混凝土结构耐久性能的概率预测与模糊综合评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用概率统计和模糊数学理论,从不确定性分析的角度对服役混凝土结构从材料、构件到结构的不同层次的耐久性评估方法进行了研究。以混凝土碳化、氯离子侵蚀引起的钢筋锈蚀、冻融作为混凝土结构劣化的主要环境作用因素,实现了以路径概率、层次分析等建模方法与信息更新、空间变异等分析思路的有效结合,为混凝土结构耐久性评估提供了新方法。
     本文主要进行了以下研究:
     1、基于现场检测试验与分析,探讨海港码头混凝土结构干湿交替区域氯离子侵蚀状况随高程、季节、材料及服役时间的变化关系,提出基于海域气象条件推定扩散模型参数,即表面氯离子浓度和扩散系数的新方法,并建立侵蚀严重区域高程范围与设计潮位之间的关系,可为海港码头混凝土结构耐久性设计、维护及现场取样工作提供参考依据。
     2、充分利用第三方结构参照物检测与室内快速实验结果的先验信息,初步确定性能预测模型参数,并通过少量结构原位测试和分析工作更新模型参数,实现混凝土结构耐久使用寿命的概率预测,提出了多环境时间相似(METS)理论与Bayes信息更新手段相结合的动态寿命预测新思路。
     3、基于混凝土锈胀开裂过程的随机性,提出了一种预测钢筋锈蚀程度、锈胀裂缝开展状况及承载力退化程度时变特性的路径概率模型,并编制了计算程序,能有效评估和预测氯离子侵蚀、混凝土碳化及两者耦合作用环境下钢筋锈蚀状况、锈胀裂缝宽度及构件承载力退化程度在不同时段的概率分布,实现了混凝土构件“有害物质侵蚀-钢筋锈蚀-混凝土开裂-钢筋锈蚀加剧-混凝土裂宽增大-构件承载力下降”的性能劣化全过程的数值模拟。经过多个工程实例验证,该模型是合理、有效的。
     4、以国内现有的冻融相似试验研究和工程调查资料为基础,经过统计分析提出了一种考虑多因素修正的适合混凝土抗冻耐久性环境区划设计与寿命预测的概率模型,成为混凝土抗冻寿命定量化设计和评估的可行方法。
     5、在现有等级模糊综合评判和层次分析理论的基础上,提出了一种改进的多层次混凝土桥梁耐久性评估模型。采用多因素决策的特征向量法、最优区间型隶属度函数、模糊扩张算法及权重均值技术等数学工具,编制了相应的评估程序,实现了对在役桥梁构件、构成及总体等各层次耐久性等级的综合评定,并结合基于锈胀开裂路径的混凝土构件耐久性能概率预测方法,实现了桥梁下部结构耐久性能等级退化规律的预测,可为决策者和工程师获得桥梁的系统判断和后续维修加固方案提供依据。
     6、为改进现有可靠度计算方法在评价构件或结构耐久性问题中存在的不足,将耐久性预测模型参数的空间变异性引入对混凝土结构性能劣化评估的概率预测模型中,计算获得构件服役期内的失效概率和混凝土表面钢筋锈蚀损伤、开裂和剥落面积比率等有效信息,为制定经济有效的维修策略提供参考。
     本文得到国家自然科学基金重点课题“氯盐侵蚀环境的混凝土结构耐久性设计与评估基础理论研究”(50538070)、国家高技术研究发展863计划“沿海重大混凝土桥梁耐久性试验方法与寿命评估技术”(2006AA04Z422)、交通部西部交通建设科技项目“混凝土桥梁耐久性指标体系、检测方法与评价标准的研究”(编号:200631822302-06)、浙江省科技计划项目“港口与海岸工程防腐蚀关键技术与配套设备的开发应用”(编号:2006C13090),中日(NSFC/JSPS)国际合作项目“基于全寿命管理的混凝土结构耐久性设计理论”等的资助,特此致谢。
In this thesis,an improved and more realistic approach for durability assessment of existing reinforced concrete(RC) structure has been developed on the base of probability statistic and fuzzy mathematics method on material,component and system layer from uncertain point of view.Based on Bayesian updating and spatial variation, path probability method(PPM) and hierarchy analysis model are developed for durability assessment of existing RC structure,taking into account those effect of carbonation,chloride ingression induced reinforcement corrosion and frost damage as the major reasons of degradation of concrete structure.
     The research contents for durability assessment are as follows:
     1.An empirical method is developed to determine input parameters of diffusion model, which related to altitude,season,material and service time in wet-dry cycling zone of harbor RC structures.Surface chloride level and apparent diffusion coefficient indicating chloride ingression state can be predicted according to weather information of sea area,and also the relationship between seriously damaged area and design tidal level is suggested for design reference,maintenance and power sampling of harbor concrete structure.
     2.A dynamic way for service life prediction is established using multi-environmental time similarity(METS) and Bayesian updating technique.Inspection of third reference structure and indoor accelerated test are performed to find the similarity relationship between natural and artificially simulated climate environment.Prior information is acquired and updated by field test with several samples to realize the behavior and life evaluation of RC structure.
     3.A path probability model(PPM) is proposed to predict the stochastic corrosion-crack and load capability degradation process of RC structures with time. The time-dependent probability distribution of reinforcement corrosion ratio,crack width and reduced load capability of RC concrete in carbonation,chloride penetration or coupling-effect environment can be calculated effectively by computer program.Therefore it enable the simulation of the whole process from harmful mediums erosion,corrosion initiation of reinforcement,corrosion induced concrete crack,corrosion and crack propagation to load capability reduction.The result has been proved reasonable in engineering assessment cases.
     4.Based on previous similarity experiments and engineering investigation,a multi-effect modified probabilistic model is present to be utilized in quantitative design of frost resistance and assessment of concrete structure in durability environmental zonation design point of view.
     5.An improved multiple-layer fuzzy assessment model is proposed to evaluate the durability condition of existing reinforced concrete bridges.Taking advantages of optimal interval based membership function,extended fuzzy operation and fuzzy weighted average technique,a multi-attributive decision making approach with eigenvector/weight is adopted to give a more realistic representation of components and bridge condition rating by corresponding computer program.Furthermore,the degraded durability behavior of substructure in future is predicted with the help of corrosion-crack path based PPM method.The present methodology will help decision makers and bridge engineers to arrive at a systematic judgment and methodical steps toward maintenance or repair.
     6.The spatial variation of model parameters is introduced as a supplement to current reliability analysis method in evaluating components or structures.The improved approach can produce not only the probability of failure but also the useful information as the proportion of surface area with initiation of rebar corrosion, cracking and spalling,etc.during the whole period of time that facilitates the repair or maintenance strategies for concrete structure from economical point of view.
     This research was supported by the project of National Natural Science Fund "Fundamental Research on Durability Design and Assessment of Concrete Structures in Chloride Erosive Environment"(50538070),863 program of National Hi-Tech Research Development "Durability Test Method and Assessment Technology of Important Coastal bridges"(2006AA04Z422),the West Traffic Construction Project of National Traffic Ministry "Study on Durability Index System,Test Methodology and Assessment Standard of Concrete Bridges"(200631822302-06),the science and technology project of Zhejiang Province "Key Anti-corrosion Techniques of Harbor and Costal Engineering and Development and Application of Supporting Facilities" (2006C13090),the agreement project of Chinese and Japanese(NSFC/JSPS) "Durability design theory of concrete structure based on Life-Cycle Cost Management Technique".Their support is gratefully acknowledged.
引文
[1-1]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [1-2]Report of the National Materials Advisory Board.Concrete Durability-A Multibillion Dollar Opportunity,Publication No.NMAB-437[R].National Academy of Sciences,Washington D C,1987:94.
    [1-3]British Transportation Ministry.Repair and maintenance of Midlands Link Express:Working Group 1988 Report[J].Concrete Journal,1990:23-27.
    [1-4]Saeed M M.Durability and sustainability of infrastructure-a state-of-the art report[J].Canada Journal of Civil Engineering,2006,33(6):639-649.
    [1-5]莫斯科文等著,倪续淼译.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1990.
    [1-6]日本土木学会编,张富春译.混凝土构筑物的维护、修补与拆除[M].北京:中国建筑工业出版社,1986.
    [1-7]金伟良等.浙江省公路混凝土桥梁结构耐久性调查报告[R].浙江大学研究报告,杭州:2004.
    [1-8]金伟良等.浙东沿海高桩码头耐久性调查和研究报告[R].浙江大学研究报告,杭州:2002.
    [1-9]金伟良等.浙江镇海电厂二、三期升压站工程混凝土结构耐久性检测与鉴定报告[R].浙江大学研究报告,杭州:2002.
    [1-10]Mehta P K.Concrete durability-fifty years' progress.Proceeding of the 2~(nd) International conference on concrete durability,ACI SP 126-1,1991:1-31.
    [1-11]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海科学技术出版社,2003.
    [1-12]牛荻涛.混凝土结构耐久性与寿命预测[M].科学出版社,2003.
    [1-13]屈文俊,张誉,车惠民.既有混凝土结构的碳化预测[J].建筑结构,1999,4(4):31-34.
    [1-14]孙晓燕,孙保沭,黄承逵等.基于可靠度的寒冷地区混凝土桥梁碳化寿命分析中国矿业大学学报[J].2005,34(4):458-461.
    [1-15]金伟良,鄢飞.混凝土碳化指数的概率模型[J].混凝土,2000(1):35-37.
    [1-16]LIFECON.Generic Technical Handbook for A Predictive Life Cycle Management System of Concrete Structures(LMS)[R].Life Cycle Management of Concrete Infrastructures for Improved Sustainability.2003.
    [1-17]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].浙江大学博士学位论文,2007
    [1-18]金伟良,吕清芳,赵羽习等.混凝土结构耐久性设计方法与寿命预测研究进展[J].建筑结构学报,2007,28(1):7-13.
    [1-19]施惠生,王琼.海工混凝土使用寿命预测研究[J].建筑材料学报,2004,7(2):161-167.
    [1-20]马亚丽,张爱林.基于规定可靠指标的混凝土结构氯离子侵蚀耐久寿命预测[J].土木工程学报,2006,39(2):36-41.
    [1-21]吴瑾,吴胜兴.氯离子环境下钢筋混凝土结构耐久性寿命评估[J].土木工程学报,2005,38(2):59-62.
    [1-22]Jin W L,Jin L B.A multi-envitonmental time similarity theory of life time prediction coastal concrete structural durability[A].Advance in Concrete Structural Durability[C]International Conference on Durability of Concrete Structures,2008,2:10-23.
    [1-23]Bazant Z P et al.Mathematical model for freeze-thaw durability of concrete[J].Journal of the American Ceramic Society,1988,71(9):776-783.
    [1-24]Fagerlund G.A service life model for internal frost damage in concrete[R].Report TVBM-3119,Laboratary of Building Materials,Lund Institutes of Technology.2004.
    [1-25]蔡昊.混凝土抗冻耐久性预测模型[D].清华大学博士学位论文,1988.
    [1-26]许丽萍,吴学礼.抗冻混凝土的设计[J].上海建材学院学报,1993,6(2):112-123.
    [1-27]李金玉,彭小平等.混凝土抗冻性的定量化设计[J].混凝土,2000,134:61-65.
    [1-28]李田,刘西拉.钢筋锈蚀和混凝土冻融破坏的可靠性分析及防范措施[J].建筑结构学报,2000,134:43-50.
    [1-29]宋玉普,冀晓东.混凝土冻融损伤可靠性分析及剩余寿命预测[J].水利学报,2006,37(3):259-263.
    [1-30]刘远.基于损伤理论的混凝土抗冻耐久性随机预测方法研究[D],浙江大学硕士学位论文,2006.
    [1-31]龚永辉.混凝土结构冻融破坏模糊时变可靠性分析[D].西安建筑科技的大学硕士学位论文,2006.
    [1-32]邸小坛,周燕,顾红祥.WD13823的概念与结构耐久性设计方法研讨[A].第四届混凝土结构耐久性技论坛论文集-混凝土结构耐久性设计与评估方法[C].北京:机械工业出版社,2006.80-92.
    [1-33]Sun W.,Zhang Y M,Yah H D,etal.Damage and its restraint of concrete with different strength grades under double damage factors[J].Cement and Concrete Research,1999,21:5-6.
    [1-34]余红发,孙伟,鄢良慧等.混凝土使用寿命预测方法的研究Ⅲ-混凝土使用寿命的影响因素及混凝土寿命评价[J].硅酸盐学报,2002,30(6).
    [1-35]屈文俊,白文静.风压加速混凝土碳化的计算模型[J].同济大学学报(自然科学版),2003,31(11):1280-1284.
    [1-36]屈文俊,郭猛.风压影响混凝土碳化试验研究[J].混凝土,2005,1:49-51.
    [1-37]屈文俊,赵红晓.风压加速П型混凝土梁渗透碳化深度分析[J].建筑科学与工程学报,2006,23(4):15-18.
    [1-38]王军强.混凝土中冻融循环和氯离子侵蚀的耦合效应试验研究[J].混凝土,2008,11:29-31.
    [1-39]刘荣桂,付凯,颜庭成.基于损伤理论的预应力混凝土冻融破坏研究[J].混凝土,2007,1:1-3.
    [1-40]刘荣桂,付凯,颜庭成.预应力混凝土结构在冻融循环条件下的疲劳性能研究[J].工业建筑,2008,38(11):75-78.
    [1-41]Japan Concrete Institute.Interface problem between structural and durability design of concrete structures[R],Committee report,1998.
    [1-42]Aldea C M,Shah S P,Karr A.Effect of cracking on water and chloride permeability of concrete[J],Journal of materials in civil engineering.1999,8.
    [1-43]Djerbi A,Bonnet S,Khelidj A,etal.Influence of traversing crack on chloride diffusion into concrete[J],Cement and Concrete Research,2008.
    [1-44]潘振华,牛荻涛,王庆霖.钢筋锈蚀开裂条件的试验研究[J].工业建筑,1999(29):46-49.
    [1-45]李海波,鄢飞,赵羽习等.钢筋混凝土结构开裂时刻的钢筋锈胀力模型[J].浙江大学学报(工学版),2000(34):415-422.
    [1-46]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,7:57-62.
    [1-47]赵羽习,金伟良.混凝土锈胀时刻钢筋锈蚀率的数值分析方法[J].浙江大学学报(工学版),2008,42(6):1080-1084.
    [1-48]Morinaga S.Prediction of service life of reinforced concrete buildings based on the corrosion rate of reinforcing steel[J].Durability of building Materials and components,Proceedings of the 5~(th) international conference helded in Brighton,UK,1990.
    [1-49]Mcleish A.Cracking due to Corrosion[J].Taywood Engineering,Technical Note No.1632.1986.
    [1-50]Williamson,S J,Clark L A.Pressure Required to Cause Cover Cracking of Concrete due to Reinforcement Corrosion[J].Magazine of Concrete Research,2000(52):455-467.
    [1-51]Allan,M.I.,Probability of Corrosion Induced Cracking in Reinforced Concrete[J].Cement and Concrete Research,1995(25):1179-1190.
    [1-52]Bazant Z P et al.Physical model for steel corrosion in concrete sea structures-theory[J].ASCE Journal of Structural Division,1977(105):1155-1166.
    [1-53]Liu Y P,Weyers R E.Modeling the time -to-corrosion cracking in chloride contaminated Reinforced Concrete structures[J],ACI Materials Journal,1998(95):675-681.
    [1-54]Molina F J,Alonso C,Andrade C.Cover Cracking as a Function of Rebar Corrosion:Part 2-Numerical Model[J].Materials and Structures,1993(26):532-548.
    [1-55]Dagher H J,Kulendran S.Finite Element Modeling of Corrosion Damage in Concrete Structures[J].ACI Structural Journal,1995(89):1179-1190.
    [1-56]Hansen E J,Saoma V E.Numerical Simulation of reinforced Concrete Deterioration:Part Ⅱ-Steel Corrosion and Concrete Cracking[J].ACI Materials Journal,1999(96):331-338.
    [1-57]Noghabai K,FE-Modeling of cover splitting due to corrosion by use of inner softening band[J].Materials and structures,1999(32):486-491.
    [1-58]淡丹辉,王庆霖.钢筋混凝土结构锈胀裂缝的计算模拟[J].西安交通大学学报,2000(35):484-487.
    [1-59]陈月顺,卫军,罗晓辉.钢筋混凝土锈胀开裂临界锈蚀率模型研究[J].武汉理工大学学报,2007,29(2):51-53.
    [1-60]惠云玲.混凝土结构中钢筋锈蚀评估的试验研究报告[R].冶金部建筑研究总院,1985.
    [1-61]邸小坛,周燕.旧建筑物的检测加固与维护[M].地震出版社,1992.
    [1-62]王深,钢筋混凝土结构锈胀裂缝的研究及耐久性评估[D].同济大学硕士学位论文,2000.
    [1-63]Alonso C,Andrade C,Rodrigues J,etal.Factors controlling cracking of concrete affected reinforcement corrosion[J]..Material and structures,1998,31(211):435-441.
    [1-64]Thoft C.Modeling of the deterioration of reinforced concrete structures[C].Proceedings of IFIP conference on reliability and optimization of structural systems,Ann Arbor,Michigan,2000:15-26.
    [1-65]Dai J G,Kato E,Iwanami M,etal.Variations of steel corrosion and it-induced and influenced cracks in RC tensile ties accelerately deteriorated by impressed-current method[C].Yokota H,Shimomura T,editors.Proceedings of International Workshop on Life Cycle Management of Coastal Concrete Structures,Port and Airport Research Institute,Nagaoka,Japan,2006:101-108.
    [1-66]Vidal T,Castel A.Francois R.Analyzing crack width to predict corrosion in reinforced concrete[J].Cement and Concrete Research,2004(34):165-174.
    [1-67]倪国荣.公路混凝土桥梁结构耐久性概率预测、评估方法和软件系统[D].浙江大学硕 士学位论文,2006.
    [1-68]刘西拉,苗澎河.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报,1990,23(4):69-78.
    [1-69]肖从真.混凝土中钢筋腐蚀的机理研究及数论模拟方法[D].清华大学博士学位论文,1995.
    [1-70]刘亚芹.混凝土碳化引起的钢筋锈蚀实用计算模型[D].同济大学硕士学位论文,1997.
    [1-71]卫军,桂志华,王艺霖.混凝土中钢筋锈蚀速率的预测模型[J].武汉理工大学学报,2005,27(6):45-47.
    [1-72]邸小坛,周燕.大气环境下钢筋锈蚀规律的研究[J].第四届全国混凝土耐久性学术交流会论文集,1996.
    [1-73]Jin W L,Wang X Z,Song Z G.A probabilistic model for corrosion prediction of steel reinforcement[J].Int.J.Modelling,Identification and Control,2008,4(3):268-277.
    [1-74]宋志刚,金伟良,刘芳等.钢筋锈蚀率概率分布的动态演进模拟[J].浙江大学学报(工学版),2006,40(10):1749-1753.
    [1-75]Ting S C,Nowak A S.Effect of reinforcing Steel Area Loss on Flexural behavior of Reinforced Concrete Beams[J].ACI Structural Journal,1991,(88):309-314.
    [1-76]惠卓,王庆霖.受损构件承载力的计算机模拟[J].西安建筑科技大学学报,1997,88:309-314.
    [1-77]袁迎曙,贾福萍,蔡跃.锈蚀钢筋混凝土梁的结构性能退化模型[J].土木工程学报,2001,34(3):47-52.
    [1-78]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001(5):9-11.
    [1-79]金伟良,赵羽习.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版)2008,42(1),19-24.
    [1-80]史庆轩,李小健,牛荻涛等.锈蚀钢筋混凝土偏心受压构件承载力试验研究[J].工业建筑,2001(5):14-17.
    [1-81]惠云玲,李荣,林志伸等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997(6):14-18.
    [1-82]牛荻涛,翟彬,王林科等.锈蚀钢筋混凝土梁的承载力分析[J].建筑结构,1999(8):23-25.
    [1-83]陶峰,王林科,王庆霖.服役钢筋混凝土构件承载力的试验研究[J].工业建筑,1996(4):17-20.
    [1-84]任宝双,钱稼茹,聂建国.在用钢筋混凝土简支桥面梁受弯承载力估算[J].工业建筑,2000(11):29-33.
    [1-85]陈驹.氯离子侵蚀作用下混凝土构件的耐久性[D].硕士学位论文,杭州:浙江大学,2002.
    [1-86]张克强,卫军,徐港.锈蚀钢筋混凝土小偏心受压构件承载力评估[J].华中科技大学学报(自然科学版),2008,36(4):107-109.
    [1-87]周锡武,卫军,董荣珍等.锈蚀钢筋混凝土大偏心压弯构件承载力模型[J].华中科技大学学报(自然科学版),2007,35(3):107-109.
    [1-88]Stewart M G.Effect of spatial variability of pitting corrosion on structural fragility and reliability of RC beams in flexure[R],research report No.232.02.2003,discipline of civil,surveying and environmental engineering,The University of Newcastle,Australia.2003.
    [1-89]Li Y.Effect of Spatial Variability on Maintenance and Repair Decisions for Concrete Structures[D],PhD thesis of Delft University,Netherlands.2004.
    [1-90]张富春译.已有建筑物可靠性鉴定方法和检测手册[M],1982.
    [1-91]Bresler B,Hanson M J.Comartin C D.Fractical evaluation of structural reliability[M],1980.
    [1-92]赵焕臣.层次分析法[M].科学技术出版社,1986.
    [1-93]张誉,李树立.旧房可靠性的模糊综合评判[J].建筑结构学报,1997(5):12-21.
    [1-94]张伟平,张誉.现有房屋耐久性等级评估[A].中国土木工程学会第九届年会:工程安全性及耐久性论文集[C].中国水利水电出版社,浙江杭州,2000.
    [1-95]卢木,王娴明.结构耐久性多层次综合评定[J].工业建筑,1998(1):1-8.
    [1-96]王恒东,钢筋混凝土结构耐久性评估[D].大连理工大学博士学位论文,1996.
    [1-97]钱永久,既有钢筋混凝土桥梁的评估与诊断[D].西南交通大学博士学位论文,1989.
    [1-98]潘黎明,史家钧.桥梁安全性与耐久性综合评估研究[J].上海市政工程,1997(4):1-7.
    [1-99]任宝双,钱稼茹,聂建国等.在用钢筋混凝土简支梁桥结构综合评估方法[J].土木工程学报,2002,35(2),97-102.
    [1-100]Tee A B.Bowman M D,Sinha K C,Fuzzy mathematical approach for bridge condition evaluation[J].Civil Engineering Systems,1988,5(1):17-24.
    [1-101]Melhem H G,Aturaliya S.Applications of fuzzy logic to bridge engineering[J].Journal of intelligent and fuzzy systems.1994,2(1):55-68.
    [1-102]Liang M T,Wu J H,Liang C H.Multiple layer fuzzy evaluation for existing reinforced concrete bridges[J].Journal of Infrastructure Systems,2001,7(4):144-159.
    [1-103]Sasmal S,Ramanjaneyulu K.Gopalakrishnan S Lakshmanan N.Fuzzy logic based condition rating of existing reinforced concrete bridges[J].Journal of Performance of Constructed Facilities,2006,20(3):261-273.
    [1-104]李贞新,郭丰哲.钱永久既有钢筋混凝土拱桥耐久性的模糊综合评估[J].西南交通大学学报,2006,41(3):366-370.
    [1-105]朱平华,金伟良,倪国荣.在役混凝土桥梁结构耐久性评估方法[J].浙江大学学报(工学版),2006,40(4):658-667.
    [1-106]任玉珊.既有水工钢闸门耐久性评估方法研究[J].大坝与安全,2003,2:55-57.
    [1-107]朱炳喜.涵闸水上钢筋混凝土构件耐久性等级的模评估糊[J].水利水电技术,2000,7:29-32.
    [1-108]刘西拉,陈瑞金.土木工程中的专家系统[J].计算结构力学及其应用,1987,4:107-112.
    [2-1]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,2002.
    [2-2]张奕.氯离子在混凝土中的输运机理研究[D],杭州:浙江大学,2008.
    [2-3]嘉兴港(乍浦)港口情况简介[EB].中国港口航运网.2001.http://www.chinaports.com.cn)
    [2-4]中华人民共和国行业标准.海港工程混凝土结构防腐技术规范(JTJ 275-2000)[S],中华人民共和国交通部,2001.
    [2-5]金伟良.杭州湾跨海大桥混凝土结构耐久性长期性能研究[R],浙江大学结构工程研究所研究报告,2008.
    [2-6]国家海洋信息中心海洋环境评价预报部.中华人民共和国港口潮汐预报[R],乍浦,2006.
    [2-7]姚昌建.沿海码头混凝土设施受氯离子侵蚀的规律研究[D],浙江大学硕士学位论文,2007.
    [2-8]高祥杰.海港码头氯离子侵蚀混凝土实测分析研究[D],浙江大学硕士学位论文,2008.
    [2-9]LIFECON.Service Life Models:Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and types of structures in Europe[R].Life Cycle Management of Concrete Infrastructures for Improved Sustainability,2003.
    [2-10]Anna V S,Roberto V S.Analysis of chloride diffusion into partially saturated concrete [J].ACI Material Journal,1993,(5):441-451.
    [2-11]DuraCrete.Probabilistic Performance Based Durability Design of Concrete Structures General Guidelines for Durability Design and Redesign[R].Report No.BE95-1347/R14,2000.
    [2-12]Life-365.Computer Program for Predicting the Service Life and Life Cycle Costs of RC Exposed to Chlorides[M],2000.
    [3-1]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D].浙江大学博士学位论文,2008.
    [3-2]Jin W L,Jin L B.A multi-envitonmental time similarity theory of life time prediction coastal concrete structural durability[C].Advance in Concrete Structural Durability-International Conference on Durability of Concrete Structures,2008,2,:10 -23.
    [3-3]金伟良,吕清芳,赵羽习等.混凝土结构耐久性设计方法与寿命预测研究进展[J].建筑结构学报,2007,28(1):7-13.
    [3-4]卢振永.氯盐腐蚀环境的人工气候模拟试验方法[D].杭州:浙江大学硕士学位论文,2007.
    [3-5]International Standard[S].General principals on reliability for structures,2~(nd) edition,Reference number:ISO2394:1998(E).
    [3-6]ACI 365.1R.Service Life Prediction - State-of-the-Art Report[S],ACI Manual of Concrete Practice - Part 5,Farmington Hills,2002.
    [3-7]Mangat P S,Molloy B T.Prediction of long term chloride concentration in concrete[J].Materials and Structures,1994,27(7):338-346.
    [3-8]Life-365 Computer Program for Predicting the Service Life and Life Cycle Costs of RC Exposed to Chlorides[M],2000.
    [3-9]Glass G K,Bueafeld N R.Chloride Penetration into Concrete[M].PariIs:RILEM,1997.
    [3-10]Engelund S,Sorensen J D.A probabilistic model for chloride ingress and initiation of corrosion in reinforced concrete structure[J].Structural Safety,1998,(20):69-89.
    [3-11]Reddy B,Glass G K,Lim P J,etal.On the corrosion risk presented by chloride bound in concrete[J].Cement & Concrete Composites,2002,(24):1-5.
    [3-12]Schieβ1 P.Durable Concrete Structures[M],Comite Euro-lnternational du Beton(CEB)Design Guide,Second Edition,Bulletin d'information No.182,1989.
    [3-13]Wang X Z,Jin W L.Spatial variability-based corrosion risk assessment and strategy of repair and maintenance for RC structures,International Conference on Modelling,Identification and Control[C].special issue of Int.J.Modelling,Identification and Control (in press),2008.
    [3-14]Amey S L,Johnson D A,Miltenberger M A,etal.Predicting the service life of concrete marine structures:an environmental methodology[J].ACI Structural Journal,1998,95(2):205-214.
    [3-15]金伟良.杭州湾跨海大桥混凝土结构耐久性长期性能研究[R],浙江大学结构工程研究所,2008.
    [3-16]张宝胜.杭州湾跨海大桥混凝土结构耐久性方案研究[A].第四届混凝土结构耐久性科技论坛论文集-混凝土结构耐久性设计与评估方法[c].北京:机械工业出版社,2006.
    [3-17]张宝兰,卫淑珊.华南海港钢筋混凝土暴露十年试验[J].水运工程,1999,(3):6-13.
    [3-18]DuraCrete.Probabilistic Performance Based Durability Design of Concrete Structures General Guidelines for Durability Design and Redesign[R].Report No.BE95-1347/R14.2000.
    [4-1]Jin W L,Wang X Z,Song Z G.A probabilistic model for corrosion prediction of steel reinforcement[J].Int.J.Modelling,Identification and Control,2008,4(3):268-277.
    [4-2]王晓舟,金伟良等,延永东.混凝土结构锈胀开裂预测的路径概率模型[J].浙江大学学报(已录用).
    [4-3]宋志刚,金伟良等.钢筋锈蚀率概率分布的动态演进模拟[J].浙江大学学报(工学版),2006,40(10):1749-1753.
    [4-4]Bamforth P B,Price W E An international review of chloride ingress into structural concrete[R].Report No.1303/96/9092.Taywood Engineering Ltd Technology Division,1997.
    [4-5]Val D V,Stewart M G.Life-cycle cost analysis of reinforced concrete structures in marine environments[J].Structural Safety,2003(25):343-362.
    [4-6]Vu K A T,Stewart M G.Structural reliability of concrete bridges including improved chloride-induced corrosion models[J].Structural Safety,2000(22):313-333.
    [4-7]Reddy B,Glass G K,Lira P J,et al.On the corrosion risk presented by chloride bound in concrete[J].Cement & Concrete Composites,2002(24):1-5.
    [4-8]Oh B H,Jang S Y.Prediction of diffusivity of concrete based on simple analytic equations[J].Cement and Concrete Research,2004,34(3):463-480.
    [4-9]牛荻涛.混凝土结构耐久性与寿命预测[M].北京,科学出版社,2002.
    [4-10]蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999(29):4-7.
    [4-11]金伟良.沿海混凝土工程安全耐久性关键技术与工程应用[R],浙江大学结构工程研究所研究报告,2005,12.
    [4-12]Liu T,Weyers R E.Modeling the dynamic corrosion process in chloride contaminated concrete structures[J].Cement and Concrete Research,1998(28):365-379.
    [4-13]Vidal T,Castel A,Francois R.Analyzing crack width to predict corrosion in reinforced concrete[J].Cement and Concrete Research,2004(34):165-174.
    [4-14]牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法研究[J].建筑结构,2002,33(10):14-17.
    [4-15]惠云玲,李荣,林志伸等.混凝土基本构件钢筋锈蚀前后性能试验研究[J].工业建筑,1997(6):14-18.
    [4-16]混凝土结构设计规范(GB 50010-2002)[S].中华人民共和国国家标准,中国建筑工业出版,2002.
    [4-17]田瑞华,颜桂云,孙炳楠.锈蚀钢筋混凝土构件抗剪承载力的试验研究与理论分析[J].四川建筑科学研究,2003,29(3):36-38.
    [4-18]金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].工业建筑,2001(5):9-11.
    [4-19]金伟良,赵羽习.锈蚀箍筋混凝土梁的抗剪承载力分析[J].浙江大学学报(工学版)2008,42(1),19-24.
    [4-20]浙江省乐清市清江大桥检测及静载试验报告(武中交试(2008)字第(004)号)[R].中交第二公路勘测设计研究院有限公司,北京:2008,7.
    [5-1]Fagerlund G.A service life model for internal frost damage in concrete[R],Report TVBM-3119,Laboratary of Building Materials,Lurid Institutes of Technology,2004.
    [5-2]邸小坛,周燕,顾红祥.WDl3823的概念与结构耐久性设计方法研讨[A].第四届混凝土结构耐久性科技论坛论文集-混凝土结构耐久性设计与评估方法[C].北京:机械工业出版社,2006:80-92.
    [5-3]蔡昊.混凝土抗冻耐久性预测模型[D].清华大学博士学位论文,1988.
    [5-4]宋玉普,冀晓东.混凝土冻融损伤可靠性分析及剩余寿命预测[J].水利学报,2006,37(3):259-263.
    [5-5]李金玉,彭小平,邓正刚等.混凝土抗冻性的定量化设计[J].混凝土,2000,134:61-65.
    [5-6]石宝立.海洋混凝土的冻害病因与防治措施[J].铁道建筑,2006,2:79-81.
    [5-7]Bazant Z Petal.Mathematical model for freeze-thaw durability of concrete[J].Journal of the American Ceramic Society,1988,71(9):776-783.
    [5-8]段安.受冻融混凝土本构关系研究和冻融过程数值模拟[D].清华大学博士学位论文,2009.
    [5-9]吕清芳.混凝土结构耐久性环境区划标准的基础研究[D].浙江大学博士学位论文,2007.
    [5-10]林宝玉.我国港口工程混凝土抗冻耐久性指标的研究与实践[A].混凝土结构耐久性设计与施工指南(论文汇编部分)[M].中国建筑工业出版社,2004:158-168.
    [5-11]混凝土结构耐久性设计规范(GB/T 50476)[S].中华人民共和国国家标准,2008.
    [5-12]中国主要城市气候标准值(1971-2000年)[EB].中国气象数据共享服务网,2003,(http://cd c.cma.gov.cn).
    [5-13]曹四伟,马少军.寒冷地区水工混凝土的冻害及防治对策[J].水利与建筑工程学报,2004,2(4):56.58.
    [6-1]Federal Highway Administration(FHWA).Bridge inspectors training manual 90[R].U.S.Department of Transportation,Bureau of Public Road,Washington,D.C.,1991.
    [6-2]朱平华,金伟良,倪国荣.在役混凝土桥梁结构耐久性评估方法[J].浙江大学学报(工学版),2006,40(4):658-667.
    [6-3]Tee A B,Bowman M D,Sinha K C.Fuzzy mathematical approach for bridge condition evaluation[J].Civil Engineering Systems,1988,5(1):17-24.
    [6-4]Tee A B,Bowman M D.Bridge condition assessment using fuzzy weighted averages[J].Civil Engineering Systems,1991,8(1):49-57.
    [6-5]Melhem H G,Aturaliya S.Applications of fuzzy logic to bridge engineering[J].Journal of intelligent and fuzzy systems,1994,2(1):55-68.
    [6-6]Melhem H G,Aturaliya S.Bridge Condition Rating Using an Eigenvector of Priority Settings[J].Micro- computers in Civil Engineering,1996,11(6):421-432.
    [6-7]Yager R R.Fuzzy decision making unequal objectives[J].Fuzzy Sets and Systems,1978.1:87-95.
    [6-8]Satty T L.Priority setting in complex problems[J].IEEE Transactions on Engineering Management,1983,EM-30(3):140-155.
    [6-9]Satty T L.The analytic hierarchy process[M],McGraw Hill:New York,1980.
    [6-10]Vargas L G.Reciprocal matrices with random coefficients[J].Math.Modelling,1982.3:69-81.
    [6-11]公路桥涵养护规范(JTG H11-2004)[S],北京:中华人民共和国交通部,2004.
    [6-12]Sasmal S,Ramanjaneyulu K,Gopalakrishnan S,etal.Fuzzy logic based condition rating of existing reinforced concrete bridges[J].Journal of Performance of Constructed Facilities,2006,20(3):261-273.
    [6-13]Arnold K,Madan M G.Introduction to fuzzy arithmetic - Theory and application[J].Van Nostraud Reinhold Company,New York,1984:14-43.
    [6-14]浙江省乐清市清江大桥检测及静载试验报告(武中交试(2008)字第(004)号)[R],中交第二公路勘测设计研究院有限公司,北京,2008,7.
    [6-15]倪国荣.公路混凝土桥梁结构耐久性概率预测、评估方法和软件系统[D].浙江大学硕士学位论文,2006.
    [7-1]Stewart M G.Faber,M.H.,Gehlen,C.Temporal and spatial aspects of probabilistic corrosion models[C].Proceedings of the Joint JCSS,fib and LCC03 Workshop,EPFL,Lausanne,2003:183-193.
    [7-2]Li Ying.Effect of Spatial Variability on Maintenance and Repair Decisions for Concrete Structures[D].PhD thesis of Delft University,Netherlands,2004.
    [7-3]Malioka V,Faber M H.Modeling of the spatial variability for concrete structures[C].Proceedings of IABMAS,Kyoto,2004.
    [7-4]Sterdtt G,Chryssanthopoulos M K.Shetty,N.K.Reliability based inspection planning for RC highway bridges[C].Proceedings of IABSE Conference on Safety,Risk and Reliability,Malta,2001.
    [7-5]Hergenr(o|¨)der M,Zur Statistischen.Instandhaltungsplannung f(u|¨)r Bestehende Bauwerke bei Karbonatisierung des Betons and M(o|¨)glicher Korrosion der Bewehrung,Beriehte aus dem Konstruktiven Ingenieurbau[J].TU M(u|¨)nchen,4/92,1992(In German).
    [7-6]Vu K A T,Stewart M G.Spatial variability of structural deterioration and service life prediction of reinforced concrete bridges[C].First International Conference on Bridge Maintenance,Safety and Management,IABMAS 2002,Barcelona,2002.
    [7-7]Faber M H,Sφrensen J D.Indicator for inspection and maintenance planning of concrete structures[J].Structural Safety,2002,24:377-396.
    [7-8]Faber M H,Straub D.A computational Framework for risk assessment of RC structures using indicators[J].Computer-Aided Civil and Infrastructure Engineer,2006,21:216-230.
    [7-9]Engelund S,Sφrensen J D,Sφrensen B.Evaluation of repair and maintenance strategies for concrete coastal bridges on a probabilistic basis[J].ACI Materials Journal,1999,96(2):160-166.
    [7-10]金伟良,赵羽习等.杭州湾跨海大桥混凝土结构耐久性长期性能研究[R].浙江大学结构工程研究所,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700