 姜玲玲, 刘敬闪,等. NAT2 基因多态性与河北省汉族人大肠癌的相关性 [J].第四军医大学学报,2004,25(2):163-165.
    97. Hou S M, Ryberg D, Falt S, et al. GSTM1 and NAT2 polymorphisms in operable and non-operable lung cancer patients [J]. Carcinogenesis, 2000, 21(1):49-54.
    98. Seow A, Zhao B, Poh W T, et al. NAT2 slow acetylator genotype is associated with increased risk of lung cancer among non-smoking Chinese women in Singagore [J]. Carcinogenesis, 1999, 20(9):1877-1881.
    99. 高建平,黄跃东,朱青川,等. N-乙酰基转移酶基因多态性与肺癌的相关性[J]. 中国肿瘤, 2002,11(10):579-580.
    100. Cascorbi I, Brockmoller J, Mrozikiewicz P M, et al. Homozygous rapid arylamine N-acetyltransferase (NAT2) genotype as a susceptibility factor for lung cancer [J]. Cancer Res, 1996, 56(17): 3961-3966.
    101. Wikman H, Thiel S, Jager B, et al. Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility [J]. Pharmacogenetics, 2001,11(2): 157-168.
    102. Traver R D, Horikoshi T, Danenberg K D, et al. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells:characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity[J]. Cancer Res, 1992, 52(4):797-780.
    103. Wiencke J K, Spitz M R, McMillan A, et al. Lung cancer in Mexicar-Americans and African-Americans is associated with the wild-type genotype of the NAD(P)H:quinone oxidoreductase polymorphism [J]. Cancer Epidemiol Biomarkers Prev, 1997, 6(2): 87-92.
    104. Lin P P, Wang H J, Lee H. NAD(P): quinone oxidoreductase polymorphism and lung cancer in Taiwan [J]. J Toxicol Environ Health, 1999,58(4):187-197.
    105. 林月好, 卢锡林, 邵明, 等. 基因多态性与肺癌遗传易感性[J]. 癌症, 2000, 19(5): 450- 452.
    106. Lewis S J, Cherry N M, Niven R M, et al. Polymorphisms in the NAD(P)H: quinone oxidoreductase gene and small cell lung cancer risk in a UK population[J]. Lung Cancer, 2001, 34: 177-183.
    107. Bock C H, Wenzlaff A S, Cote M L, et al. NQO1 T allele associated with decreased risk of later age at diagnosis lung cancer among never smokers: results from a population-based study[J]. Carcinogenesis, 2005, 26(2):381-386.
    108. Park J Y, Park S H, Choi J E, et al. Polymorphisms of the DNA repair gene xerodermapigmentosum group A and risk of primary lung cancer[J]. Cancer Epidemiol Biomarkers Prev, 2002,11: 993-997.
    119. Butkiewicz D, Popanda O, Risch A, et al. Association between the risk for lung adenocarcinoma and a (-4) G-to-A polymorphism in the XPA gene[J]. Cancer Epidemiol Biomarkers Prev, 2004, 13(12):2242-2246.
    110. Wu X, Zhao H, Wei Q, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity[J]. Carcinogenesis, 2003, 24(3): 505-509.
    111. Moller P, Wallin H, Dybdahl M, et al. Psoriasis patients with basal cell carcinoma have more repair-mediated DNA strand-breaks after UVC damage in lymphocytes than psoriasis patients without basal cell carcinoma[J]. Cancer Lett, 2000,151(2): 187-192.
    112. 朱守民. 健康人群吸烟、DNA 损伤与 DNA 修复基因多态研究[J]. 职业卫生与应急救援, 2003, 21(1):45.
    113. Qiao Y, Spitz M R, Shen H, et al. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes [J]. Carcinogenesis, 2002,
    23: 295-299.
    114. Xing D, Tan W, Wei Q Y, et al. Polymorphisms of the DNA repair gene XPD and risk of lung cancer in a Chinese population [J]. Lung Cancer, 2002, 38:123-129.
    115. 邢德印, 齐军, 谭文, 等. 北京地区汉族人群 DNA 修复基因 XPD 单核苷酸多态性与肺癌及食管癌风险的研究[J].中华医学遗传学杂志,2003,20:35-38.
    116. Liang G, Xing D, Miao X, et al. Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population[J]. Int J Cancer, 2003,105(5):669-673.
    117. Hu Z, Wei Q, Wang X, et al. DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis[J]. Lung Cancer, 2004, 46:1-10.
    118. Vogel U, Laros I, Jacobsen NR, et al. Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer[J]. Mutat Res, 2004, 546:65-74.
    119. Spitz M R, Wu X F, Wang Y F, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer Patients [J]. Cancer Res, 2001,61: 1354-1357.
    120. Chen S Q, Tang D L, Xue K X, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population [J]. Carcinogenesis, 2002, 23: 1321-1325.
    121. Park J Y, Lee S Y, Jeon H, et al. Lys751Gln polymorphism in the DNA repair gene XPD and risk of primary lung cancer [J]. Lung Cancer, 2002, 36: 15-16.
    122. David-Beabes G L, Lunn R M, London S J. No Association between the XPD (Lys751 G1n) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer Risk [J]. Cancer Epidemiol Biomarkers Prev, 2001,10: 911-912.
    123. Misra R R, Ratnasinghe D, Tangrea J A, et al. Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland [J]. Cancer Lett, 2003, 191:171-178.
    124. Butkiewicz D, Rusin M, Enewold L, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer [J]. Carcinogenesis, 2001,22: 593-597.
    125. Lunn R M, Langlois R G, Hsich L L, et al. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency[J]. Cancer Res, 1999,59: 2557- 2561.
    126. Lei Y C, Hwang S J, Chang C C, et al. Effects on sister chromatid exchange frequency of polymorphisms in DNA repair gene XRCC1 in smokers[J]. Mutat Res, 2002,519:93- 101.
    127. Abdel-Rahman S Z, El-Zein R A. The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK [J]. Cancer Lett, 2000,159:63-71.
    128. 宋春英,谭文,林东昕. 中国人 DNA 修复基因 XRCC1 单核苷酸多态性及其与食管癌风险的关系[J].癌症,2001,20(1):28-31.
    129. Olshan A F, Watson M A, Weissler M C, et al. XRCC1 polymorphisms and head and neck cancer[J]. Cancer Lett, 2002,178:181-186.
    130. Rossit A R B, Cabral I R, Hackel C, et al. Polymorphisms in the DNA repair gene XRCC1 and susceptibility to alcoholic liver cirrhosis in older Southeastern Brazilians [J]. Cancer Lett, 2002, 180:173-182.
    131. Abdel-Rahman S Z, Soliman A S, Bondy M L, et al. Inheritance of the 194Trp and 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt [J]. Cancer Lett, 2000,159:79-86.
    132. Park J Y, Lee S Y, Jeon H S, et al. Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer [J]. Cancer Epidemiol Biomarkers Prev, 2002, 11: 23-27.
    133. Divine K K, Gilliland F D, Crowell R E, et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung [J]. Mutat Res, 2001,461:273-278.
    134. David-Beabes G L, London S J. Genetic polymorphism of XRCC1 and lung cancer risk among African-Americans and Caucasians [J]. Lung Cancer, 2001,34:333-339.
    135. Casse C, Hu Y C h, Ahrendt S A. The XRCC1 codon 399 Gln allele is associated with adenine to guanine p53 mutations in non-small cell lung cancer [J]. Mutat Res, 2003,528: 19-27.
    136. Wood R D, Mitchell M, Sgouros J, et al. Human DNA Repair Genes [J]. Science, 2001,
    291(5507): 1284-1289.
    137. Cui X, Brenneman M, Meyne J, et al. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells [J]. Mutat Res, 1999, 434(2): 75-88.
    138. Pierce A J, Johnson R D, Thompson L H, et al. XRCC3 promotes homology- directed repair of DNA damage in mammalian cells [J]. Genes Dev, 1999,13(20): 2633-2638.
    139. Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphism, smoking and (32)P-DNA adducts in a sample of healthy subjects [J]. Carcinogenesis, 2001,22(9): 1437-1445.
    140. Smith T R, Miller M S, Lohman K, et al. Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer [J]. Cancer Lett, 2003, 190: 183-190.
    141. 张忠彬, 管继如, 叶榕, 等. 某些同源重组修复基因多态性与慢性苯中毒风险性关系研究[J]. 中国职业医学, 2004,31(5):8-11.
    142. Shen H B, Wang X R, Hu Z B, et al. Polymorphisms of DNA repair gene XRCC3 Thr241Met and risk of gastric cancer in a Chinese population [J]. Cancer Lett, 2004, 206: 51-58.
    143. Poulsen H E, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion [J]. Eur J Cancer Prev, 1998,7:9-16.
    144. Arai K, Morishita K, Shinmura K, et al. Clonling of a human homolog of yeast OGG1 gene, that is involved in the repair of oxidative DNA damage [J]. Oncogene, 1997,14:2857- 2861.
    145. Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA [J]. Oncogene, 1998, 16:3219-3225.
    146. Marchand L L, Donlon T, Lum-Jones A, et al. Association of the hOGG1 Ser326Cys Polymorphism with Lung Cancer Risk [J]. Cancer Epidemiol Biomarkers Prev, 2002, 11:409-412.
    147. Lu R, Nash H M, Verdine G L. A mammalian DNA repair enzyme that exicise oxidatively damaged quanines maps to a locus frequently lost in lung cancer [J]. Curr Biol, 1997, 7:397- 407.
    148. Park J, Chen L, Tockman M S, et al. The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk[J]. Pharmacogenetics, 2004, 14: 103-109.
    149. Hardie L J, Briggs J A, Davidson L A, et al. The effect of hOGG1 and glutathione peroxidase I genotypes and 3p chromosomal loss on 8-hydroxydeoxyguanosine levels in lung cancer [J]. Carcinogenesis, 2000, 21:167-172.
    150. Wikman H, Risch A, Klimek F, et al. hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a caucasian population [J]. Int J Cancer, 2000, 88:932-937.
    151. Sugimura H, Kohno T, Wakai K, et al. hOGG1 Ser326Cys polymorphism and lung cancer susceptibility [J]. Cancer Epidemiol Biomarkers Prev, 1999, 8:669-674.
    152. Ito H, Hamajima N, Takezaki T, et al. A limited association of OGG1 Ser326Cys polymorphism for adenocarcinoma of the lung [J]. J Epidemiol, 2002, 12(3): 258-265.
    153. Hayashi S, Watanabe J, Kawajiri K, et al. High susceptibility to lung cancer analyzed in terms of combined genotypes of p4501a1 and Muclass glutathione S-transferase gene[J]. Jpn J Cancer Res,1992,83(8):866-870.
    154. Hung R J, Boffetta P, Brockmoller J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis[J]. Carcinogenesis, 2003,
    24(5):875-882.
    155. Hengstler J G, Arand M, Herrero M E, et al. Polymorphisms of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility[J]. Recent Results Cancer Res, 1998,154:47-85.
    156. Habalova V, Salagovic J, Kalina I, et al. Combined analysis of polymorphisms in glutathione S-transferase M1 and microsomal epoxide hydrolase in lung cancer patients[J]. Neoplasma, 2004, 51(5):352-357.
    157. 胡毅玲, 高杨, 张桥. 细胞色素 P4501A1、2D6 和谷胱甘肽硫转移酶基因多态性与肺癌易感性的研究[J]. 肿瘤,1998,18(4):269-271.
    158. 薛开先,许林, 陈森清, 等. 中国人 CYP1A1 和 GSTM1 基因多态性及其对个体肺癌易感性的联合效应[J].中华医学遗传学杂志,2001,18(2):125-127.
    159. 章龙珍, 王绪, 郝兴芝, 等. CYP1A1、GSTM1 基因多态性与肺癌易感性的研究[J]. 中国肿瘤临床,2002,29:536-540.
    160. Chen S Q, Tang D L, Xue K X, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population [J]. Carcinogenesis, 2002, 23: 1321-1325.
    161. Popanda O, Schattenberg T, Phong C T, et al. Specific combinations of DNA repair gene variants and increased risk for non-small cell lung cancer[J]. Carcinogenesis, 2004, 25(12):2433-2441.
    162. 汪国雄,沈孝彬,沈其君,等. 肺癌配对病例研究中烹调油烟等致病因子的多因素分析[J].中华预防医学杂志,1992,26(2):89-91.
    163. Bruzzi P, Green SB, Byar DP, et al. Estimating the population attributable risk for multiple risk factors using case-control data[J]. Am J Epidemiol,1985,122:904-914.
    164. Tong L, Spitz M R, Fueger J J, et al. Lung carcinoma in former smokers[J]. Cancer,1996,78:1004-1010.
    165. 富永佑民,Takezaki T, Tajima K. 肺癌危险因素-在日本大坂进行的追踪研究[J]. Chin J Epidemiol, 1997,18(6):328-330.
    166. 李玲,王启俊,饶克勤. 北京市肺癌危险因素的病例对照研究[J].中国肿瘤.2000,9(2):83-85.
    167. 石亚斌,贾庆国,伍后英. 吸烟、职业、膳食与肺癌的前瞻性研究[J].医学研究通讯,2000,29(1):43-45.
    168. 高玉堂. 非吸烟者生活方式中的肺癌危险因素[J].肿瘤,1996,16(4):498-501.
    169. Zhong L, Goldberg M S, Gao Y T, et al. Lung cancer and indoor air pollution arising from Chinese-style cooking among nonsmoking women living in Shanghai, China[J]. Epidemiology, 1999,10:488-494.
    170. Ko Y C, Cheng L S, Lee C H, et al. Chinese food cooking and lung cancer in women nonsmokers[J]. Am J Epidemiol, 2000, 151:140-147.
    171. Li S G, Pan D F, Wang G X. Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes[J]. Arch Environ Health, 1994, 49:119-122.
    172. Zhong L, Goldberg M S, Parent M E, et al. Risk of developing lung cancer in relation to exposure to fumes from Chinese-style cooking[J]. Scand J Work Environ Health, 1999,
    25:309-316.
    173. 尹立红,浦跃朴,沈孝兵,等. 应用单细胞凝胶电泳技术检测食用油烟的 DNA 损伤作用[J].中国公共卫生,1998,14(9):566-567.
    174. 袁慧,梁戈玉,浦跃朴,等. 食用油烟对大鼠肺Ⅱ型细胞毒性及与氧化应激的关系[J].劳动医学,2001,18(5):272-274.
    175. 梁戈玉,袁慧,尹立红,等. 食用油烟对大鼠肺Ⅱ型细胞氧化损伤作用的研究[J].环境与健康杂志,2002,19(2):107-109.
    176. 何兴舟.室内燃煤空气污染与肺癌及遗传易感性—宣威肺癌病因学研究 22 年[J].实用肿瘤杂志,2001,16(6):369-370.
    177. 王宏,王芃,戴旭东.黑龙江省农村肺癌危险因素病例-对照研究[J].环境与健康杂志,2002,19(1):55-56.
    178. Kleinerman R A, 王作元, 王陇德, 等. 肺癌与农村煤及生物燃料室内暴露的关系[J]. 中国预防医学杂志, 2004, 5(1):1-6.
    179. Lan Q, Chapman R S, Schreinemachers D M, et al. Household stove improvement and risk of lung cancer in Xuanwei, China[J]. J Natl Cancer Inst, 2002,94:826–835.
    180. 沈靖,王润田,徐希平. 环境基因组计划与肿瘤流行病学研究[J].中国肿瘤,2000,9(6):255-257.
    181. 陈学敏,陈军,蒋义国.环境卫生学面临的巨大挑战—基因-环境相互作用[J].环境与健康杂志, 2002, 19(1):3-5.
    182. Parkin D M, Bray F, Ferlay J,et al. Estimating the world cancer burden: Globocan 2000[J]. Int J Cancer, 2001, 94: 153-156.
    183. 盛平,杨红珊.食管癌病因学研究的回顾与展望[J].中国癌症杂志, 2001, 11(2): 171-174.
    184. Piegorsch W W, Weinberg C R, Taylor J A. Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies[J]. Stat Med, 1994, 13(2): 153-162.
    185. Sturmer T, Wang-Gohrke S, Arndt V, et al.Interaction between alcohol dehydrogenase II gene, alcohol consumption, and risk for breast cancer[J]. Br J Cancer, 2002, 87(5): 519-523.
    186. Chang-Claude J, Dunning A, Schnitzbauer U, et al. The patched polymorphism Pro1315Leu (C3944T) may modulate the association between use of oral contraceptives and breast cancer risk[J]. Int J Cancer, 2003, 103(6): 779-783.
    187. 张忠彬, 万俊香, 夏昭林. 毒物代谢酶基因多态性与职业性慢性苯中毒危险性的单纯病例研究[J].中华劳动卫生职业病杂志, 2004, 22(3):168-172.
    188. 魏生才, 李明, 高敏, 等. 寻常型银屑病单纯病例研究[J]. 中国公共卫生,2002, 18(12): 1451-1453.
    189. 易洪刚, 陈峰. 单纯病例研究[J]. 国外医学流行病学传染病学分册, 2004, 31(1): 60-62.
    190. 李大林, 李立明. 基因-环境交互作用研究方法:无对照病例研究[J]. 中华流行病学杂志, 2002, 23(4): 304-307.
    191. 俞顺章, 蔡琳, 穆丽娜, 等. 单纯病例研究方法在流行病学研究中的应用[J]. 中华流行病学杂志, 2003, 24(5): 406-409.
    192. Yang Q, Khoury M J, Flanders W D. Sample size requirements in case-only designs to detect gene- environment interaction[J]. Am J Epidemiol, 1997, 146(9): 713-720.
    193. Schmidt S, Schaid D J. Potential misinterpretation of the case-only study to assess gene- environment interaction[J]. Am J Epidemiol, 1999,150: 878-885.
    194. Hamajima N, Yuasa H, Matsuo K, et al. Detection of gene-environment interaction by case-only studies[J]. Jpn J Clin Oncol, 1999, 29:490-493.
    195. Taioli E, Ford J,Trachman J,et al. Lung cancer risk and CYP1A1 genotype in African Americans[J].Carcinogenesis,1998,19(5):813-817.
    196. Wenzlaff AS, Cote ML, Bock CH, et al. GSTM1, GSTT1 and GSTP1 polymorphisms, environmental tobacco smoke exposure and risk of lung cancer among never smokers: a population-based study[J]. Carcinogenesis, 2005, 26(2):395-401.
    197. Yang P, Bamlet WR, Ebbert JO, et al. Glutathione pathway genes and lung cancer risk in young and old populations[J]. Carcinogenesis, 2004,25(10):1935-1944.
    198. 姜又红,鞠振宇,任常山,等.GSTM1 基因多态性与环境暴露和胃癌易感性关系的研究[J].中国公共卫生,2000,16(10):877-879.
    199. 沈靖,王润田,邢厚恂,等.Ⅰ、Ⅱ相代谢酶基因多态性与胃癌遗传易感性的病例对照研究[J].肿瘤杂志,2002,22(1):9-13.
    200. Eder E. Intraindividual variations of DNA adduct levels in humans[J]. Mutat Res, 1999, 424: 249- 261.
    201. Rojas M, Cascorbi I, Alexandrov K, et al. Modulation of benzo[a]pyrene diolepoxide–DNA adduct levels in human white blood cells by CYP1A1, GSTM1 and GSTT1 polymorphism[J]. Carcinogenesis, 2000, 21: 35-41.
    202. Chen B H, Hong C J, Pandey M R, et al. Indoor air pollution in developing countries[J]. World Health Stat Q, 1990, 43:127-138.
    203. Lan Q, Feng Z, Tian D, et al. p53 gene expression in relation to indoor exposure to unvented coal smoke in Xuan Wei, China[J]. J Occup Environ Med, 2001,43:226-230.
    204. 沈孝兵,汪国雄,项龙生,等. 烹调油烟作为原发性肺癌危险因子的流行病学与毒理学初步研究[J].江苏医药, 1998, 24: 566-568.
    205. Qu Y H, Xu G X, Zhou J Z, et al. Genotoxicity of heated cooking oil vapors[J]. Mutat Res, 1992, 298:105-111.
    206. Shields P G, Xu G X, Blot W J, et al. Mutagens from heated Chinese and U.S. cooking oils[J]. J Natl Cancer Inst, 1995,87: 836-841.
    207. Wu P F, Chiang T A, Ko Y C, et al. Genotoxicity of fume from heated cooking oils produced in Taiwan[J]. Environ Res, 1999, 80: 122-126.
    208. Krugllyak L. The use of a genetic map of biallelic marker in linkage studies[J]. Nature Genetics, 1997,17:21-24.
    209. Pinnisi E. A closer look at SNPs suggests difficulties[J]. Science, 1998, 281: 1787-1789.
    210. Davidson S. Research suggests importance of haplotypes over SNPs[J]. Nature Biotechnol, 2000, 18: 1134-1135.
    211. Brookes A J. The essence of SNPs[J]. Gene, 1999,234(2): 177-186.
    212. Gu W, Aguirre G D, Ray K. Detection of single-nucleotide polymorphisms[J]. Biotechniques, 1998,24: 836-837.
    213. Christy M W, Benjamin D C. Single tube genotyping of sickle cell anemia using PCR-based SNP analysis[J]. Nucleic Acids Res, 2001,29(23): e119.
    214. Sommer S S, Groszbach A R, Bottemama C D K. PCR amplification of specific alleles (PASA) is a general method for rapid detection known single-base changes[J]. Biotechniques, 1992,12: 1152-1153.
    215. Du W N, Sun H X, Fang F D. The research development of single nucleotide polymorphism[J]. Acta Academiae Medicinae Sinicae, 2000, 22 (4): 392-394.
    216. Newton C R, Graham A, Heptinstall L E, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS)[J]. Nucleic Acids Res, 1989, 17: 2503-2516.
    217. Fan J, Chen X, Halushka M K, et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays[J]. Genome Res, 2000, 10(6): 853-860.
    218. Ye S, Humphries S, Green F. Allele specific amplification by tetra-primer PCR[J]. Nucleic Acids Res, 1992, 20:1152.
    219. Hamajima N, Saito T, Matsuo K, et al. Competitive amplification and unspecific amplification in polymerase chain reaction with confronting two-pair primers[J]. Journal of Molecular Diagnostics, 2002, 4:103-107.
    220. 聂立红, 王声湧, 胡毅玲. 肺癌易感性的分子流行病学研究[J].中国公共卫生, 2002, 18(7): 791-792.
    221. 高长明, Sugimura Haruhiko, Takezaki Toshiro, 等. 8-羟基鸟嘌呤糖苷酶基因型、生活习惯与食管癌和胃癌[J]. 中国肿瘤, 2001, 10(9):500-502.
    222. Ji M J, Hou P, Li S, et al. Microarray-based method for genotyping of functional single nucleotide polymorphisms using dual-color fluorescence hybridization[J]. Mutat Res, 2004, 548:97-105.
    223. Marshall A, Hodgson J. DNA chips: an array of possibilities[J]. Nature Biotechnology, 1998, 16:27-31.
    224. Ramsay G. DNA chips: state-of-the art[J]. Nature Biotechnology, 1998,16:40-44.
    225. 马立人主编. 生物芯片[M]. 北京:化学工业出版社,2001.
    226. Heller R A, Schena M, Chai A, et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays[J]. Proc Natl Acad Sci USA, 1997, 94: 2150 - 2155.
    227. Fodor S P. DNA sequencing: Massively parallels genomics[J]. Science, 1997, 277: 393-395.
    228. 卢圣栋主编. 现代分子生物学实验技术[M]. 第 2 版. 北京:中国协和医科大学出版社,1999.
    229. 张忠彬, 管继如, 叶榕, 等. 某些同源重组修复基因多态性与慢性苯中毒风险性关系研究[J]. 中国职业医学, 2004, 31(5):8-11.
    1. Parkin D M, Bray F, Ferlay J,et al. Global Cancer Statistics, 2002[J]. CA Cancer J Clin, 2005, 55:74-108.
    2. Vineis P, Veglia F, Benhamou S, et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls[J]. Int J Cancer, 2003, 104(5):650-657.
    3. Taioli E, Gaspari L, Benhamou S, et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years[J]. Int J Epidemiol, 2003,32:60-63.
    4. Wrensch M R, Miike R, Sison JD, et al. CYP1A1 variants and smoking-related lung cancer in San Francisco Bay area Latinos and African Americans[J]. Int J Cancer, 2005, 113(1):141-147.
    5. Drakoulis N, Cascorbi I, Brockmoller J, et al. Polynorphisms in the human CYP1A1 gene as susceptibility factor for lung cancer:Exon-7 mutation(4889T to G),and a T to C mutation in the
    3’-flanking region[J]. Clin Investig, 1994,72: 240-248.
    6. Shields P G, Caporaso N E, Falk R T, et al. Lung cancer,race,and a CYP1A1 genetic polymorphism[J]. Cancer Epidemiol Biomarkers Prev,1993,2:248- 485.
    7. Hirvonen A, Husgafvel-Pursioinen K, Karjalainen A, et al. Point-mutational MSPⅠ and Ile-Val polymorphisms closely linked in the CYP1A1 gene: lack of association with susceptibility to lung cancer in a Finnish study population[J]. Caner Epidemiol Biomarkors Prev,1992,1:485-489.
    8. Nakachi K, Imai K, Hayashi S, et al. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose [J]. Cancer Res, 1991,51:5177-5180.
    9. Nakachi K, Imai K, Hayashi S, et al. Polymorphisms of the CYP1A1 and glutathione s-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population[J]. Cancer Res, 1993,53: 2994-2999.
    10. Sugimura H, Wakai K, Genka K, et al. Association of Ile462Val(Exon7) polymorphism of cytochrome P4501A1 with lung cancer in Asian population :further evidence from a case-control study in Okinawa[J]. Cancer Epidemiol Biomarkers Prev, 1998,7:413-417 .
    11. Sobti R, Sharma S, Joshi A, et al. Genetic polymorphism of the CYP1A1, CYP2E1, GSTM1 and GSTT1 genes and lung cancer susceptibility in a north Indian population[J]. Mol Cell Biochem, 2004, 266(1-2):1-9.
    12. 宋南, 谭文, 唐槐静, 等. 中国人细胞色素 P450IA1 基因变异与吸烟相关性肺癌的风险[J].癌症,1999,18(5):495-498.
    13. 周新文, 石云, 周宜开. CYP1A1 基因多态性与肺癌个体易感性研究[J]. 环境与职业医学, 2002, 19(6):355-357,387.
    14. 瞿永华, 石于波, 钟礼杰, 等. 非吸烟女性肺癌患者 CYP1A1 和 GSTM1 基因型[J]. 肿瘤, 1998, 18: 80-83.
    15. 汪保国, 陈思东, 周卫平,等. 细胞色素P4501A1 和谷胱苷肽硫转移酶基因多态性与肺癌关系的病例对照研究[J]. 中华肿瘤杂志,2004,26(2):93-97.
    16. Bouchardy C, Benhamous S, Dayer P. The effect of tobacco on lung cancer risk depends on CYP2D6 activity[J]. Cancer Res ,1996,56:251-253.
    17. Kato S, Bowman K D, Harrington A M, et al. Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo[J]. J Natl Cancer Inst, 1995, 87:902-907.
    18. Christensen P M, Gotzsche P C, K Brosen. The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of lung cancer: a meta-analysis [J]. Eur J Clin Pharmacol, 1997, 51(5): 389-393.
    19. 高坚瑞,任香兰,张桥.CYP2D6,GSTM1 遗传多态性与肺癌易感性关系[J].中华肿瘤杂志, 1998,
    20: 185-186.
    20. Uemastu F, Ikawa S, Kikuchi H, et al. Restriction fragment length polymorphism of the human CYP2E1(cytochrome P4502E1) gene and susceptibility to lung cancer: possible relevance to low smoking exposure[J] . Pharmocogenetics, 1994, 4: 58-63.
    21. Wu X F, Shi H H, Jiang H, et al. Association between cytochrome P4502E1 genotype, mutagen seneitivity, cigarette smoking and susceptibility to lung cancer[J]. Carcinogenesis, 1997,18:967-973.
    22. 石云, 周新文, 周宜开, 等. CYP2E1、GSTM1 基因多态性与肺癌、食管癌易感性研究[J]. 华中科技大学学报(医学版), 2002, 31(1):14-17.
    23. 汪保国, 陈思东, 陈阳,等. 细胞色素 P4502E1 和 1A1 多态性与肺癌关系的病例对照研究[J]. 肿瘤防治杂志,2004,11(7): 681-684.
    24. 李代蓉, 周清华, 袁天柱, 等. GSTM1 和 CYP2E1 基因多态性与肺癌遗传易感性关系的研究[J]. 中国肺癌杂志, 2005, 8(1): 14-19.
    25. 黄跃华,王庆松,朱莉贞,等. 中国汉族人群细胞色素 P4502E1 基因多态性与肺癌的相关性[J]. 中国临床病理学杂志, 2000,16:350-352.
    26. 陈漫霞,陈思东,汪保国,等.细胞色素 P4502E1 基因多态性与肺癌易感性的研究[J]. 四川肿瘤防治, 2003, 16: 129-131.
    27. 瞿永华, 石于波, 钟礼杰, 等. 细胞色素 P4502E1 (CYP2E1)的遗传多态性与非吸烟女性肺癌的危险度[J]. 癌变畸变突变,1998, 10(6):355-358.
    28. Lihara M, Noda K. Lung cancer risk of the GSTM1 null genotype is enhanced in the presence of the GSTP1 mutated genotype in male Japanese smokers[J]. Cancer Lett, 1999, 137:53-60.
    29. Kim Y C, Park K O, Hwang J H, et al. Genetic polymorphism of epoxide hydrolase and GSTMl in lung cancer susceptibility[J].Lung cancer,2003,41:s114.
    30. Belogubova E V, Togo A V, Karpova M B, et al. A novel approach for assessment of cancer predisposing roles of GSTM1 and GSTT1 genes: use of putatively cancer resistant elderly tumor-free smokers as the referents[J]. Lung Cancer, 2004, 43(3):259-266.
    31. Nazar-Stewart V, Vaughan T L, Stapleton P, et al. A population-based study of glutathione S-transferase M1, T1 and P1 genotypes and risk for lung cancer[J]. Lung Cancer, 2003, 40(3): 247-258.
    32. Ruano-Ravina A, Figueiras A, Loidi L, et al. GSTM1 and GSTT1 polymorphisms, tobacco and risk of lung cancer: a case-control study from Galicia, Spain[J]. Anticancer Res, 2003, 23: 4333-4337.
    33. Pinarbasi H, Silig Y, Cetinkaya O, et al. Strong association between the GSTM1-null genotype and lung cancer in a Turkish population[J]. Cancer Genet Cytogenet, 2003,146(2): 125-129.
    34. 董彩婷, 杨青, 王绵珍, 等. CYP1A1 基因多态性和 GSTM1 缺失与肺癌易感性的关系[J]. 环境与职业医学,2004,21(6):440-442.
    35. Rebbeck T R. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility[J]. Cancer Epidemiol Biomarkers Prev, 1997, 6:733-743.
    36. 吴翠玲, 陈思东, 林广平, 等. CYP1A1 和 GSTM1 基因多态与肺癌发病关系的病例-对照研究[J]. 华南预防医学, 2003,29:13-16.
    37. Yang X R, Wacholder S, Xu Z, et al. CYP1A1 and GSTM1 polymorphisms in relation to lung cancer risk in Chinese women[J]. Cancer Lett, 2004, 214:197–204.
    38. Schneider J, Bernges U, Philipp M, et al. GSTM1, GSTT1, and GSTP1 polymorphism and lung cancer risk in relation to tobacco smoking[J]. Cancer Lett, 2004, 208: 65-74.
    39. Chan-Yeung M, Tan-Un K C, Ip M S, et al. Lung cancer susceptibility and polymorphisms of glutathione-S-transferase genes in Hong Kong[J]. Lung Cancer,2004, 45(2):155-160.
    40. Sorensen M, Autrup H, Tjonneland A, et al. Glutathione S-transferase T1 null-genotype is associated with an increased risk of lung cancer[J]. Int J Cancer, 2004, 110: 219-224.
    41. Lewis S J, Cherry N M, Niven R M, et al. GSTM1, GSTT1 and GSTP1 polymorphisms and lung cancer risk[J]. Cancer Lett, 2002,180:165-171.
    42. Benhamou S, Lee W J, Alexandrie A, et al. Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk[J]. Carcinogenesis, 2002, 23:1343-1350.
    43. 韩泽民,熊密,马志明,等. 人肺癌 GSTM1 基因多态性与 p53 突变的相关性[J]. 华中科技大学学报(医学版),2003,32:131-135.
    44. Peluso M, Neri M, Margarino G, et al. Comparison of DNA adduct levels in nasal mucosa, lymphocytes and bronchial mucosa of cigarette smokers and interaction with metabolic gene polymorphisms[J]. Carcinogenesis, 2004,25(12):2459-2465.
    45. Weiserbs K F, Jacobson J S, Beqq M D, et al. A cross-sectional study of polycyclic aromatic hydrocarbon-DNA adducts and polymorphism of glutathione S-transferases among heavy smokers by race/ethnicity[J]. Biomarkers, 2003, 8(2):142-155.
    46. Gallegos-Arreola M P, Gomez-Meda B C, Morgan-Villela G, et al. GSTT1 gene deletion is associated with lung cancer in Mexican patients[J]. Dis markers, 2003, 19(6):259-261.
    47. Sologovic J, Kalina I, Stubna J, et al. Genetic polymorphism of glutathione S-transferases M1 and T1 as a risk factor in lung and bladder cancers [J]. Newplasma, 1998,45:L312-317.
    48. Wang J W, Deng Y F, Cheng J L, et al. GST genetic polymorphisms and lung adenocarcinoma susceptibility in a Chinese population [J]. Cancer Lett, 2003, 201: 185-193.
    49. Saarikoski S T, Voho A, Reinikainen M, et al. Combined effect of polymorphic GST genes on individual susceptibility to lung cancer [J]. Int J Cancer, 1998,77(4):516-521.
    50. Alexandrie A K, Nyberg F, Warholm M, et al. Influence of CYP1A1, GSTM1, GSTT1, and NQO1 genotypes and cumulative smoking dose on lung cancer risk in a Swedish population[J]. Cancer Epidemiol Biomarkers Prev, 2004,13(6):908-914.
    51. Anttila S, Hirvonen A, Vainio H, et al. Immunohistochemical localization of glutathione S-transferases in human lung [J]. Cancer Res, 1993, 53:5643-5648.
    52. Ryberg D, Skaug V, Hewer A, et al. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk [J]. Carcinogenesis, 1997, 18:1285-1289.
    53. Stucker I, Hirvonen A, de Waziers I, et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility [J]. Carcinogenesis, 2002, 23: 1475-1481.
    54. Lin P P, Hsueh Y M, Ko J L, et al. Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan [J]. Lung Cancer, 2003, 40: 123-129.
    55. Harris M J, Coggan M, Langton L, et al. Polymorphism of the Pi glutathione S-transferase in normal populations and cancer patients [J]. Pharmacogenetics, 1998, 8: 27-31.
    56. Wang Y F, Spitz M R, Schabath M B, et al. Association between glutathione S-transferase p1 polymorphisms and lung cancer risk in Caucasians: a case-control study [J]. Lung Cancer, 2003, 40: 25-32.
    57. Katoh T, Kaneko S, Takasawa S, et al. Human glutathione S-transferase P1 polymorphism and susceptibility to smoking related epithelial cancer: Oral, lung, gastric, colorectal and urothelial cancer [J]. Pharmacogenetics, 1999, 9:165-169.
    58. To-Figueras J, Gene M, Gomez-Catalan J, et al. Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk [J]. Cancer Causes Control, 1999, 10: 65-70.
    59. Benhamou S, Reinikainen M, Bouchardy C, et al. Association between lung cancer and microsomal epoxide hydrolase genetypes. Cancer Res, 1998,58: 5291-5293.
    60. Gsur A, Zidek T, Schnattinger K, et al. Association of microsomal epoxide hydrolase polymorphisms and lung cancer risk[J]. Br J Cancer, 2003, 89: 702-726.
    61. Cajas-Salazar N, Au W W, Zwischenberger J B, et al. Effect of epoxide hydrolase polymorphisms on chromosome aberrations and risk for lung cancer[J].Cancer Genetics and Cytogenetics, 2003,
    145:97–102.
    62. Smith C A, Harrison D J. Association between polymophism in gene for microsomal epoxide hydrolase and susceptibility to emphysema[J]. Lancet, 1997,350:630-633.
    63. Persson I, Johansson I, Lou Y C, et al. Genetic polymorphism of xenobiotic metabolizing enzymes among Chinese lung cancer patients. Int J Cancer.1999,81:325-329.
    64. Wiencke J K, Spitz M R, McMillan A, et al. Lung cancer in Mexicar-Americans and African-Americans is associated with the wild-type genotype of the NAD(P)H:quinone oxidoreductase polymorphism [J]. Cancer Epidemiol Biomarkers Prev, 1997, 6(2): 87-92.
    65. Lin P P, Wang H J, Lee H. NAD(P): quinone oxidoreductase polymorphism and lung cancer in Taiwan [J]. J Toxicol Environ Health, 1999,58(4):187-197.
    66. 林月好, 卢锡林, 邵明, 等. 基因多态性与肺癌遗传易感性[J]. 癌症, 2000, 19(5): 450- 452.
    67. Lewis S J, Cherry N M, Niven R M, et al. Polymorphisms in the NAD(P)H: quinone oxidoreductase gene and small cell lung cancer risk in a UK population[J]. Lung Cancer, 2001, 34: 177-183.
    68. Bock C H, Wenzlaff A S, Cote M L, et al. NQO1 T allele associated with decreased risk of later age at diagnosis lung cancer among never smokers: results from a population-based study[J]. Carcinogenesis, 2005, 26(2):381-386.
    69. Bouchardy C , Mitrunen K, Wikman H, et al. N-acetyltransferase NAT1 and NAT2 genotypes and lung cancer risk[J]. Pharmacogenetics, 1998, 8:291- 298.
    70. Hou S M, Ryberg D, Falt S, et al.GSTM1 and NAT2 polymorphisms in operable and non-operable lung cancer patients[J]. Carcinogenesis, 2000,21:49-54.
    71. Seow A, Zhao B, Poh W T, et al. NAT2 slow acetylator genotype is associated with increased risk of lung cancer among non-smoking Chinese women in Singagore [J]. Carcinogenesis, 1999,20(9):1877-1881.
    72. 高建平,黄跃东,朱青川,等. N-乙酰基转移酶基因多态性与肺癌的相关性[J]. 中国肿瘤,2002, 11:579-580.
    73. Cascorbi I, Brockmoller J, Mrozikiewicz P M, et al. Homozygous rapid arylamine N-acetyltransferase (NAT2) genotype as a susceptibility factor for lung cancer [J]. Cancer Res, 1996, 56(17): 3961-3966.
    74. Wikman H, Thiel S, Jager B, et al. Relevance of N-acetyltransferase 1 and 2 (NAT1, NAT2) genetic polymorphisms in non-small cell lung cancer susceptibility [J]. Pharmacogenetics, 2001,11(2): 157-168.
    75. Hayashi S, Watanabe J, Kawajiri K, et al. High susceptibility to lung cancer analyzed in terms of combined genotypes of p4501a1 and Muclass glutathione S-transferase gene[J]. Jpn J Cancer Res,1992,83:866-870.
    76. Hung R J, Boffetta P, Brockmoller J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis[J]. Carcinogenesis, 2003, 24(5):875-882.
    77. Hengstler J G, Arand M, Herrero M E, et al. Polymorphisms of N- acetyltransferases, glutathione S-transferases, microsomal epoxide hydtolase and sulfotransferases: infuence on cancer susceptibility[J]. Recent Results Cancer Res.1998,154:47-85.
    78. Habalova V, Salagovic J, Kalina I, et al. Combined analysis of polymorphisms in glutathione S-transferase M1 and microsomal epoxide hydrolase in lung cancer patients[J]. Neoplasma, 2004, 51(5):352-357.
    79. 胡毅玲, 高杨, 张桥. 细胞色素 P4501A1、2D6 和谷胱甘肽硫转移酶基因多态性与肺癌易感性的研究[J]. 肿瘤,1998,18(4):269-271.
    80. 薛开先,许林, 陈森清, 等. 中国人 CYP1A1 和 GSTM1 基因多态性及其对个体肺癌易感性的联合效应[J].中华医学遗传学杂志,2001,18(2):125-127.
    81. 章龙珍, 王绪, 郝兴芝, 等. CYP1A1、GSTM1 基因多态性与肺癌易感性的研究[J]. 中国肿瘤临床,2002,29:536-540.
    82. Lunn R M, Langlois R G, Hsich L L, et al. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency[J]. Cancer Res, 1999,59: 2557- 2561.
    83. Lei Y C, Hwang S J, Chang C C, et al. Effects on sister chromatid exchange frequency of polymorphisms in DNA repair gene XRCC1 in smokers[J]. Mutat Res, 2002,519:93- 101.
    84. Park J Y, Lee S Y, Jeon H S, et al. Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer[J]. Cancer Epidemiology Biomarkers and Prevention, 2002, 11: 23-27.
    85. Chen S Q, Tang D L, Xue K X, et al. DNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population[J]. Carcinogenesis, 2002, 23: 1321-1325.
    86. Ratnasinghe D, Yao S X, Tangrea J A, et al. Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk[J]. Cancer Epidemiology Biomarkers and Prevention. 2001, 10: 119-123.
    87. Divine K K, Gilliland F D, Crowell R E, et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung[J]. Mutation Research, 2001, 461: 273-278.
    88. David-Beabes GL, London SJ. Genetic polymorphism of XRCC1 and lung cancer risk among African-Americans and Caucasians[J]. Lung Cancer, 2001, 34: 333-339
    89. Butkiewicz D, Rusin M, Enewold L, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer[J]. Carcinogenesis, 2001,22: 593-597.
    90. Misra R R, Ratnasinghe D, Tangrea J A, et al. Polymorphisms in the DNA repair genes XPD,XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland [J]. Cancer Lett, 2003, 191:171-178.
    91. Casse C, Hu Y C h, Ahrendt S A. The XRCC1 codon 399 Gln allele is associated with adenine to guanine p53 mutations in non-small cell lung cancer[J]. Mutation Research , 2003,528: 19–27.
    92.. 朱守民. 健康人群吸烟、DNA 损伤与 DNA 修复基因多态研究[J]. 职业卫生与应急救援, 2003, 21(1):45.
    93. Spitz M R, Wu X F, Wang Y F, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients[J]. Cancer Research, 2001, 61: 1354-1357.
    94. Zhou W, Liu G, Miller D P, et al. Gene-environment interaction for the ERCC2 polymorphisms and cumulative cigarette smoking exposure in lungcancer[J]. Cancer Research, 2002,62: 1377-1381.
    95. Xing D, Tan W, Wei Q Y, et al. Polymorphisms of the DNA repair gene XPD and risk of lung cancer in a Chinese population[J].Lung Cancer, 2002, 38:123–129.
    96. 邢德印, 齐军, 谭文, 等. 北京地区汉族人群 DNA 修复基因 XPD 单核苷酸多态性与肺癌及食管癌风险的研究[J].中华医学遗传学杂志,2003,20:35-38.
    97. Liang G, Xing D, Miao X, et al. Sequence variations in the DNA repair gene XPD and risk of lung cancer in a Chinese population[J]. Int J Cancer, 2003,105(5):669-673.
    98. Hu Z, Wei Q, Wang X, et al. DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis[J]. Lung Cancer, 2004, 46:1-10.
    99. Vogel U, Laros I, Jacobsen NR, et al. Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer[J]. Mutat Res, 2004, 546:65-74.
    100. Park J Y, Lee S Y, Jeon H, et al. Lys751Gln polymorphism in the DNA repair gene XPD and risk of primary lung cancer [J]. Lung Cancer, 2002, 36: 15-16.
    101. David-Beabes G L, Lunn R M, London S J. No Association between the XPD (Lys751 G1n) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer Risk [J]. Cancer Epidemiol Biomarkers Prev, 2001,10: 911-912.
    102. Sugimura H, Kohno T, Wakai K, et al. hOGG1 Ser326Cys polymorphism and lung cancer susceptibility[J]. Cancer Epidemiology Biomarkers and Prevention, 1999,8:669-674.
    103. Marchand L L, Donlon T, Lum-Jones A, et al. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk[J]. Cancer Epidemiology Biomarkers and Prevention, 2002, 11: 409-412.
    104. Park J, Chen L, Tockman M S, et al. The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk[J]. Pharmacogenetics, 2004, 14: 103-109.
    105. Ito H, Hamajima N, Takezaki T, et al. A limited association of OGG1 Ser326Cys polymorphism for adenocarcinoma of the lung[J]. J Epidemiol, May 1, 2002, 12: 258-265.
    106. Hardie L J, Briggs J A, Davidson L A, et al. The effect of hOGG1 and glutathione peroxidase I genotypes and 3p chromosomal loss on 8-hydroxydeoxyguanosine levels in lung cancer[J]. Carcinogenesis, 2000, 21:167-172.
    107. Wikman H, Risch A, Klimek F, et al. hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a caucasian population[J]. Int J Cancer, 2000, 88: 932-937.
    108. Pierce A J, Johnson R D, Thompson L H, et al. XRCC3 promotes homology- directed repair of DNA damage in mammalian cells [J]. Genes Dev, 1999,13(20): 2633-2638.
    109. Park J Y, Park S H, Choi J E, et al. Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer[J]. Cancer Epidemiology Biomarkers and Prevention, 2002, 11: 993-997.
    110. Butkiewicz D, Popanda O, Risch A, et al. Association between the risk for lung adenocarcinoma and a (-4) G-to-A polymorphism in the XPA gene[J]. Cancer Epidemiol Biomarkers Prev, 2004, 13(12):2242-2246.
    111. Wu X, Zhao H, Wei Q, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity[J]. Carcinogenesis, 2003, 24(3):505-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700