基于结构全寿命设计需求的环境作用与结构性能退化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构全寿命设计的特点是在设计阶段就考虑结构建成后养护、检测、维修等后期投资,综合评估建造成本、用户成本和社会成本,力求使总体资源投资最小化。为最终实现可持续结构工程的目标,在结构设计中有必要引入全寿命设计方法。基于全寿命设计与结构“现状设计”方法的差别,其研究范围主要包括设计荷载的持续作用、结构抗力的衰变行为、性能评价的可靠指标、运营管理的系统模型和结构全寿命的经济效益等五个方面。由于环境作用等基础数据的缺乏,极大阻碍了全寿命设计研究工作的开展,同时结构抗力退化规律和性能评价指标的相关研究也不成熟。因此本论文围绕全寿命设计的关键科学问题,对结构所受的各类环境作用、结构性能退化的数值模拟方法和性能评价指标的适用性进行研究,主要工作和研究结果如下:
     1)疲劳风速是影响大跨桥梁和高层建筑的主要疲劳荷载,现有研究主要集中在极值风速的统计分析上,作为风致疲劳研究基础的疲劳平均风速研究较为匮乏。基于结构全寿命设计对环境作用信息的需求,利用辽宁、深圳和环渤海地区的多年连续测风资料,采用威布尔分布编制相关地区的疲劳风速谱,并对疲劳风速的概率分布特征和威布尔分布的适用性进行分析,在此基础上选取合适的分区指标对我国进行区域划分,同时绘制疲劳风速分区图,为科研人员进行结构全寿命设计研究提供风致疲劳作用及其参数。
     2)冻结温度是混凝土冻融破坏的重要影响因素,但在冻融作用的统计分析中却往往将其忽略。考虑到冻结温度对冻融破坏强度的影响,利用哈尔滨、北京、呼和浩特、伊宁和郑州等地区1951~2009年的温度数据对该地区冻融作用的概率分布特征进行分析,提出编制冻融作用谱的方法,并在此基础上选取相应的分区指标确立我国的冻融作用区域划分。
     3)利用哈尔滨、环渤海、深圳和广州等地区的温度数据,对日最高温度、最低温度和温度日较差等温度作用的概率分布特征进行分析,同时建立我国的温度作用分区;针对我国现有桥规未考虑南北气候差异对桥梁温度作用影响的不足,结合气象资料和有限元建模,对大型桥梁空心构件日照升温和寒流降温梯度温度的参数取值进行分析研究,提出其预测公式。
     4)纤维模型不能直接考虑钢筋粘结滑移的影响,基于Opensees程序和纤维模型,利用零长度单元与Bond_sp01材料模型,对钢筋混凝土结构底柱结点的钢筋粘结滑移现象进行模拟;并通过ANSYS进行精细化建模,研究Bond_sp01材料参数受锈蚀引起的钢筋粘结性能退化的影响;在此基础上计入钢筋粘结性能退化影响,对底柱结点在锈蚀作用下的性能退化规律进行分析,提出可考虑粘结性能退化的纤维模型分析方法。
     5)“现状设计”方法的性能指标如可靠度指标等,并不能直接反映结构抵抗性能退化的能力,不能满足全寿命设计的要求,为此论文提出以结构/构件寿命作为指标,引入“寿命指标”概念并对其进行定义。通过实验室和实际环境中材料性能退化规律的对应关系,利用所编制的环境作用谱结合实验室获得的材料性能退化规律,对疲劳风作用和冻融作用下结构/构件的服役寿命进行预测,为应用寿命指标提供参考依据。
     6)从结构层面出发,根据汶川地震中都江堰市2000余栋多龄期建筑的震害调查结果,综合考虑结构类型、设计规范体系和材料性能退化等因素对结构抗震能力退化的影响,对不同龄期建筑的抗震能力进行对比分析,分析可为获得结构整体的性能退化规律提供参考依据。
The feature of structural life-cycle design is that it can consider the post-investment resulting from the maintenance, detection, repair, etc. of the constructed structure in the design stage, and minimize the total resource investment through evaluating building cost, customer cost and social cost comprehensively. To achieve the ultimate goal of sustainable structural engineering, it is necessary to introduce the life-cycle method in the structural design. Comparing with the existing design method, the structural life-cycle design mainly includes five research fields, such as the continuing action of design loads, the decay behavior of structural resistance, the reliable index of performance evaluation, the system model of operation and management and the economic benefits of life-cycle design.
     Since the lack of basic data about the environmental actions, the development of the structural life-cycle theory is severely hindered and meanwhile the relevant researches about the degradation laws of structural resistance and Performance Evaluation are immature, which also limit the application of life-cycle design. Thus around the key scientific issues of structural life-cycle design, we have investigated the attenuation principles of the structure/component function due to the action of various environmental loads and the applicability of the performance evaluation. The main work and research results are as follows:
     1) The fatigue wind speed is the main fatigue load of large bridge and high-rise building. The current researches primarily focus on the statistic of extreme wind speed, and the fatigue wind speed, which is the base of wind-induced fatigue research, is ignored. To get environmental action spectrums for life-cycle structure design, the continuous wind speed data were employed to compile the fatigue-wind-speed spectrum, which were provided by Changhai wind farm of Liaoning, Luohu weather station etc. of Shenzhen and the stations in Bohai sea. Weibull distribution was adopted herein, and its applicability and the characteristics of the joint distribution of wind Speed and wind Direction are analyzed as well. Based on these results, region division of fatigue wind speed was established to provide wind-induced fatigue action and its parameters for research of life-cycle design.
     2) Freezing temperature plays an important role in the freezing-thaw damage of the concrete, but is always neglected in counting and analyzing Freeze-thaw action. Considering the effect of the freezing temperature on the freeze-thaw damage, we have investigated the probability distribution of freeze-thaw action of Harbin, Beijing, Hohhot, Yining and Zhengzhou using the temperature data from 1951 to 2009, and a way to compile the freeze-thaw action spectrums was proposed herein. Thus we established freeze-thaw action zones in China through selecting appropriate indicators.
     3) Utilizing the temperature data of Harbin, Bohai sea, Shenzhen and Guangzhou, we have analyzed the probability distribution of daily extreme temperature (namely, daily maximum and minimum temperature) and diurnal temperature range, and then established temperature action zones in China. In view of the existing regulations did not consider the influence of the climatic differences between south China and north China on the temperature action of the bridges, we have investigated the parameter selection of temperature gradient of sunshine and cold wave on hollow components of large bridge by analyzing meteorological data and generating finite element model, and proposed the prediction formulas.
     4) Fiber model can not be used to investigate the bond slip of steel directly. Based on the Opensees and fiber model, the bond slip of joint steel in footing was simulated accompany with the zero length element and Bond_sp01 material. By precise modeling with ANSYS, the change law of the parameters of Bond_sp01 under corrosion was studied, and the deterioration of steel bond performance can be considered when analyzing performance degradation of the joint in footing. Thus we proposed a way to consider the descending effects of bonding capacity in fiber-based analysis.
     5) The function indexes (eg. reliable index) of the current design method, cannot directly reflect the deterioration of structural performance. Therefore we chose the service life of structure/component as index, and the concept of life index was introduced. The service life of structural component under fatigue wind load and freeze-thaw action was predicted, in which the relationship of material performance obtained from laboratory and nature environment, the information of environmental action spectrums and the material performance degradation from experimental results are all involved.
     6) From the structure level, we have compared the earthquake resistant capability of multi-aged buildings in Dujiangyan City through investigating the seismic damage information of more than 2000 buildings during Wenchuan earthquake in this area. It is helpful in testing and verifying the numerical simulation results through comprehensively considering the effect of various factors such as structure type, design code and aging process on the seismic capacity of buildings. The analysis results can provide reference for investigating the rule of structural behavior deterioration.
引文
1葛耀君,李惠,沈锐利等.大型桥梁全寿命结构设计理论与方法.国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2006年-2010年):建筑、环境与土木工程Ⅱ(土木工程卷).北京:科学出版社, 2006: 26-37
    2 International Association for Bridge and Structural Engineering. IABSE Declaration for Sustainable Development. Structural Engineering International. 2004, 14(3): 229
    3罗福午等.建筑结构缺陷事故的分析及防止.北京:清华大学出版社, 1996: 5-6
    4张誉,蒋利学,张伟平等.混凝土结构耐久性概论.上海:上海科学技术出版社, 2003:3
    5 P. Maydl. Sustainable Engineering: State-of-the-Art and Prospects. Structural Engineering International. 2004, 14(3): 176-180
    6梅洪元,梁静.高层建筑与城市.北京:中国建筑工业出版社, 2009:21
    7吕西林.复杂高层建筑结构抗震理论与应用.北京:科学出版社, 2007: 2-4
    8项海帆,陈艾荣,葛耀君.中国大桥.北京:人民交通出版社, 2003: 5-10
    9王解军.桥梁工程.湖南:中南大学出版社, 2009: 7-12
    10李盛霖.中国高速公路总里程三年内将超美国. http://www.chinadaily.com. cn/micro-reading/politics/2010-03-07/35509.html
    11徐国平,刘明虎,耿爽.桥梁工程全寿命设计方法.公路. 2007, (10): 1-4
    12彭建新.基于寿命周期成本的桥梁全寿命设计方法研究.湖南大学博士学位论文. 2008: 5-8
    13吴培峰.基于全寿命设计方法的梁式桥概念设计研究.同济大学硕士学位论文. 2007: 11-13
    14马军海,陈艾荣,贺君.桥梁全寿命设计总体框架研究.同济大学学报(自然科学版). 2007, (8): 1003-1007
    15 J. S. Kong, D. M. Frangopol. Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. Journal of Structural Engineering. 2003, 129(6): 818-828
    16 D. M. Frangopol, K. Y. Lin, and A. C. Estes. Life-Cycle Cost Design of Deteriorating Structures. Journal of Structural Engineering. 1997,123(10): 1390-1401
    17 J. S. Kong, D. M. Frangopol. Cost-Reliability Interaction in Life-Cycle CostOptimization of Deteriorating Structures. Journal of Structural Engineering. 2004, 130(11): 1704-1712
    18 D. M. Frangopol, J. S. Kong and E. S. Gharaibeh. Reliability-Based Life-Cycle Management of Highway Bridges. Journal of Computing in Civil Engineering. 2001, 15(1): 27-34
    19 N. D. Lagaros. Life-Cycle Cost Analysis of Design Practices for RC framed structures. Bulletin of Earthquake Engineering. 2007, 5(3): 425-442
    20 K. F. Müller. The Possibility of Evolving a Theory for Predicting the Service Life of Reinforced Concrete Structures. Materials and Structures. 1985, 18(6): 463-472
    21 K. Ozbay, N.A. Parker, D. Jawad, and S. Hussain. Guidelines for Life Cycle Cost Analysis: Final Report. U.S. Department of Transportation Faderal Highway Administration, FHWA-NJ-2003-012, 2003
    22 L. Turner, P. Way and N. Hastings. Australian Asset Management Collaborative Group (AAMCoG)–Life Cycle Cost Analysis (LCC Report). http://assetmanagem-entaustralia.org, 2008
    23中国土木工程学会标准. CCES 01-2004混凝土结构耐久性设计与施工指南(2005年修订版).北京:中国建筑工业出版社, 2005
    24王肇民, (德)皮尔(U.Peil).塔桅结构.上海:同济大学出版社, 1989: 1
    25邓洪洲,屠海明,王肇民.桅杆结构随机风振疲劳研究.土木工程学报. 2003, 36(4): 19-23
    26 C. G. Justus, W. R. Hargraves and A. Yalcin. National Assessment of Potential Output from Windpowered Generators. Journal of Applied Meteorology. 1976, 15(7): 673-678
    27 R. B. Corotis, A. B. Sigl and J. Klein. Probability Models of Wind Velocity Magnitude and Persistence. Solar Energy. 1978, 20: 483-493
    28 J. Hennessey, P. Joseph. A Comparison of the Weibull and Rayleigh Distributions for Estimating Wind Power Potential. Wind Engineering. 1978, 2(3): 156-164
    29 M. J. M. Stevens and P. T. Smulders. The Estimation of the Parameters of the Weibull Wind Speed Distribution for Wind Energy Utilization Purposes. Wind Engineering. 1979, 3(2): 132-145
    30 B. K. Gupta. Weibull Parameters for Annual and Monthly Wind Speed Distributions for Five Locations in India. Solar Energy. 1986, 37(6): 469-471
    31 S. Rehman, T. O. Halawani and T. Husain. Weibull Parameters for Wind Speed Distribution in Saudi Arabia. Solar Energy. 1994, 53(6): 473-479
    32 A. Garcia, J. L. Torres, E. Prieto and A. De Francisco. Fitting Wind Speed Distributions: A Case Study. Solar Energy. 1998, 62(2): 139–144
    33欧进萍,段忠东,陆钦年.渤海海域的风特性统计分析.海洋通报. 1997, 16(1): 20-28
    34杨咏昕,葛耀君,项海帆.风速风向联合分布的平均风统计分析.结构工程师. 2002, (3):29-36
    35刘健新,马麟,白桦.长安大学学报(自然科学版). 2008, 28(5): 53-57
    36顾明,陈礼忠,项海帆.上海地区风速风向联合概率密度函数的研究.同济大学学报. 1997, 25(2):166-170
    37陈隽,赵旭东.总体样本风速风向联合概率分析方法.防灾减灾工程学报. 2009, 29(1):63-70
    38周新刚.混凝土结构的耐久性与损伤防治.北京:中国建材工业出版社, 1999: 11-14
    39 T. C. Powers. A Working Hypothesis for Further Studies of Frost Resistance of Concrete. ACI Journal. 1945, (41): 245-272
    40 T. C. Powers, R. A. Helmuth. Theory of Volume Changes in Hardened Portland Cement Paste during Freezing. Proceedings, Highway Research Board. 1953, (32): 285-297
    41中国水利水电科学研究院.大体积混凝土.北京:水利水电出版社, 1990: 187-189
    42 M. Setzer, R. Augberg and H. J. Keck. Frost Resistance of Concrete. Essen, Germany: RILEM Publications, 2002
    43 M. Setzer. Interaction of Water With Hardened Cement Paste. Advances in Cementitious Materials. 1990, 16: 415-439
    44金伟良,赵羽习.混凝土结构耐久性.北京:科学出版社, 2002: 74-81
    45 ASTM. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. ASTM C666/C666M-03
    46 RILEM Draft Recommendations. Draft Recommendations for Test Methods for the Freeze-Thaw Resistance of Concrete Slab Test and Cube Test. Materials And Structures. 1995, 28(3): 366-371
    47中华人民共和国国家标准. GBJ82-85普通混凝土长期性能和耐久性试验方法.北京:中国建筑工业出版社, 1997
    48中华人民共和国国家标准. GB/T50082-2009普通混凝土长期性能和耐久性试验方法.北京:中国建筑工业出版社, 2009
    49覃丽坤,宋玉普,陈浩然等.冻融循环对混凝土力学性能的影响.岩石力学与工程学报. 2005, 24(Supp.1): 5048-5053
    50肖前慧,牛荻涛,赵阳等.冻融环境下引气混凝土力学性能研究.混凝土. 2009,(6): 10-11
    51邹超英,赵娟,梁锋等.冻融作用后混凝土力学性能的衰减规律.建筑结构学报. 2008, 29(1): 117-123
    52凌立,陈勇.高性能混凝土抗冻融性能试验研究.混凝土. 2009, (4): 49-53
    53祝金鹏,李术才,刘宪波等.冻融环境下混凝土力学性能退化模型.建筑科学与工程学报. 2009, 26(1): 62-67
    54冀晓东.冻融后混凝土力学性能及钢筋混凝土粘结性能的研究.大连理工大学博士学位论文. 2007
    55宋玉普,冀晓东.混凝土冻融损伤可靠度分析及剩余寿命预测.水利学报. 2006, 37(3): 259-263
    56李金玉,曹建国,徐文雨等.混凝土冻融破坏机理的研究.水利学报. 1999, (1): 41-49
    57李金玉,曹建国,林莉等.水工混凝土耐久性研究的新进展.水力发电. 2001, (4): 44-47
    58牛荻涛.混凝土结构耐久性与寿命预测.北京:科学出版社. 2003: 10-11
    59唐岱新,李兴和.碳化对混凝土受力性能的影响.第五届全国建筑物鉴定与加固改造学术讨论会论文集.汕头大学出版社, 2000: 55-62
    60蒋利学,张誉等.混凝土碳化深度的计算与试验研究.混凝土. 1996(4): 12-17
    61贡金鑫,赵国藩.钢筋混凝土结构耐久性研究的进展.工业建筑. 2000, 30(5): 1-5
    62杨静.混凝土的碳化机理及其影响因素.混凝土. 1995, (6): 23-28
    63混凝土结构设计规范国家标准管理组.耐久性的可靠度设计方法及措施.混凝土结构设计规范第五批科研课题综合报告汇编. 1996
    64王庆霖,牛荻涛.服役结构的抗力衰减模型与可靠性研究.国家八五科技攻关专题“在用危险建(构)筑物实时监测和评价技术研究”子题85-924-01-04-02.西安:西安建筑科技大学, 1995
    65 T. Nishi. Testing of Concrete. Proc. RILEM. 1962:485-489
    66朱安民.混凝土碳化与钢筋混凝土耐久性.混凝土. 1992(6):18-22
    67日本建筑学会建筑设计标准委员会编,张富春译.建筑物损失和耐久性对策.中国冶金建设管理学会: 87-93
    68牛荻涛,董振平.预测混凝土碳化深度的随机模型.工业建筑. 1999, 29(9): 41-45
    69涂永明,吕志涛.应力状态下混凝土的碳化试验研究.东南大学学报(自然科学版). 2003, 33(5): 573-576
    70刘亚芹,张誉.表面覆盖层对混凝土碳化的影响与计算.工业建筑. 1997, 27(8): 41-45
    71张令茂,江文辉.混凝土自然碳化及其与人工加速碳化的相关性研究.西安冶金建筑学院学报. 1990, 22(3): 207-214
    72张令茂.掺粉煤灰水泥混凝土的自然碳化.西安建筑科技大学学报(自然科学版). 1985,(2):22-30
    73龚洛书.混凝土的耐久性及其防护修补.北京:中国建筑工业出版社, 1990: 60-71
    74 Z. P. Bazant. Physical Model for Steel Corrosion in Concrete Sea Structures-Theory. Journal of the Structural Division. 1979, 105(6): 1137-1166
    75 Z. P. Bazant. Physical Model for Steel Corrosion in Concrete Sea Structures- Applications. Journal of the Structural Division. 1979, 105(6): 1155-1153
    76 P. D. Cady, R. E. Weyers. Chloride Penetration and the Deterioration of Concrete Bridge Decks. Cement, Concrete & Aggregate. 1983, 5(2): 81-87
    77 Y. P. Liu. Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures. Dissertation of Doctoral Degree of Virginia State University. 1993, 32-35
    78牛荻涛,王庆霖.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型.工业建筑. 1996, 26(4): 8-10
    79牛荻涛,王庆霖.锈蚀开裂后混凝土中钢筋锈蚀量的预测.工业建筑. 1996, 26(4): 11-13
    80牛荻涛,李峰.一般室内环境混凝土锈蚀开裂前钢筋锈蚀量的估计.西安建筑科技大学学报. 1996, 28(2): 124-128
    81张伟平,张誉.一般大气环境条件下混凝土中钢筋开始锈蚀时间的预测.工程力学. 1998, (A02): 75-79
    82车惠民,何广汉,杨德滋等.我国铁路列车荷载谱和桥梁结构效应谱的研究.西南交通大学学报. 1990, (2): 1-9
    83童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱.土木工程学报. 1997, 30(5): 20-27
    84“公路桥梁车辆荷载研究”课题组.公路桥梁车辆荷载研究.公路. 1997, (3): 8-12
    85王荣辉,池春,陈庆中.广州市高架桥疲劳荷载车辆模型研究.华南理工大学学报(自然科学版). 2004, 32(12): 94-96
    86中华人民共和国行业标准. JTG D60-2004公路桥涵设计通用规范.北京:人民交通出版社, 2004
    87中华人民共和国行业标准. CJJ 77-98城市桥梁设计荷载标准.北京:中国建筑工业出版社, 1998
    88中华人民共和国行业标准. JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社, 2004
    89中华人民共和国行业标准. TB10002.2-2005铁路桥梁钢结构设计规范.北京:中国铁道出版社, 2005
    90李扬海,鲍卫刚,郭修为等.公路桥梁结构可靠度与概率极限状态设计.北京:人民交通出版社, 1997
    91 Y. Auyeung. Bond propertiesofcorroded reinforcement with and without confinement. Doctoral dissertation of the state University of New Jersey. 2001
    92徐港,王青.锈蚀钢筋与混凝土粘结性能研究进展.混凝土. 2006, (5): 13-16
    93美国土木工程师学会混凝土与污工结构分会《钢筋混凝土有限元分析》委员会编,周氐等译.钢筋混凝土有限元分析——技术现状报告.江苏:河海大学出版社, 1988
    94董哲仁.钢筋混凝土非线性有限元法原理与应用.新一版.北京:中国水利水电出版社, 2002
    95江见鲸.钢筋混凝土结构非线性有限元分析.陕西:科学技术出版社, 1993
    96康清梁.钢筋混凝土有限元分析.北京:中国水利水电出版社, 1993
    97吕西林,金国芳,吴晓涵.钢筋混凝土非线性有限元理论与应用.上海:同济大学出版社, 1997
    98汪基伟,张雄文,林新志.考虑粘结滑移的平面组合式单元模型研究与应用.工程力学. 2008, 25(1): 97-120
    99聂利英,李建中,范立础.弹塑性纤维梁柱单元及其单元参数分析.工程力学. 2004, 21(3): 15-21
    100康澜,张其林.三维退化纤维梁单元线性和非线性有限元分析.土木建筑与环境工程. 2009, 31(2): 13-17
    101 A. Papachristidis, M. Fragiadakis and M. Papadrakakis. A 3D Fibre Beam-Column Element with Shear Modelling for the Inelastic Analysis of Steel Structures. Computational Mechanics. 2010, 45(6): 553-572
    102孙彬.在役钢筋混凝土结构的性能退化与抗震性能评估.西安建筑科技大学博士学位论文. 2006: 39-59
    103 S. MAZZONI, F. MCKENNA, M. H. SCOTT and et al. OpenSees Users Manual. Berkeley: University of California, 2006
    104齐虎.结构三维非线性分析软件Opensees的研究及应用.中国地震局工程力学研究所硕士学位论文. 2007
    105李少巍.基于OpenSees的预应力混凝土框架非线性数值模拟与抗震性能初步分析.重庆大学硕士学位论文. 2009
    106常兆中.混凝土砌块结构非线性地震反应分析及基于性能的抗震设计方法.建研院抗震所博士学位论文. 2005
    107马海峰,刘松良,徐伟.机载设备寿命指标的确定与研究.飞机设计. 2007, (2): 55-58
    108陶梅贞.现代飞机结构综合设计.西安:西北工业大学出版社, 2001
    109杨晓华.腐蚀累积损伤理论研究与飞机结构日历寿命分析.南京航空航天大学博士学位论文. 2002: 1-3
    110李金玉,曹建国.水工混凝土耐久性的研究和应用.北京:中国电力出版社, 2004
    111冯乃谦,邢锋.混凝土与混凝土结构的耐久性.北京:机械工业出版社, 2009
    112陈肇元.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社, 2003
    113刘帮俊.桥梁钢结构疲劳全寿命设计研究.长安大学硕士学位论文. 2006
    114彭建新.基于寿命周期成本的桥梁全寿命设计方法研究.湖南大学博士学位论文. 2008
    115邵旭东,彭建新,晏班夫.桥梁全寿命设计方法框架性研究.公路. 2006, (1): 48-53
    116马军海,陈艾荣,贺君.桥梁全寿命设计总体框架研究.同济大学学报(自然科学版). 2007, (8): 7-9
    117吴培峰.基于全寿命设计方法的梁式桥概念设计研究.同济大学硕士学位论文. 2007
    118中华人民共和国推荐性行业标准. JTG/T D60-01-2004公路桥梁抗风设计规范.北京:人民交通出版社, 2004
    119张相庭.结构风工程-理论.规范.实践.北京:中国建筑工业出版社, 2005
    120苏金明,阮沈勇,王永利. MATLAB工程数学.北京:电子工业出版社, 2005: 203-207
    121朱德臣,汪建文.风工况双参数威布尔分布k值影响研究.太阳能. 2007, (6): 34-36
    122 A. Garcia, J. L. Torres, E. Prieto and A. D. Francisco. Fitting Wind SpeedDistributions: A Case Study. Solar Energy. 1998, 62(2): 139-144
    123李自应,王明.云南风能可开发地区风速的韦布尔分布参数及风能特征值研究.太阳能学报. 1998, (3):248-253
    124朱瑞兆.应用气候手册.北京:气象出版社, 1991
    125金伟良,吕清芳,赵羽习,干伟忠.混凝土结构耐久性设计方法与寿命预测研究进展.建筑结构学报. 2007, 28(1): 7-13
    126李金玉,彭小平,邓正刚等.混凝土抗冻性的定量化设计.混凝土. 2000, (9): 61-65
    127中华人民共和国行业标准. CECS220:2007混凝土结构耐久性评定标准.北京:中国建筑工业出版社, 2007
    128中华人民共和国行业标准. DL/T5150-2001水工混凝土试验规程.北京:中国电力出版社, 2003
    129冯乃谦.新实用混凝土大全.北京:科学出版社, 2005
    130 W. Lópeza, J. A. Gonzálezb. Influence of the Degree of Pore Saturation on the Resistivity of Concrete and the Corrosion Rate of Steel Reinforcement. Cement and Concrete Research. 1993, 23(2): 368-376
    131 J. A. González, W. López and P. Rodríguez. Effects of Moisture Availability on Corrosion Kinetics of Steel Embedded in Concrete. Corrosion Science. 1993, 49(12): 1004-1010
    132 J. A. González, S. Feliú, P. Rodríquez and et al. Some Questions on the Corrosion of Steel in Concrete. Part II: Corrosion Mechanism and Monitoring, Service Life Prediction and Protection Methods. Materials and Structures. 1996, 29(2): 97-104
    133 J. N. Enevoldsena, C. M. Hanssona and B. B. Hopeb. The Influence of Internal Relative Humidity on the Rate of Corrosion of Steel Embedded in Concrete and Mortar. Cement and Concrete Research. 1994, 24(7): 1373-1382
    134邓绶林.地学辞典.石家庄:河北教育出版社, 1992: 904-905
    135国家海洋局第一海洋研究所,渤海工程设计公司.辽东湾JZ20-2海域冬季水文气象特征及海冰运动规律的研究, 1991
    136何强,井文涌,王翊亭.环境学导论(第三版).北京:清华大学出版社, 2004: 184-188
    137王艳.混凝土结构耐久性环境区划研究.西安建筑科技大学硕士学位论文. 2007: 20-22
    138 T. Kanazu, T. Matsumura, T. Nishiuchi and et al. Effect of Simulated Acid Rain on Deterioration of Concrete. Water, Air, and Soil Pollution. 2001, 130(1-4): 1481-1486
    139 S. D. Xie, L. Qi and D. Zhou. Investigation of the Effects of Acid Rain on the Deterioration of Cement Concrete Using Accelerated Tests Established in Laboratory. Atmospheric Environment. 2004, 38(27): 4457-4466
    140 O. Hiroshi, K. Hideki and H. Shinichi. Deterioration of Concrete Structures by Acid Deposition—An Assessment of the Role of Rainwater on Deterioration by Laboratory and Field Exposure Experiments Using Mortar Specimens. Atmospheric Environment. 2000, 34(18): 2937-2945
    141牛获涛,周浩爽,牛建刚.承载混凝土酸雨侵蚀中性化试验研究.硅酸盐通报. 2009, 28(3): 411-415
    142张虎元,高全全,董兴玲.酸雨对混凝土的类碳化作用.混凝土. 2008, (2): 12-14
    143中国评论新闻.脱硫不显效广东酸雨形势不容乐观(一). 2007, http://gb. chinareviewnews.com/doc/1004/0/2/4/100402472_1.html?coluid=7&kindid=0&docid=100402472
    144中国评论新闻.脱硫不显效广东酸雨形势不容乐观(二). 2007, http://gb. chinareviewnews.com/doc/1004/0/2/4/100402472_2.html?coluid=7&kindid=0&docid=100402472
    145岳峰,任晓崧,赵金城等.公路钢桥疲劳车辆荷载研究进展.建筑钢结构进展. 2009, 11(2): 35-39
    146黄华,刘伯权,刘鸣.车辆荷载谱作用下简支T梁力学性能.长安大学学报(自然科学版). 2007, 27(2): 58-62
    147王文兴,许鹏举.中国大气降水化学研究进展.化学进展. 2009, 21(2/3): 266-281
    148中华人民共和国环境保护部. 2007年全国大气环境状况. 2010, http://wfs. mep. gov. cn /dq kqzl/201001/t20100128_185078.htm
    149中华人民共和国环境保护部. 2004年全国大气环境状况. 2005, http://wfs. mep.gov.cn/dq/kqzl/200706/t20070613_105141.htm
    150中华人民共和国环境保护部. 2005年全国大气环境状况. 2006, http://wfs. mep.gov.cn/dq/kqzl/200706/t20070613_105143.htm
    151中华人民共和国环境保护部. 2006年全国大气环境状况. 2010, http://wfs. mep.gov.cn/dq/kqzl/201001/t20100128_185077.htm
    152中华人民共和国环境保护部. 2008年全国大气环境状况. 2010, http://wfs. mep.gov.cn/dq/kqzl/201001/t20100128_185082.htm
    153巩妮娜,刘西拉.从结构工程的角度看混凝土在冻融循环下的破坏标准.四川建筑科学研究. 2005, 31(6): 144-147
    154王文圣,丁晶,李跃清.水文小波分析.北京:化学工业出版社, 2005
    155林振山,邓自汪.子波气候诊断技术的研究.北京:气象出版社, 1999
    156中华人民共和国行业标准. TB 10002.3-2005铁路桥涵钢筋混凝土和预应力混凝土结构设计规范.北京:中国铁道出版社, 2005
    157刘兴法.混凝土桥梁的温度分布.铁道工程学报. 1985, (1): 107-111
    158中华人民共和国行业标准. TB 10002.1-2005铁路桥涵设计基本规范.北京:中国铁道出版社, 2005
    159中华人民共和国行业标准. JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范.北京:人民交通出版社, 2004
    160中华人民共和国行业标准. JTG D60-2004公路桥涵设计通用规范.北京:人民交通出版社, 2004
    161王毅.预应力混凝土连续箱梁温度作用的观测与分析研究.东南大学博士学位论文. 2006
    162项海帆.高等桥梁结构理论.北京:人民交通出版社, 2002
    163叶见曙,贾琳,钱培舒.混凝土箱梁温度分布观测与研究.东南大学学报. 2002, 32(5): 788-793
    164 C. L. Roberts, J. E. Breen and J. Cawrse. Measurements of Thermal Gradients and Their Effects on Segmental Concrete Bridge. Journal of Bridge Engineering. 2002, 7(3): 166-174
    165 AASHTO. AASHTO Guide Specifications, Thermal Effects in Concrete Bridge Superstructures. Washington, D.C: American Association of State Highway and Transportation Officals, 1989
    166 F. A. Branco, P. A. Mendes. Thermal Actions for Concrete Bridge Design. Journal of Structural Engineering. 1993, 119(8): 2313-2331
    167 M. Emerson. Bridge Temperature Estimated from Shade Temperatures. Transportation Road Research Laboratory, Letter Report 696. Crowthorne, 1976
    168 J. H. Clark. Evaluation of Thermal Stresses in a Concrete Box Girder Bridge. Washington: Washington University, 1989
    169王慧东.桥梁墩台与基础工程.北京:中国铁道出版社, 2005: 65-68
    170盛洪飞.桥梁墩台与基础工程.哈尔滨:哈尔滨工业大学出版社, 2005: 75-76
    171汪剑.大跨预应力混凝土箱梁桥非荷载效应及预应力损失研究.湖南大学博士学位论文, 2006
    172张建荣,刘照球.混凝土对流换热系数的风洞实验研究.土木工程学报. 2006, 39(9): 39-42
    173 S. Sritharan, N. Priestley and F. Seible. Nonlinear Finite Element Analyses of Concrete Bridge Joint Systems Subjected to Seismic Actions. Finite Elements in Analysis and Design. 2000, 36(3-4): 215-233
    174 J. Zhao, S. Sritharan. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures. ACI Structural Journal. 2007, 104(2): 133-141
    175 K. Maekawa, A. Pimanmas, H. Okamura. Nonlinear Mechanics of Reinforced Concrete. New York: Spon Press, 2003: 392-398
    176 M. Saatcioglu, G. Ozcebe. Response of Reinforced Concrete Columns to Simulated Seismic Loading. ACI Structural Journal. 1989, 86(1): 3-12
    177陈静,刘西拉.锈蚀钢筋混凝土构件粘结滑移本构模型.四川建筑科学研究. 2008, 34(4): 1-7
    178范颖芳,黄振国,李健美等.受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究.工业建筑. 1999, 29(8): 49-51
    179金伟良,赵羽习.随不同位置变化的钢筋与混凝土的粘结本构关系.浙江大学学报(工学版). 2002, 36(1): 1-6
    180 S. P. Tastani, S. J. Pantazopoulou. Experimental Evaluation of the Direct Tension Pullout Bond Test. Budapest: Bond in Concrete– from research to standards. 2002
    181 S. Broglio. Critical Investigation about Bond-Slip in Beam-Column Joint Macro-Model. Dissertation for Master Degree of Rose University. 2009
    182 M. Saatcioglu, G. Ozcebe. Response of Reinforced Concrete Columns to Simulated Seismic Loading. ACI Structural Journal. 1989, 86(6): 3-12
    183 Comite Euro-International du Beton. CEB-FIP model code 1990. Telford. 1993: 83
    184徐善华.混凝土结构退化模型与耐久性评估.西安建筑科技大学博士学位论文. 2003:25-26
    185吴海桥,何钟武,刘毅等.现代民航客机设计中的整机寿命指标.航空科学科技. 2003, (5): 33-35
    186 D. M. Frangopol, M. Liu. Life-cycle Cost Analysis for Highways Bridges: Accomplishments and Challenges. Proceedings of the 2004 Structures Congress. 2004: 1-9
    187卢伟,强士中,蒋永林.斜拉索抖振疲劳可靠度分析.中国公路学报. 2001, 14(4): 63-66
    188钟万勰,林家浩,吴志刚等.大跨度桥梁分析方法的一些进展.大连理工大学学报. 2000, 40(2): 127-135
    189丁泉顺.大跨度桥梁耦合颤抖振响应分析.上海:同济大学出版社, 2007: 8-10
    190卢伟,强士中,蒋永林.斜拉索抖振疲劳可靠度分析.中国公路学报. 2001,14(4): 63-66
    191 M. Gu, Y. L. Xu, L. Z. Chen and H. F. Xiang. Fatigue Life Estimation of Steel Girder of Yangpu Cable-Stayed Bridge due to Buffeting. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 80(3): 383-400
    192陈亮.斜拉索疲劳可靠度分析.长安大学硕士学位论文. 2007
    193刘高,刘波,宋辉.西堠门大桥索塔风致结构内力响应研究.公路交通科技. 2009, 26(6): 64-68
    194中国地理.中国海洋、沿岸概况. http://www.ziyexing.com/files-7/Geography /geography_06.htm
    195舟山大陆连岛工程.浙江省舟山大陆连岛工程西堠门大桥简介. 2005年11月, http://www.zsdlldgc.com/ReadNews.asp?NewsID=441
    196杨咏漪.大跨度桥梁风致抖振疲劳研究.西南交通大学博士学位论文. 2008
    197陈政清.桥梁风工程.北京:人民交通大学出版社, 2005
    198 R. H. Scanlan, K. S. Budlong and J. G. Beliveau. Indicial Aerodynamic Functions for Bridges Decks. Journal of Engineering Mechanics. 1974, 100(4): 657-672
    199 Y. K. Lin, S. T. AIARATNAM. Stability of Bridge Motion in Turbulent Wind. Journal of Structure Mechanics. 1980, 8(1): 1-15
    200 A. Namini. Analytical Modeling of Flutter Derivatives as Finite Elements. Computers & Structures. 1991, 41(5): 1055-1064
    201 C. Su, X. Fan and H. Tao. Wind-induced Vibration Analysis of a Cable-stayed Bridge During Erection by a Modified Time-domain Method. Journal of Sound and Vibration. 2007, 303(2): 330-342.
    202韩燕,陈政清,罗延忠.双肢薄壁墩连续刚构桥平衡悬臂施工阶段的抖振时域分析.中国公路学报. 2008, 21(1): 59-64
    203宋玉普.混凝土结构的疲劳性能及设计原理.北京:机械工业出版社, 2006
    204张令茂,江文辉.混凝土自然碳化与人工加速碳化的相关性研究.西安冶金建筑学院学报. 1990, (9): 207-214
    205阿列克谢耶夫著,黄可信,吴兴祖等译.钢筋混凝土结构中钢筋腐蚀与保护.北京:中国建筑工业出版社, 1983: 120-124
    206 V. G. Papadakis, C. G. Vayenas and M. N. Fardis. Fundamental Modeling and Experimental Investigation of Concrete Carbonation. ACI Materials Journal. 1991, (88): 363-373
    207朱安民.混凝土碳化与钢筋混凝土耐久性.混凝土. 1992, (6): 18-22
    208刘亚芹.混凝土碳化引起的钢筋锈蚀使用计算模型.同济大学硕士学位论文. 1997: 55-57
    209刘亚芹,张誉,张伟平等.表面覆盖层对混凝土碳化的影响与计算.工业建筑. 1997, 27(8): 41-45
    210牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型.工业建筑. 1996, 26(4): 8-10
    211徐善华.混凝土结构退化模型与耐久性评估.西安建筑科技大学博士学位论文. 2003: 25-26
    212中国地震局灾害应急救援司.汶川8.0级地震烈度分布图. 2008年8月29日, http://www.cea.gov.cn
    213王亚勇,戴国莹.《建筑抗震设计规范》疑问解答.北京:中国建筑工业出版社, 2006
    214金伟良,吕清芳,赵羽习,干伟忠.混凝土结构耐久性设计方法与寿命预测研究进展.建筑结构学报. 2007, 28(1): 7-13
    215中华人民共和国国家标准. GB 50011—2001建筑抗震设计规范.北京:中国建筑工业出版社, 2001
    216尹之潜,杨淑文.地震损失分析与设法标准.北京:地震出版社, 2004
    217刘兴法.混凝土桥梁的温度分布.铁道工程学报. 1985, (1): 107-111
    218申东华.板式楼梯施工缝的留置方法.建筑工人. 2005, (6): 45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700