基于遥感与DEM的“吉兰泰—河套”古大湖重建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉兰泰盐湖位于内蒙古自治区阿拉善左旗吉兰泰镇(39°36′~39°42′N,105°35′~105°45′E),多年平均降水量108.89 mm,多年平均蒸发量2954.00 mm,气候干旱,植被稀少,沙漠化严重。河套盆地位于内蒙古西部(39°20′~41°20′N,106°~112°E),北至阴山脚下,南临鄂尔多斯高原北面的库布齐沙漠边缘,西接乌兰布和沙漠,东及东南与蛮汗山山前丘陵及和林格尔丘陵相接。年降水量大部地区介于150~400 mm之间,年蒸发量介于2000~2800 mm之间。从构造上看,吉兰泰断陷盆地隶属于河套断陷盆地的一部分,河套断陷盆地是介于南部的鄂尔多斯隆起和北部的阴山隆起之间的新生代断陷盆地,盆地中心沉积了巨厚的第四系湖相沉积,现代黄河自西而东穿过河套盆地。
     位于季风与西风过渡带的吉兰泰-河套地区,生态环境极其脆弱,对气候变化反映敏感,第四纪地层中记录着丰富的环境变化信息。前人根据吉兰泰-河套地区若干地点发现的湖岸堤、湖相地层提出可能存在“吉兰泰古湖”、“河套古湖”。但是,吉兰泰和河套地区是否存在统一的巨大古湖是一个值得深入研究的、重大的区域环境问题,目前尚缺乏系统的研究。本研究充分利用现代遥感技术的特点与优势,以多源遥感影像数据作为切入点,结合野外地质、地貌考察和差分GPS测高,系统研究了该区域湖滨地貌的空间分布。同时,结合OSL测年结果,基于SRTM DEM数据,利用GIS空间分析手段重建了不同时期古大湖的空间信息,探讨了各主要时段“吉兰泰-河套”古大湖空间演化的过程以及历史时期水系格局的变迁。在此基础上,利用水量平衡模型,初步计算和分析了古大湖发育时期的入湖径流量,以期为理解“吉兰泰-河套”古大湖的演化历史及过程提供科学依据,为了解该区域环境变化的历史及水资源的合理开发与利用提供参考资料。本研究所取得的主要结论如下:
     1、利用NASA Astronaut Photographs、Landsat-7 ETM+影像,在三维可视化技术的支持下,判读出了吉兰泰-河套地区一系列的古湖岸堤、古冲积扇、古河道及断裂构造等信息,为研究“吉兰泰-河套”古大湖的空间演化提供了第一手的基础资料。影像判读表明:
     (1)古湖岸堤呈线状(或条带状)的影像特征,以吉兰泰盐湖周围保存最为完整。根据DGPS测量和DEM数据的分析,吉兰泰-河套地区的古湖岸堤共分五级,即1070~1080 m、1060 m、1050 m、1044 m和1035 m。高出现代盐湖47~57 m(海拔1070~1080 m)的古湖岸堤,是该地区保存的最高湖面遗迹,在盐湖西南道扣梁以南和盐湖西部剖面S32~S34之间保存较为完整;海拔1060 m的古湖岸堤主要分布于盐湖西部至西北,延续性较好,长度超过20 km,仅个别部位为沟谷冲断,实测宽度在100 m以上;海拔1050 m的古湖岸堤主要分布于盐湖西北、西部和西南道扣梁一带,延续性好,在盐湖西北长度达20 km以上,实测宽度在100m以上。在道扣梁一带,长度约10km以上,实测宽度6~9m。遥感影像明确揭示,盐湖西北两条并行的主湖岸堤中均包含有次一级的湖岸堤;海拔1044 m和1035 m的古湖岸堤主要分布于盐湖西部,长度有限,均不超过3 km。在吉兰泰盐湖西岸的南砂场和乌兰布和沙漠腹地的贺日木西尼发育古砂嘴,以贺日木西尼古砂嘴影像特征最为明显。该砂嘴长约11 km,实测顶部宽约5 m,最宽处可达30 m,砂嘴顶部比两侧高出3~10 m,海拔从1050 m降低到1035 m,顶面平坦笔直,近岸边呈现典型的“V”字型特征;
     (2)吉兰泰-河套地区存在三个古冲积扇,乌兰布和沙漠北部和后套平原西部地区的两个古冲积扇规模较大,南扇地面坡降大于北扇。南、北冲积扇上不同时期、不同流向的古河道相互重叠、交叉。南冲积扇上的古河道近南北向展布,北冲积扇及五原一带则逐渐转为近东西方向。古河道在ETM+543合成影像上呈蓝黑色或鲜绿色的条带,形态特征多种多样,以后套地区影像特征最为明显。在巴音木仁(旧磴口)以西可能存在一个更老的古冲积扇;
     (3)河套盆地周缘断裂构造非常发育,以NE(NEE)、EW方向为主。盆地北缘一线主要存在狼山—色尔腾山山前断裂带、乌拉山山前断裂带、大青山山前断裂带,断层陡坎、断层崖、断层三角面等沿断裂带广泛发育,影像特征非常明显。盆地南缘受控于鄂尔多斯北缘断裂带及和林格尔断裂带,影像特征也比较明显。吉兰泰盐湖周围的断裂带比较发育,以NE和SN方向为主。
     2、建立了吉兰泰-河套地区的数字高程模型,该模型精确地再现了吉兰泰-河套地区的地形地貌特征。通过DEM分析并结合OSL测年表明,60~50 ka以来,吉兰泰-河套地区经历了四次高湖面时期,即60~50 ka之前、40 ka之前、22 ka之前以及早全新世。在60~50 ka之前的最高湖面阶段(海拔1080 m),“吉兰泰-河套”古大湖湖域辽阔,西至吉兰泰盐湖西南,东到呼和浩特以东,南以鄂尔多斯高原北缘为界,北至巴彦乌拉山—狼山—色尔腾山—乌拉山—大青山南麓一线,包括现今的乌兰布和沙漠与库布齐沙漠的大部分地区。现代地形条件下的平均深度约50 m,湖泊面积约34 757 km~2,整个湖盆容积可达6 000 km~3;在MIS3晚期的高湖面时期(海拔1060m、1050m),现代地形条件下的平均水深介于32~25 m,古湖面积介于30 818~28 121 km~2之间,整个吉兰泰-河套地区仍为一个统一大湖;进入全新世以来,在全新世早期虽然出现了又一次的高湖面,但现有证据表明,湖泊仅局限于吉兰泰盐湖周围及贺日木西尼一带;晚全新世时,吉兰泰地区已进入盐湖阶段,流沙侵湖,并迅速呈现出沙下盐湖的特征。从湖面退缩的空间过程来看,古大湖北缘沿巴彦乌拉山—狼山—色尔腾山—乌拉山—大青山南缘一线直到22 ka之前变化不明显,东部边缘、西南边缘退缩比较明显,退缩最严重的区域在鄂尔多斯高原西北缘;
     3、基于遥感影像并参考前人研究成果,确认出乌兰布和沙漠北部地区遥感影像上形似小鸟的区域为西汉至北魏时期屠申泽所在。该古湖湖口大致位于隆盛合到东海子附近,南大致以海子岗到东海子一线为界,北缘大致位于王外生苑旦到杨三圪旦一线附近,古湖面积约450 km~2,东西长约40 km,南北最宽约18 km左右。屠申泽形成于西汉之前,在其鼎盛时期可能覆盖了整个乌兰布和沙漠北部地区,范围是西汉至北魏时期的8-9倍以上。根据文献记载描述的历史时期河套段黄河从北向南、从西向东的变迁过程,尤其是清代河道的变迁过程,在遥感影像上得到了忠实的记录和反映;
     4、初步探讨了构造活动、水系变迁及气候变化在“吉兰泰-河套”古大湖形成演化过程中的作用。研究表明,第四纪以来,吉兰泰地区构造活动相对稳定,而河套地区构造活动非常强烈,高湖面的形成很可能受控于区域造陆隆起和局部构造变形。剔除构造抬升的影响,60~50 ka之前古大湖的水位介于1080 m~1050 m之间,面积约30 000 km~2左右,吉兰泰-河套地区仍为统一大湖所覆盖;区域对比发现,“吉兰泰-河套”古大湖的高湖面记录与青藏高原区的“泛湖面”(溢流面)具有非常好的一致性,与古里雅冰芯、深海氧同位素曲线、北半球太阳辐射量曲线及洛川剖面的磁化率曲线具有较好的一致性。40 ka之前、22ka之前和全新世早期的高湖面与古里雅冰芯及深海氧同位素阶段所反映的暖期基本一致,尤其是与古里雅冰芯的对比较为一致,60~50 ka之前的高湖面与氧同位素的低谷相一致,可能反映在暖期后冰水融化而形成的高湖面;晚第四纪以来多次高湖面的形成,很可能是截留了黄河水,黄河很可能外流减少或停止以至成为内流河才使湖面能够保持稳定;
     5、根据水量平衡模型,以研究区现代的降水量、蒸发量为参考,通过子区划分赋权重的方法,初步地计算了古大湖发育时期的入湖径流量。结果表明,60~50 ka之前“吉兰泰-河套”古大湖发育时期,年入湖径流量约为420.55×10~8 m~3,其中黄河年入湖径流量达410×10~8 m~3以上。由于当时气温较低,降水较高,从而使古大湖的水位在海拔1080 m左右维持着一种动态平衡;
     6、研究证明,遥感技术在湖泊演化研究中具有独特的优势。与单源遥感影像数据相比,多源遥感影像数据所提供的信息具有互补性和合作性,在古湖演化研究中可以取长补短,提供更加全面的信息。将遥感技术、数字高程模型及GIS技术运用于古湖演化研究中,具有精度高、速度快、信息全面的特点,利于大区域研究和宏观规律的把握,同时还可以实现古湖演化的可视化和定量化,是研究湖泊演化极为有效和值得推广的方法之一。
Jilantai Salt Lake, located on the northeastern margin of the Alashan Plateau, Inner Mongolia, China, is a typical salt lake in northwestern China. It belongs to the Hetao fault-depression basin tectonically, which was formed in Cenozoic and is limited to the south and north by the Ordos Plateau and Yinshan Mountains respectively. The Yellow River flows through the Hetao basin from west to east.
     The wider region covered by this research lies across a critical climatic boundary between the influence of the Asian summer monsoon and westerly airflow. The extensive Quaternary lacustrine sediments and its sensitive response to climate change due to its location have attracted much research interests here. Previous studies suggest that the existence of Jilantai paleolake and Hetao paleolake based on some local shoreline features and lacustrine sediments records. However, no comprehensive studies of the relationship between the Jilantai paleolake and the Hetao paleolake was addressed. A full understanding of the Paleo-Megalake 'Jilantai-Hetao' needs more systematic and interdisciplinary studies.
     Based on remote sensing images, field geomorphological and sedimentary investigations, this research first confirmed the spatial distribution of paleoshorelines in the Jilantai-Hetao region. Meanwhile, Digital Elevation Model (DEM) was analyzed by means of GIS spatial analysis technologies to extract the spatial information of Paleo-Megalake 'Jilantai-Hetao'. Furthermore, the evolutionary processes and the water system shift processes were discussed in details. Finally, a simple water balance model was built to reconstruct the past natural runoff to the Paleo-Megalake. The results presented in this study have significant implications for improving our knowledge of Paleo-Megalake evolution and regional environment change. This study is also the first step for a remote sensing and DEM based reconstruction of late Quaternary paleolake evolution in this region, which is also important for the sustainable development and utilization of water resources in the Jilantai-Hetao region. The preliminary conclusions are as follows.
     1. Series of paleoshorelines, paleoalluvial fans, old river valleys and fault systems were identified on remote sensing images, which are encouraging enough for us to use these data as the basic information for paleolake evolution studies in this region. Image interpretation indicates that
     (1) With clear linear or belt shape on remote sensing images, paleoshorelines are well preserved around Jilantai Salt Lake. Five shoreline groups at elevations of 1070~1080 m, 1060 m, 1050 m, 1044 m and 1035 m were confirmed based on DGPS measurements and DEM analysis. The highest shorelines at elevation of 1070~1080 m presented very well to the southwest of Daokouliang, which is located to the southwest of Jilantai Salt Lake, as well as the western profiles between S32 and S34. On the west to northwest margin of Jilantai Salt Lake, paleoshorelines at elevations of 1060 m and 1050 m extended more than 20 km, with width more than 100 m. In addition, paleoshoreline at elevation of 1050 m was also well preserved near Daokouliang and was about 10 km long and 6~9 m wide. Subshorelines existed in the above-mentioned two major shorelines. We also recognized some remnant paleoshorelines at elevations of 1044 m and 1035 m to the west of Jilantai Salt Lake. Two spits are clearly visible on the image. One is near the South Sand Quarry, west of Jilantai Salt Lake. The other is at Herimuxini, near the threshold separating the Jilantai basin from the Hetao basin, extends east from a high paleoshoreline to near the center of the modern Ulan Buh Desert. The spit is 11 km long and drops in elevation from 1050 m to 1035 m rapidly. The spit landform is well preserved, with a 5 m wide flat and straight crest and a height of 3 to 10 m above the playa floor. It has a typical "V" shape near the shore, with a maximum width of 30 m.
     (2) Three paleoalluvial fans were identified on the image. Two huge fans were located on the northern part of Ulan Buh desert and the western margin of the Houtao Plain where distributed numerous old river valleys. With blue-black or fresh green color on ETM+ 543 composite image, old river valleys orientated almost in SN direction on the south fan, while nearly in EW direction on the north fan and around Wuyuan. An older alluvial fan was also identified to the west of Bayinmuren (Jiudengkou).
     (3) Series of fault systems were clearly displayed on 3D images, on which the fault systems orientated mainly in NE (NEE) and EW direction. On the northern margin of the Hetao Plain, along the Langshan-Seertengshan-Wulashan-Daqingshan piedmont fault system, fault scarplets, fault escarpments and fault facets developed extensively and can be easily identified on remote sensing images. While the Ordos and Helingeer fault systems on the southern margin of the Hetao Plain can only be identified but with much ambiguous geomorphological features on the image. Around the Jilantai Salt Lake, some fault systems orientated in NE and SN were also documented.
     2. The 2000 Shuttle Radar Topography Mission (SRTM) data have been used in this study. SRTM DEM produces much more sharper images of the region's topography and provides new insights into debates about the nature and extent of late Quaternary Paleo-Megalake here. Combined with OSL dating, a paleolake named as Paleo-Megalake 'Jilantai-Hetao' developed before 60~50 ka was vividly sketched. The megalake covered a considerable area about 34 757 km~2 geographically, extending from the southwest of Jilantai Salt Lake to the east of Hohhot. It was bordered towards the south and north by the northern margin of the Ordos Plateau and the southern piedmont along Bayanwulashan-Langshan-Seertengshan-Wulashan-Daqingshan. The Paleo-Megalake basin has a volume about 6 000 km~3 and with an average depth of 50 m under modern topographic conditions. During the late MIS3, two highstands of paleolakes were also documented at elevations of 1060 m and 1050 m. The paleolakes still covered most of the Jilantai-Hetao region with an area about 30 000 km~2. During the early Holocene, firm evidences existed for another high lake stand but with limited extent only including Jilantai and Herimuxini. Arid climate gradually prevailed in this region during the late Holocene. Strong evaporation and serious desertification further enhanced the rapid shrinkage of Jilantai Salt Lake. Spatially speaking, the Paleo-Megalake 'Jilantai-Hetao' regressed rapidly on the northwestern margin of the Ordos Plateau.
     3. Based on image interpretation and previous studies, we confirmed that the bird shape feature on the image represented the extent of Tushenze from Xihan to Beiwei Dynasty. The paleolake is bounded to the south from Haizigang to Donghaizi and from Wangwaishengyuandan to Yangsangedan on its northern margin. The lake mouth is near Longshenghe to Donghaizi. With a length of 40 km from west to east and a maximum width near 18 km, Tushenze occupied an area of 450 km~2. We postulated that Tushenze was formed before Xihan Dynasty and probably occupied most of northern Ulan Buh desert during its maximum period. Shifts of old river valleys from north to south and from west to east on the Houtao Plain were documented distinctly on the image.
     4. We postulated that several highstands since the late Quaternary were controlled by the regional epeirogenic uplift events. The Paleo-Megalake 'Jilantai-Hetao' developed before 60~50 ka represented the hugest paleolake ever reported in this region and the lake level fluctuated between 1080 and 1050 m in spite of strong tectonic activities. The highstands in Jilantai-Hetao region not only show the same climatic pattern as in the Qinghai-Tibet Plateau, but also agree well with records from the Guliya Ice Core, the Marine Isotope Stages, and the susceptibility from Luochuan Loess as well as the Northern Hemisphere insolation curve. The Yellow River was probably an inland river or at least with very limited outflow, which contributed to the formation of several highstands in this region.
     5. A simple water balance model based on modern precipitation and evaporation was built to quantitatively reconstruct the natural runoff during the geological periods. Natural Yellow River runoff into the Jilantai-Hetao basin was estimated to be more than 410×10~8m~3/yr, which is necessary to maintain the Paleo-Megalake 'Jilantai-Hetao' near equilibrium.
     6. With the characteristics of complementary and cooperative, multi-source remote sensing images have proved to be powerful tools in lake evolution studies. This research demonstrates that new technologies such as remote sensing, DEM and GIS have the potentials to significantly improve our knowledge of lake evolution and environment change. High accuracy, high efficiency and substantive information extracting from these technologies are of great benefit to understanding the macro geographical phenomena, to visualizing and quantifying the results. We believe that as complementary means to the traditional Quaternary research methods, these technologies can surely provide us more valuable information and deserve more applications.
引文
1.Bailey,J.E.,Self,S.,Wooller,L.K.and Mouginis-Mark,P.J.,2007,Discrimination of fluvial and eolian features on large ignimbrite sheets around La Pacana Caldera,Chile,using Landsat and SRTM-derived DEM.Remote Sensing of Environment,108(1):24-41.
    2.Berger,A.and Loutre,M.F.,1991,Insolation values for the climate of the last 10 million years.Quaternary Science Reviews,10(4):297-317.
    3.Blumberg,D.G.,2006,Analysis of large aeolian(wind-blown)bedforms using the Shuttle Radar Topography Mission(SRTM)digital elevation data.Remote Sensing of Environment,100(2):179-189.
    4.Boomer,I.,Aladin,N.,Plotnikov,I.and Whatley,R.,2000,The palaeolimnology of the Aral Sea:a review.Quaternary Science Reviews,19(13):1259-1278.
    5.Boroffka,N.,Oberhansli,H.,Sorrel,Ph.,Demory,F.,Reinhardt,Ch.,Wünnemann,B.,Alimov,K.,Baratov,S.,Rakhimov,K.,Saparov,N.,Shirinov,T.,Kfivonogov,S.K.and Rohl,U.,2006,Archaeology and climate:settlement and lake level changes at the Aral Sea.Geoarchaeology,21(7):721-734.
    6.Burke,K.,1976,The Chad Basin:an active intra-continental basin.Tectonophysics,36(1-3):197-206.
    7.Chen,F.H.,Fan,Y.X.,Chun,X.,Madsen,D.B.,Oviatt,C.G.,Zhao,H.,Yang,L.P.and Sun,Y.,2008,Preliminary research on Megalake Jilantai-Hetao in the arid areas of China during the Late Quaternary.Chinese Science Bulletin,53(11):1725-1739.
    8.Chen,F.H.,Shi,Q.and Wang,J.M.,1999,Environmental changes documented by sedimentation of Lake Yiema in arid China since the Late Glaciation.Journal of Paleolimnology,22(2):159-169.
    9.Chen,F.H.,Wu,W.,Holmes,J.A.,Madsen,D.B.,Zhu,Y.,Jin,M.and Oviatt,Ch.G.,2003,A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau,Inner Mongolia,China.Chinese Science Bulletin,48(14):1401-1410.
    10.Chen,K.Z.and Bowler,J.M.,1986,Late Pleistocene evolution of salt lakes in the Qaidam Basin,Qinghai Province,China.Palaeogeography,Palaeoclimatology,Palaeoecology,54(1-4):87-104.
    11.Cheng,S.,Deng,Q.,Zhou,S.and Yang,G.,2002,Strath terraces of Jinshaan Canyon,Yellow River,and Quaternary tectonic movements of the Ordos Plateau,North China.Terra Nova,14(74):215-224.
    12.Dalati,M.,2004,The role of remote sensing in detecting active and fresh faulting zones case study:northwest of Syria,Al-Ghab Graben Complex.http://www.isprs.org/istanbul2004/comm4/papers/394.pdf
    13.Demirkesen,A.,Evrendilek,F.,Berberoglu,S.and Kilic,S.,2007,Coastal flood risk analysis using Landsat-7 ETM+ imagery and SRTM DEM:A case study of lzmir,Turkey.Environmental Monitoring and Assessment,131(1-3):293-300.
    14.DeVogel,S.B.,Magee,J.W.,Manley,W.F.and Miller,G.H.,2004,A GIS-based reconstruction of late Quaternary paleohydrology:Lake Eyre,arid central Australia.Palaeogeography,Palaeoclimatology,Palaeoecology,204(1-2):1-13.
    15.Dong,G.R.,Gao,Q.Z.,Zhou,X.Y.,Li,B.S.and Yan,M.C.,1996,Climatic changes on southern fringe of the Badain Jaran Desert since the Late Pleistocene. Chinese Science Bulletin, 41 (10): 837-842.
    
    16. Durand, A., 1982, Oscillations of Lake Chad over the past 50,000 years: new data and hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 39 (1-2): 37-53.
    17. Erol, O., 1984, Geomorphology and neotectonics of the pluvial lake basins in the Taurus Belt and South Central Anatolia. In: O. Tekeli, & C. Goncuoglu (Eds.) , Geology of the Taurus Belt. International Symposium, Ankara, 119-124.
    18. Fabre, A., Letreguilly, A., Ritz, C. and Mangeney, A., 1995, Greenland under changing climates, sensitivity experiments with a new dimensional ice sheet model. Annals of Glaciology,21:1-7.
    19. Falorni, G, Teles, V., Vivoni, E.R., Bras, R.L. and Amaratunga, K., 2005, Analysis and characterization of the vertical accuracy of digital elevation models from the shuttle radar topography mission. Journal of Geophysical Research, 110: F02005.
    20. Farr, T.G and Kobrick, M., 2000, Shuttle radar topography mission produces a wealth of data. Transactions of the American Geophysical Union, 81: 583-585.
    21. Feng, Z.D., 2001, Gobi dynamics in the Northern Mongolian Plateau during the past 20,000 yr: preliminary results. Quaternary International, 76-77:77-83.
    22. Feng, Z.D., Wang, W.G., Guo L.L., Khosbayar, P., Narantsetseg, T., Jull, A.J.T., An, C.B., Li, X.Q., Zhang, H.C. and Ma, Y.Z., 2005, Lacustrine and eolian records of Holocene climate changes in the Mongolian Plateau: preliminary results. Quaternary International, 136(1): 25-32.
    23. Fredrick, K.C., Becker, M.W., Matott, L.S., Daw, A., Bandilla, K. and Flewelling, D.M., 2007, Development of a numerical groundwater flow model using SRTM elevations. Hydrogeology Journal,15 (1): 171-181.
    24. Gani, N. DS. and Abdelsalam, M. G, 2006, Remote sensing analysis of the Gorge of the Nile, Ethiopia with emphasis on Dejen-Gohatsion region. Journal of African Earth Sciences, 44 (2): 135-150.
    25. Ghienne, J.F., Schuster, M., Bernard, A., Duringer, P. and Brunet, M., 2002, The Holocene giant Lake Chad revealed by digital elevation models. Quaternary International, 87 (1): 81-85.
    26. Ghoneim, E. and El-Baz, F., 2007, The application of radar topographic data to mapping of a mega-paleodrainage in the Eastern Sahara. Journal of Arid Environments, 69 (4): 658-675.
    27. Gilbert, G.K., 1890, Lake Bonneville. Washington: Government printing office, 23-88.
    28. Gorokhovich, Y. and Voustianiouk, A., 2006, Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, 104 (4): 409-415.
    29. Gracia-Prieto, F.J., 1995, Shoreline forms and deposits in Gallocanta Lake (NE Spain). Geomorphology, 11 (4): 323-335.
    30. Grunert, J., Lehmkuhl, F. and Walther, M., 2000, Palaeoclimatic evolution of the Uvs Nuur Basin and adjacent areas (Western Mongolia). Quaternary International, 65-66: 171-192.
    31. Guo, H.D., 2001, Radar Remote Sensing applications in China. London, Taylor & Francis, London and New York, 79.
    32. Guo, H.D., Liu, H., Wang, X.Y., Shao, Y., Sun, Y., 2000, Subsurface old drainage detection and paleoenvironment analysis using spaceborne radar images in Alxa Plateau. Science in China(Series D),43(4):439-448.
    33.Guo,H.D.,Zhu,L.P.,Shao,Y.and Lu,X.Q.,1996,Detection of structural and lithological features underneath vegetation canopy using SIR-C/X-SAR data in Zhao Qing test site of southern China.Journal of Geophysical Research,101(E10):23101-23108.
    34.Hastenrath,S.and Kutzbach,J.,1985,Later Pleistocene climate and water budget of the South American Altiplano.Quaternary Research,24(3):249-256.
    35.Hastenrath,S.and Kutzbach,J.E.,1983,Paleoclimatic from water and energy budgets of east African lakes.Quaternary Research,19(2):141-153.
    36.http://edcftp.cr.usgs.gov/pub/data/srtm/Documentation/SRTM_Topo.Txt,2003.
    37.http://eol.jsc.nasa.gov/
    38.http://glcfapp.umiacs.umd.edu/
    39.http://seamless.usgs.gov/website/seamless/products
    40.http://srtm.csi.cgiar.org/
    41.http://www2.jpl.nasa.gov/srtm/srtmBibliography.html/SRTM.pdf
    42.Imbde,J.,Hays,J.G.and Martin,D.G.,1984,The orbit theory of Pleistocene,climate:support from a revised chronology of the marine δ ~(18)O record.In:Berger,A.,ed.,Milankovitch and Climate.D.Reidel,Norwell,Mass,269-305.
    43.Jia,Y.L.,Shi,Y.F.,Wang,S.M.,Jiang,X.Z.,Li,S.J.,Wang,A.J.and Li,X,H.,2001,Lake expanding events in the Tibetan plateau since 40 ka B.P.Science in China(D),44(S1):301-317.
    44.Karabiyikoglu,M.,Kuzucuoglu,C.,Fontugne,M.,Kaiser,B.and Mouralis,D.,1999,Facies and depositional sequences of the Late Pleistocene Gocü shoreline system,Konya basin,Central Anatolia:implications for reconstructing lake-level changes.Quaternary Science Reviews,18(4-5):593-609.
    45.Kellndorfer,J.,Walker,W.,Pierce,L.,Dobson,C.,Fites,J.A.,Hunsaker,C.,Vona,J.and Clutter,M.,2004,Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets.Remote Sensing of Enviroument,93(3):339-358.
    46.Kiamehr R.and Sjoberg L.E.,2005,Effect of the SRTM global DEM on the determination of a high-resolution geoid model:a case study in Iran.Journal of Geodesy,79(7):540-551.
    47.Komatsu,G.,Brantingham,P.J.,Olsen,J.W.and Baker,V.R.,2001,Paleoshoreline geomorphology of Boon Tsagaan Nuur,Tsagaan Nuur and Orog Nuur:the Valley of Lakes,Mongolia.Geomorphoiogy,39(3-4):83-98.
    48.Kutzbach,J.E.,1980,Estimates of past climate at palaeolake Chad,North Africa,based on a hydrological and energy balance model.Quaternary Research,14:210-223.
    49.Leblanc,M.J.,Leduc,C.,Stagnitti,F.,Oevelen,P.J.V.,Jones,C.,Mofor,L.A.,Razack,M.,and Favreau,G.,2006,Evidence for Megalake Chad,north-central Africa,during the late Quaternary from satellite data.Palaeogeography,Palaeoclimatology,Palaeoecology,230(3-4):230-242.
    50.Leverington,D.W.,Teller,J.T.and Mann,J.D.,2002,A GIS method for reconstruction of late Quaternary landscapes from isobase data and modern topography.Computers and Geosciences,28(5):631-639.
    51.Li,R.Q.and Yang,M.C.,1991,Relationship between development of the Huang he and Yong ding he Rivers and the Evolution of the fossil lakes of the Cenozoic in the Drainage Area.Chinese Geographical Science,1(3):234-247.
    52. Lister, G.S., Kelts, K., Chen, K.Z., Yu, J.Q. and Niessen, F., 1991, Lake Qinghai, China, closed-basin lake levels and the oxygen isotope record for ostracoda since the lastest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 84 (1-4): 141-162.
    
    53. Liu, H.Y., Xu, L.H. and Cui, H.T., 2002, Holocene History of Desertification along the Wood land-Steppe Border in Northern China. Quaternary Research, 57 (2): 259-270.
    
    54. Lorius, J.C., 1991, Polar ice cores, climate and environment records. Proceedings of the International Conference on Climatic Impacts on the Environment and Society. Tsukuba, Japan, 1-7.
    
    55. Ludwig, R. and Schneider, P., 2006, Validation of digital elevation models from SRTM X-SAR for applications in hydrolpgic modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 60 (5): 339-358.
    
    56. Lulla, K., Evans, C., Amsbury, D., Wilkinson, J., Willis, K., Caruana, J., O'Neill, C, Runco, S., McLaughlin, D., Gaunce, M., McKay, M. F. and Trenchard, M, 1996, The NASA Space Shuttle Earth Observations Photography Database: an underutilized resource for global environmental geosciences. Environmental Geosciences, 3(1): 40-44.
    
    57. Lulla, K., Helfert, M., Evans, C., Wilkinson, M.J., Pitts, D. and Amsbury, D., 1993, Global geologic applications of the Space Shuttle Earth Observations Photography database. Photogrammetric Engineering and Remote Sensing, 59:1225-1231.
    
    58. Lulla, K.P. and Helfert, M.R., 1989, Analysis of seasonal characteristics of Sambhar Salt Lake, India, from digitized Space Shuttle photography. Geocarto International, 4(1): 69-74.
    
    59. Machlus, M., Enzel, Y., Goldstein, S.L., Marco, S. and Stein, M., 2000, Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits. Quaternary International, 73-74:137-144.
    
    60. Madsen, D.B., Chen, F.H., Oviatt, Ch.G., Zhu, Y., Brantingham, P.J., Elston, R.G. and Bettinger, R.L., 2003, Late Pleistocene/Holocene wetland events recorded in southeastTengger Desert lake sediments, NW China. Chinese Science Bulletin, 48 (14): 1423-1429.
    
    61. Maley, J., 1977, Palaeoclimates of Central Sahara duringthe early Holocene. Nature, 269: 573-577.
    
    62. Marschalk, U., Roth, A., Eineder, M. and Suchandt, S., 2004, Comparison of DEMs derived from SRTM/X- and C-Band. Geoscience and Remote Sensing Symposium, IGARSS'04 Proceedings, 7:4531-4534.
    
    63. Martinson, D. G., Pisias, N.G., Hays, J. D., Imbrie, J., Moore Jr., T.C. and Shackleton, N. J., 1987, Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research, 27 (1): 1-29.
    
    64. Masoud, A. and Koike, K., 2006, Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. Journal of African Earth Sciences, 45 (4-5): 467-477.
    
    65. McCauley, J.F., Breed, C.S. and Schaber, G.G., 1995, SIR-C definition of the Serir-Kufra river system in SE Libra. EOS Suppl. April, 25:196.
    
    66. McCauley, J.F., Breed, C.S., Schaber, G.G., McHugh, W.P., Issawi, B., Haynes, C.V., Grolier, M.J. and Kilani, A.E., 1986, Paleodrainages of the Eastern Sahara: the radar rivers revisited (SIR-A/B implications for a Mid-Tertiary Trans-African drainage system). IEEE Transactions on Geoscience and Remote Sensing, GE-24 (4): 624-648.
    
    67. McCauley, J.F., Schaber, G.G., Breed, C.S., Grolier, M.J., Haynes, C.V., Issawi, B., Elachi, C. and Blom, R., 1982, Subsurface valleys and geoarchaeology of the Eastern Sahara revealed by shuttle radar. Science, 218 (3): 1004-1020.
    
    68. Mohler, R.R.J., Helfert, M.R. and Giardino, J.R., 1989, The decrease of Lake Chad as documented during twenty years of manned space flight. Geocarto International, 4 (1): 75-79.
    69. Murphy, M.A. and Burgess, P.W., 2006, Geometry, kinematics, and landscape characteristics of an active transtension zone, Karakoram fault system, Southwest Tibet. Journal of Structural Geology, 28 (2): 268-283.
    70. Pachur, H.-J. and Rottinger, F., 1997, Evidence for a large extended paleolake in the Eastern Sahara as revealed by spaceborne radar lab images. Remote sensing of environment, 61 (3): 437-440.
    71. Pachur, H J., Wunnemann, B. and Zhang, H.C., 1995, Lake evolution in the Tengger Desert, northwestern China during last 40,000 years. Quaternary Research, 44 (2): 171 -180.
    72. Pefla, S.A. and Abdelsalam, M.G, 2006, Orbital remote sensing for geological mapping in southern Tunisia: implication for oil and gas exploration. Journal of African Earth Sciences, 44 (2): 203-219.
    73. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Bamola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.M., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. and Stievenard, M., 1999, Climate and atomospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399:429-436.
    74. Rabus, B., Eineder, M., Roth, A. and Bamler, R., 2003, The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57 (4): 241 -262.
    75. Reheis, M., 1999, Highest pluvial-lake shorelines and Pleistocene climate of the Western Great Basin. Quaternary Research, 52 (2): 196-205.
    76. Reinhardt, C., Wunnemann, B. and Krivonogov, S.K., 2008, Geomorphological evidence for the Late Holocene evolution and the Holocene lake level maximum of the Aral Sea. Geomorphology, 93 (3-4): 302-315.
    77. Rhodes, T.E., Gasse, F., Lin, R.F., Fontes, J-C, Wei, K.Q., Bertrand., P., Gibert, E., Melieres, R, Tucholka, P., Wang, Z.X. and Cheng, Z.Y., 1996, A Late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (Northern Xinjiang, western China). Palaeogeography, Palaeoclimatology, Palaeoecology, 120(1-2): 105-125.
    78. Robinson, J. A., McRay, B. and Lulla, K.P., 2000b, Twenty-eight years of urban growth in North America quantified by analysis of photographs from Apollo, Skylab and Shuttle-Mir. In Dynamic Earth Environments: Remote Sensing Observations from Shuttle-Mir Missions, edited by K. P. Lulla and L. V. Dessinov (New York: John Wiley & Sons), 25-42, 262, 269-270.
    79. Robinson, J.A., Amsbury, D.L., Liddle, D.A. and Evans, C.A., 2002, Astronaut-acquired orbital photographs as digital data for remote sensing: spatial resolution. International Journal of Remote Sensing, 23 (20): 4403-4438.
    80. Robinson, J.A., Feldman, G.C., Kuring, N., Franz, B., Green, E., Noordeloos, M. and Stumpf, R.P., 2000a, Data fusion in coral reef mapping: working at multiple scales with SeaWiFS and astronaut photography. Proceedings of the 6th International Conference on Remote Sensing for Marine and Coastal Environments, 2:473-483.
    81. Sanders, B.F., 2007, Evaluation of on-line DEMs for flood inundation modeling. Advances in Water Resources, 30 (8): 1831-1843.
    82. Schuster, M., Roquin, C., Duringer, P., Brunet, ML, Caugy, M., Fontugne, M., Mackaye, H.T., Vignaud, P. and Ghienne, J.-F, 2005, Holocene Lake Mega-Chad palaeoshorelines from space. Quaternary Science Reviews, 24 (16-17): 1821-1827.
    83. Sellers, P.J., Meeson, B.W., Hall, F.G., Asrar, G., Murphy, R.E., Schiffer, R.A., Bretherton, F.P., Dickinson, R.E., Ellingson, R.G., Field, C.B., Huemmrich, K.F., Justice, CO., Melack, J.M., Roulet, N. T., Schimel, D.S. and Try, P.D., 1995, Remote sensing of the land surface for studies of global change: Models-algorithms-experiments. Remote Sensing of Environment, 51 (1): 3-26.
    84. Shen, J., Liu, X.Q., Wang, S.M. and Ryo, M., 2005, Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quaternary International, 136 (1): 131-140.
    85. Shi, Y.F., Yu, G., Liu, X.D., Li, B.Y. and Yao, T.D., 2001, Reconstruction of the 30-40 ka B.P. enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 169 (1-2): 69-83.
    86. Sun, G., Ranson, K. J., Kharuk, V. I. and Kovacs, K., 2003, Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of Environment, 88 (4): 401-411.
    87. Sun, Q.L., Wang, S.M., Zhou, J., Shen, J., Cheng, P., Xie, X.P. and Wu, F., 2008, Lake surface fluctuations since the late glaciation at Lake Daihai, North central China: A direct indicator of hydrological process response to East Asian monsoon climate. Quaternary International, doi: 10.1016/j.quaint.2008.01.006.
    88. Swain, A.M., Kutzbach, J.E. and Hastenrath, S., 1983, Estimates of Holocene precipitation for Rajasthan, India, based on pollen and lake-level data. Quaternary Research, 19 (1): 1-17.
    89. Teller, J.T., Leverington, D.W. and Mann, J.D., 2002, Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Review, 21 (8-9): 879-887.
    90. Wang, H.Y., Liu, H.Y., Cui, H.T. and Abrahamsen, N., 2001, Terminal Pleistocene/ Holocene Palaeoenvironmental changes revealed by mineral-magnetism measurements of lake sediments for Dali Nor area, southeastern Inner Mongolia Plateau, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 170 (1-2): 115-132.
    91. Webb, E.L., Evangelista, Ma. A. and Robinson, J. A., 2000, Digital land use classification using Space Shuttle acquired orbital photographs: a quantitative comparison with Landsat TM imagery of a coastal environment, Chanthaburi, Thailand. Photogrammetric Engineering and Remote Sensing, 66 (12): 1439-1449.
    92. Wright, R., Garbeil, H., Baloga, S. M., Mouginis-Mark, P. J., 2006, An assessment of shuttle radar topography mission digital elevation data for studies of volcano morphology. Remote Sensing of Environment, 105 (1): 41-53.
    93. Wunnemann, B., Pachur, H.J., Zhang, H., 1998, Evidences for climatic and environmental changes in the deserts of Inner Mongolia, China since the Late Pleistocene, Quaternary Deserts and Climate Change (eds. Alsharhan, A. S., Glennie K.W.). Rotterdam: Balkema, 381-394.
    94. Yang, L., Chen, F., Chun, X., Fan, Y., Sun, Y., Madsen, D.B. and Zhang, X., 2008, The Jilantai Salt Lake shorelines in Northwestern arid China revealed by remote sensing images.Journal of Arid Environments,72(5):861-866.
    95.Yang,Z.R.and Teller,J.T.,2005,Modeling the history of Lake of the Woods since 11,000cal yr B.P.using GIS.Journal of Paleolimnology,33(4):483-497.
    96.Zavialov,P.O.,Kostianoy,A.G.,Emelianov,S.V.,Ni,A.A.,Islmiyazov,D.,Khan,V.M.and Kudyshkin,T.V.,2003,Hydrographic survey in the dying Aral Sea.Geophysical Research Letters,30(13):21-24.
    97.Zhang,H.C.,Peng,J.L.,Ma,Y.Z.,Chen,G.J.,Feng,Z.D.,Li,B.,Fan,H.F.,Chang,F.Q.,Lei,G.L.and Wünnemann,B.,2004,Late Quaternary palaeolake levels in Tengger Desert,NW China.Palaegeography,Palaeoclimatology,Palaeoecology,211(1-2):45-58.
    98.Zhang,H.C.,Wünnemann,B.,Ma,Y.Z.,Peng,J.L.,Pachur,H.-J.,Li,J.J.,Qi,Y.,Chen,G.J.,Fang,H.B.and Feng,Z.D.,2002,Lake level and climate change between 42,000 and 18,000 ~(14)C yr B.P.in Tengger desert,Northwestern China.Quaternary Research,58(1):62-72.
    99.蔡伟,余俊清,李红娟,2005,遥感技术在湖泊环境变化研究中的应用和展望。盐湖研究,13(4):14-20。
    100.曹伯勋,1995,地貌学与第四纪地质学。武汉:中国地质大学出版社,131-149。
    101.曹建廷,王苏民,2001,西北内陆湖泊主要环境问题。科技导报,(12):21-23。
    102.常庆瑞,蒋平安,周勇,申光荣,李瑞雪,赵鹏祥,2004,遥感技术导论。北京:科学出版社,1-402。
    103.陈耳东,1997a,河套段黄河变迁史话。内蒙古水利,(4):52-53。
    104.陈耳东,1997b,河套段黄河变迁史话。内蒙古水利,(3):54-55。
    105.陈耳东,1998,河套段黄河变迁史话。内蒙古水利,(1):55。
    106.陈发虎,范育新,春喜,Madsen,D.B.,Oviatt,C.G.,赵晖,杨丽萍,孙洋,2008,晚第四纪“吉兰泰-河套”古大湖的初步研究。科学通报,53(10)(in press)。
    107.陈发虎,吴薇,朱艳,Holmes,J.A.,Madsen,D.B.,金明,Oviatt,Ch.G.,2004,阿拉善高原中全新世干旱事件的湖泊记录研究。科学通报,49(1):1-9。
    108.陈发虎,朱艳,李吉均,施祺,靳立亚,Wünnemann,B.,2001,民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化。科学通报,46(17):1414-1419。
    109.陈桂琛,彭敏,周立华,马世震,王玉学,1995,青海湖地区人类活动对生态环境影响及其保护对策。干旱区地理,18(3):57-62。
    110.陈荷立,崔荫松,宋国初,1993,临河坳陷泥岩压实与油气运聚条件研究。石油学报,14(2):32-43。
    111.陈建强,周洪瑞,王训练,2004,沉积学及古地理学教程。北京:地质出版社,111-194。
    112.陈克造,Bowler,J.M.,Kelts,K.,1990,四万年来青藏高原的气候变迁。第四纪研究,(1):21-31
    113.陈立春,2002,河套断陷带的古地震、强震复发规律和未来可能强震地点。中国地震局地质研究所,硕士论文,1-89。
    114.陈立春,冉勇康,常增沛,2003a,色尔腾山山前断裂得令山以东段晚第四纪活动特征与古地震事件。地震地质,25(4):555-565。
    115.陈立春,冉勇康,杨晓平,2003b,色尔腾山山前断裂晚第四纪活动与破裂分段模型。中国地震,19(3):255-265。
    116.陈升辉,郭慕夷,1992,大黑河。中国水利,(7):38-41。
    117.陈述彭,赵英时,1990,遥感地学分析。北京:测绘出版社,1-297。
    118.程绍平,邓起东,闵伟,杨桂枝,1998,黄河晋陕峡谷河流阶地和鄂尔多斯高原第四纪构造运动。第四纪研究,(3):238-248。
    119.春喜,2006,晚第四纪吉兰泰盐湖古湖面与环境变化研究。兰州大学博士论文,1-139。
    120.春喜,陈发虎,范育新,夏敦胜,赵辉,2007,乌兰布和沙漠的形成与环境变化。中国沙漠,27(6):927-931
    121.戴昌达,雷莉萍,1989,TM图像的光谱信息特征与最佳波段组合。环境遥感,4(4):282-292。
    122.邓起东,尤惠川,1985,鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制。见“国家地震局地质研究所编,现代地壳运动研究(1)”。北京:地震出版社,58-78。
    123.窦素芹,聂宗笙,麦学舜,1990,内蒙呼包盆地晚更新世孢粉组合及其意义。地震地质,12(3):283-290。
    124.杜娟,李文锋,2006,基于金字塔连接算法的彩色图像分割。武汉理工大学学报,28(1):112-114,122。
    125.范福田,1988,大地构造轮廓和新构造运动。见“鄂尔多斯周缘活动断裂系课题组编,鄂尔多斯周缘活动断裂系”,北京:地震出版社,5-19。
    126.付碧宏,张松林,谢小平,石许华,王世锋,2006,阿尔金断裂系西段-康西瓦断裂的晚第四纪构造地貌特征研究。第四纪研究,26(2):228-235。
    127.高尚玉,王贵勇,哈斯,苏志珠,2001,末次冰期以来中国季风区西北边缘沙漠演化研究。第四纪研究,21(1):66-71。
    128.高胜利,任战利,周义军,李民才,2007,河套地区呼和坳陷第四系更新统地震相与沉积相.古地理学报,9(1):87-96。
    129.高永,1996,吉兰泰盐湖环境演化及沙害成因。干旱区研究,13(4):54-56。
    130.耿侃,陈育峰,1990,吉兰泰盐湖的形成、发育和演化。地理学报,45(3):341-349。
    131.耿侃,单鹏飞,1992,银川地区:过去、现在及未来。北京:测绘出版社,36-39。
    132.耿侃,胡春元,刘佳,1989,吉兰泰地区第四纪湖泊的演化。干旱区资源与环境,3(2):26-33。
    133.关玉璋,1989,乌梁素海的形成与演变。人民黄河,(6):61-63。
    134.郭华东,刘浩,王心源,邵芸,孙岩,2000,航天成像雷达对阿拉善高原次地表古水系探测与古环境分析。中国科学(D辑),30(1):88-96。
    135.郭晓寅,陈发虎,施祺,2000,GIS技术和水热平衡模型在古湖泊水文重建研究中的应用-以石羊河流域为例。地理科学,20(5):422-426。
    136.韩长金,1993,河套盆地早期资源评价与找油方向。石油勘探与开发,20(A00期):20-27。
    137.韩淑媞,袁玉江,1990,新疆巴里坤湖35000年来气候变化序列。地理学报,45(3):350-362。
    138.侯仁之,1994,历史地理学四论。北京:中国科学技术出版社,89-107。
    139.侯仁之,俞伟超,1973,乌兰布和沙漠的考古发现和地理变迁。考古,(2):92-107。
    140.胡春元,1998,试论吉兰泰盐湖的发育与资源保护问题。内蒙古林学院学报(自然科学版),20(2):54-60。
    141.胡春元,韩永光,李玉宝,阎琳,1998,乌兰布和北部地区农业开发与沙漠成因探讨。中国沙漠,18(1):37-41。
    142.胡东生,1996a,柴达木盆地察尔汗盐湖动态变化的地球卫星监测研究。海湖盐与化工,25(6):6-11。
    143.胡东生,1997,盐湖地学的研究进展和发展方向。地球科学进展,12(5):411-415。
    144.胡东生,赁常恭,郑一泊,1996b,气象卫星NOAA遥感数据在盐湖动态变化中的应用研究。科学通报,41(14):1311-1314。
    145.胡东生,张华京,徐冰,张国伟,李世杰,彭渤,王伟铭,陈诗越,徐士进,田新洪,2006,青藏高原湖泊动态变化的地球卫星遥感监测及地球动力学分析。中国工程科学,8(5):33-44。
    146.胡守云,王苏民,Appel,E.,吉磊,1998,呼伦湖湖泊沉积物磁化率变化的环境磁学机制。中国科学(D辑),28(4):334-339。
    147.贾铁飞,何雨,1999,90年代内蒙古高原第四纪环境演变研究的新进展。内蒙古师大学报自然科学(自然科学(汉文))版,28(4):305-312。
    148.贾铁飞,何雨,李容全,1996,全新世内蒙古自然环境演变及其特点。干旱区地理,19(4):19-25。
    149.贾铁飞,何雨,裴冬,1998,乌兰布和沙漠北部沉积物特征及环境意义。干旱区地理,21(2):36-42。
    150.贾铁飞,李容全,1992,毛乌素沙地东南部晚更新世晚期以来的自然环境变迁。北京师范大学学报(自然科学版),28(增刊1):111-120。
    151.贾铁飞,石蕴琮,银山,1997,乌兰布和沙漠形成时代的初步判定及意义。内蒙古师范大学(自然科学版),26(3):46-49。
    152.贾铁飞,银山,2004,乌兰布和沙漠北部全新世地貌演化。地理科学,24(2):218-221。
    153.贾铁飞,银山,何雨,赵明,包桂兰,2003,乌兰布和沙漠东海子湖全新世湖相沉积结构分析及其环境意义。中国沙漠,23(2):165-170。
    154.贾铁飞,银山,赵明,包桂兰,白冰冰,2001,黄河托克托段早中更新世湖相地层剖面的建立及其意义。内蒙古师范大学(自然科学版),30(1):74-78。
    155.贾铁飞,赵明,包桂兰,银山,2002,历史时期乌兰布和沙漠风沙活动的沉积学纪录与沙漠化防治途径分析。水土保持研究,9(3):51-54。
    156.贾永红,2005,多源遥感影像数据融合技术。北京:测绘出版社,1-140。
    157.贾玉连,施雅风,范云崎,2000,四万年以来青海湖的三期高湖面及其降水量研究。湖泊科学,12(3):211-218。
    158.贾玉连,马春梅,朱诚,魏灵,王朋岭,2004,利用封闭湖泊流域进行古降水量重建的历史、现状及未来。地理科学,24(3):376-383。
    159.贾玉连,施雅风,曹建廷,范云崎,2001a,40-30 ka B.P.期间高湖面稳定存在时青藏高原西南部封闭流域的古降水量研究。地球科学进展,16(3):346-351。
    160.贾玉连,施雅风,范云崎,2001b,水能联合方程恢复流域古降水量时参数的确定方法及其应用-以青海湖全新世大暖期古降水量推算为例。水科学进展,12(3):324-330。
    161.贾玉连,王苏民,吴艳宏,李世杰,蒋雪中,2003,24 ka B.P.以来青藏高原中部湖泊演化及古降水量研究-以兹格塘错与错鄂为例。海洋与湖沼,34(3):283-294。
    162.巨天乙,1998,遥感水文地质回顾与展望。水文地质工程地质,25(3):26-29。
    163.瞿文川,王苏民,张平中,陈践发,何海军,2000,生物标志化合物对东、西太湖不同湖泊类型的判识。海洋与湖沼,31(5):530-534。
    164.柯长青,2004,湖泊遥感研究进展。海洋湖沼通报,(4):81-86。
    165.李秉孝,蔡碧琴,梁青生,1989,吐鲁番盆地艾丁湖沉积特征。科学通报,34(8):608-610。
    166.李炳元,2000,青藏高原大湖期。地理学报,55(2):174-182。
    167.李炳元,葛全胜,郑景云,2003,近2000年来内蒙后套平原黄河河道演变。地理学报,58(2):239-246。
    168.李并成,1999,沙漠历史地理学的几个理论问题-以我国河西走廊历史上的沙漠化为例。地理科学,19(3):211-215。
    169.李德仁,1994,论自动化和智能化空间对地观测数据处理系统的建立。环境遥感,9(1):1-10。
    170.李华章,刘清泗,汪家兴,1992,内蒙古高原黄旗海、岱海全新世湖泊演变研究。湖泊科学,4(1):31-39。
    171.李吉均,方小敏,马海洲,1996,晚新生代黄河上游地貌演化与青藏高原隆起。中国科学(D),26(4):316-322。
    172.李建彪,2006,河套盆地晚第四纪成湖环境变化与构造活动研究。中国地震局地质研究所,博士论文,1-115。
    173.李建彪,冉勇康,郭文生,2005,河套盆地托克托台地湖相层研究。第四纪研究,25(5):630-639。
    174.李建彪,冉勇康,郭文生,2007,呼包盆地第四纪地层与环境演化。第四纪研究,27(4):632-644.
    175.李克,吴卫民,杨发等,1994,大青山山前活动断裂分段性研究。见“中国地震学会地震地质专业委员会编,中国活动断裂研究”,北京:地震出版社,102-113。
    176.李世杰,区荣康,朱照宇,李炳元,1998,24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化。湖泊科学,10(2):58-65。
    177.李栓科,1992,中昆仑山区封闭湖泊湖面波动及其气候意义。湖泊科学,4(1):19-30。
    178.李旭文,季耿善,杨静,1995,太湖藻类的卫星遥感监测。湖泊科学,7(1):65-68。
    179.李征航,1996,全球定位系统(GPS)技术新进展.武测科技,(1):41-48。
    180.李志林,朱庆,2001,数字高程模型。武汉:武汉大学出版社,1-248。
    181.廖玉华,1988,银川-吉兰泰断陷带第四纪活动特征。见“鄂尔多斯周缘活动断裂系课题组编,鄂尔多斯周缘活动断裂系”,北京:地震出版社,20-38。
    182.刘登忠,1992,青藏高原湖泊萎缩的遥感图像分析。国土资源遥感,(4):1-6。
    183.刘建平,赵英时,孙淑玲,2001,高光谱遥感数据最佳波段选择方法试验研究。遥感技术与应用,16(1):7-13。
    184.刘静,丁林,曾令森,Tapponnier,P.,Gaudemer,Y,2006,青藏高原典型地区的地貌量化分析-兼对高原“夷平面”的讨论。地学前缘,13(5):285-299。
    185.刘兴起,葛文胜,2002,吉兰泰盐湖区域地质特征及其形成演化的遥感解译。海洋与湖沼,33(2):145-150。
    186.刘兴起,张辉,2000,吉兰泰盐湖典型地物波谱反射率特征及其遥感解译标志。湖泊科学,12(3):263-268。
    187.刘志杰,孙永军,2007,青藏高原隆升与黄河形成演化。地理与地理信息科学,23(1):79-82,91。
    188.鲁安新,姚檀栋,王丽红,刘时银,郭治龙,2005,青藏高原典型冰川和湖泊变化遥感研究。冰川冻土,27(6):783-792。
    189.陆灯盛,游先祥,崔赛华,1991,TM图像的信息量分析及特征信息提取的研究。环境遥感,6(4):267-274。
    190.马保起,李德文,郭文生,2004,晚更新世晚期呼包盆地环境演化与地貌响应。第四纪研究,24(6):630-637。
    191.梅安新,彭望琭,秦其明,刘慧平,2001,遥感导论。北京:高等教育出版社,1-286。
    192.门相勇,赵文智,张研,李小地,2006,河套盆地临河坳陷石油地质特征。天然气工 业,26(1),20-22。
    193.内蒙古自治区地质局区域地质测量队,1971,中华人民共和国1:20万地质图(佘太镇幅)。
    194.内蒙古自治区地质局区域地质测量队,1972,中华人民共和国1:20万地质图(和林格尔幅)。
    195.内蒙古自治区地质局区域地质测量队,1972,中华人民共和国1:20万区域地质测量报告(和林格尔幅),6-15。
    196.内蒙古自治区地质局区域地质测量队,1972,中华人民共和国1:20万区域地质测量报告(佘太镇幅),7-79。
    197.内蒙古自治区第一区域地质调查队,1980,中华人民共和国1:20万地质矿产图(五原县幅)。
    198.内蒙古自治区第一区域地质调查队,1980,中华人民共和国1:20万区域地质调查报告(五原县幅),6-68。
    199.内蒙古自治区第一区域地质调查队,1981,中华人民共和国1:20万地质矿产图(包头市幅)。
    200.内蒙古自治区第一区域地质调查队,1981,中华人民共和国1:20万地质图(临河县幅)。
    201.内蒙古自治区第一区域地质调查队,1981,中华人民共和国1:20万地质图(土默特右旗幅)。
    202.内蒙古自治区第一区域地质调查队,1982,中华人民共和国1:20万区域地质调查报告(包头市幅、土默特右旗幅),7-94。
    203.内蒙古自治区第一区域地质调查队,1982,中华人民共和国1:20万区域地质调查报告(临河县幅),10-70。
    204.内蒙古自治区区域地质测量队,1971,中华人民共和国1:20万区域地质图(呼和浩特市幅)。
    205.内蒙古自治区区域地质测量队,1972,中华人民共和国1:20万区域地质测量报告(呼和浩特市幅),5-102。
    206.聂洪峰,2002,机载侧视雷达图像在探测沙漠腹地故河道中的应用研究。国土资源遥感,(1):15-18.
    207.聂宗笙,李克,1988,内蒙古包头地区萨拉乌苏组的发现及其意义。科学通报,33(21):1645-1649。
    208.宁夏计委地质局区域地质调查队,1971,中华人民共和国1:20万地质图(吉兰泰幅)。
    209.宁夏计委地质局区域地质调查队,1976,中华人民共和国1:20万区域地质调查报告(吉兰泰幅),8-98。
    210.牛俊杰,赵淑贞,任世芳,任伯平,1999,历史时期乌兰布和沙漠北部的环境变迁。中国沙漠,19(3):223-227。
    211.潘保田,李吉均,曹继秀,1994,黄河中游的地貌与地文期问题。兰州大学学报(自然科学版),30(1):115-123。
    212.潘保田,王均平,高红山,管清玉,王勇,苏怀,李炳元,李吉均,2005,河南扣马黄河最高阶地古地磁年代及其对黄河贯通时间的指示。科学通报,50(3):255-261。
    213.彭望琭,白振平,刘湘南,曹彤,2002,遥感概论。北京:高等教育出版社,1-312。
    214.齐文,郑绵平,2005,西藏扎布耶盐湖30.0 ka B.P.以来水位与古降水量变化。地球学报,26(1):53-60。
    215.秦伯强,1993,气候变化对亚洲内陆湖泊影响个例研究-过去、现在与未来。中国科 学院南京地理与湖泊研究所,博士论文。
    216.秦伯强,1994,青海湖全新世稳定暖湿期的古水量平衡估算。水科学进展,5(1):26-30。
    217.秦伯强,施雅风,于革,1997,亚洲内陆湖泊在18 ka B.P.和6 ka B.P.的水位变化及其指示意义。科学通报,42(24):2586-2596。
    218.冉勇康,张培震,陈立春,2003,河套断陷带大青山山前断裂晚第四纪古地震完整性研究。地学前缘(中国地质大学,北京),10(特刊):207-216。
    219.冉勇康,张培震,胡博,郭文生,2002,大青山山前断裂呼和浩特段晚第四纪古地震活动历史。中国地震,18(1):15-27。
    220.山发寿,杜乃秋,孔昭宸,1993,青海湖盆地35万年来植被演化与环境变迁。湖泊科学,5(1):9-17。
    221.佘丰宁,李旭文,蔡启铭,陈宇炜,1996,水体叶绿素含量的遥感定量模型。湖泊科学,8(3):201-207。
    222.申洪源,贾玉连,魏灵,2005,末次冰期间冰阶(40-22 ka B.P.)内蒙古黄旗海古降水量研究。沉积学报,23(3):523-530。
    223.沈芳,匡定波,2003,青海湖最近25年变化的遥感调查与研究。湖泊科学,15(4):289-296。
    224.施雅风,贾玉连,于革,杨达源,范云崎,李世杰,王云飞,2002,40-30 ka B.P.青藏高原及邻区高温大降水事件的特征、影响及原因探讨。湖泊科学,14(1):1-11。
    225.施雅风,孔昭宸,1992,中国全新世大暖期气候与环境。北京:海洋出版社,1-212。
    226.施雅风,刘晓东,李炳元,姚檀栋,1999,距今40-30 ka青藏高原特强夏季风事件及其与岁差周期关系。科学通报,44(14):1475-1480。
    227.施雅风,于革,2003,40-30 ka B.P.中国暖湿气候和海侵的特征与成因探讨。第四纪研究,23(1):1-11。
    228.舒宁,2003,微波遥感原理。武汉:武汉大学出版社,1-219。
    229.宋长青,吕厚远,孙湘君,1997a,中国北方花粉-气候因子转换函数建立及应用。科学通报,42(20):2182-2186。
    230.宋长青,孙湘君,1997b,花粉-气候因子转换函数建立及其对古气候因子定量重建。植物学报,39(6):554-560。
    231.宋长青,王琫瑜,孙湘君,1996,内蒙古大青山DJ钻孔全新世古植被变化指示。植物学报,38(7):568-575。
    232.宋方敏,曹忠权,1994,巴音乌拉山东麓断裂的初步研究。见“活动断裂研究编委会编,活动断裂研究(3)”,北京:地震出版社,(3):202-205。
    233.孙家抦,刘继林,李军,1998,多源遥感影像融合。遥感学报,2(1):47-50。
    234.孙洋,2006,吉兰泰盐湖DEM模型与晚第四纪湖泊演化初步研究。中国科学院寒区旱区环境与工程研究所,硕士论文,1-61。
    235.谭其骧,1987,长水集(下)。北京:人民出版社,331-333。
    236.谭衢霖,邵芸,范湘涛,2002,雷达遥感的地质学应用及其进展。遥感技术与应用,17(5):269-275。
    237.汤国安,杨昕,2006,ARCGIS地理信息系统空间分析实验教程。北京:科学出版社,1-480。
    238.汤国安,张友顺,刘咏梅,谢元礼,杨昕,刘爱利,2004,遥感数字图像处理。北京:科学出版社,1-258。
    239.天津师范大学,华中师范大学,北京师范大学,西北大学地理系合编,1988,水文学 与水资源学概论。武昌:华中师范大学出版社,7-11。
    240.童国榜,石英,范淑贤,张俊牌,宋祥华,刘振西,乔光东,张纪祥,1995,银川盆地晚第四纪环境特征。地球科学-中国地质大学学报,20(4):421-426。
    241.万国江,黄荣贵,王长生,戎军,1990,红枫湖沉积物顶部~(210)Po_(ex)垂直剖面的变异。科学通报,35(8):612-615。
    242.王琫瑜,宋长青,孙湘君,1997,内蒙古土默特平原北部全新世古环境变迁。地理学报,52(5):430-437。
    243.王飞跃,2001,吉兰泰盐湖演变卫星雷达遥感研究。国土资源遥感,50(4):35-39。
    244.王培法,2005,SRTM DEM在TOPMODEL模型中的可用性分析。水土保持研究,12(6):194-195,205。
    245.王苏民,窦鸿身,1998,中国湖泊志。北京:科学出版社,1-327。
    246.王苏民,吴锡浩,张振克,蒋复初,薛滨,童国榜,田国强,2001,三门古湖沉积记录的环境变迁与黄河贯通东流研究。中国科学(D辑),31(9):760-768。
    247.王苏民,张振克,1999,中国湖泊沉积与环境演变研究的新进展。科学通报,44(6):579-587。
    248.王伟智,刘秉瀚,施作霖,2006,基于HSV空间的肿瘤免疫组化阳性目标自动提取分析。中国体视学与图像分析,11(1):13-17。
    249.王心源,郭华东,邵芸,刘浩,白福易,潘存峰,2001,利用多源遥感对吉兰泰盐湖沙漠侵害研究。水土保持学报,15(1):110-112。
    250.王学佑,熊介凡,管海晏,袁宏仕,1997,罗布泊钾盐矿遥感技术应用分析。化工矿产地质,19(2):129-134。
    251.王跃峰,陈瑞保,白朝军,方怀宾,左爱萍,刘长乐,2004,西藏盐湖TM影像遥感分析。盐湖研究,12(2):1-7。
    252.吴加敏,王润生,姚建华,2006,黄河银川平原段河道演变的遥感监测与研究。国土资源遥感,(4):36-39。
    253.吴卫民,李克,马保起,盛小青,杨发,郭文生,何福利,1996a,大青山山前断裂带晚第四纪活动速率研究。见“国家地震局地壳应力研究所编,地壳构造与地壳应力文集(8)”,北京:地震出版社,1-10。
    254.吴卫民,聂宗笙,许桂林等,1996b,色尔腾山山前断裂西段活动断层研究。见“活动断裂研究编委会编,活动断裂研究(5)”,北京:地震出版社,(5),113-124。
    255.吴锡浩,安芷生,王苏民,刘晓东,Porter,S.C.,Kutzbach,J.E.,1994,中国全新世气候适宜期东亚季风时空变迁。第四纪研究,24(1):24-37。
    256.西北师范学院地理系,地图出版社,1984,中国自然地理图集。北京:地图出版社,169。
    257.夏清,刘登忠,2005,西藏昂拉仁错湖泊演化的遥感分析。沉积与特提斯地质,25(4):55-58。
    258.夏熙梅,2002,差分GPS定位技术及应用。现代情报,22(3):99-100。
    259.项亮,王苏民,薛滨,1996,切尔诺贝利核事故泄漏~(137)Cs在苏皖地区湖泊沉积物中的蓄积及时标意义。海洋与湖沼,27(2):132-137。
    260.谢连文,黄思静,李锋,2004b,罗布泊盐湖近2000a气候变化的高分辨率遥感研究。成都理工大学学报(自然科学版),31(3):301-306。
    261.谢连文,李锋,邓国武,2003,罗布泊盐湖古环境信息遥感研究方法。遥感信息,(4):2-4,19。
    262.谢连文,李锋,李兵海,全旭东,2004a,罗布泊盐湖环状影像成因解释。沉积与特提 斯地质,24(4):76-80。
    263.徐涵秋,2005,Landsat ETM+影像的融合和自动分类研究。遥感学报,9(2):186-194。
    264.徐剑峰,1989,河套平原水文特征。水文,9(6):50-54。
    265.徐青,2000,地形三维可视化技术。北京:测绘出版社,1-159。
    266.许清海,肖举乐,中村俊夫,阳小兰,杨振京,梁文栋,井内美郎,杨素叶,2003,孢粉资料定量重建全新世以来岱海盆地的古气候。海洋地质与第四纪地质,23(4):99-180。
    267.闫顺,穆桂金,许英勤,赵振宏,1998,新疆罗布泊地区第四纪环境演变。地理学报,53(4):332-340。
    268.杨发,1988,河套断陷带第四纪活动特征。见“鄂尔多斯周缘活动断裂系课题组编,鄂尔多斯周缘活动断裂系”,北京:地震出版社,39-71。
    269.杨恒贵,张志广,1994,吉兰泰盐湖沙害综合治理。中国沙漠,14(2):64-68。
    270.杨华,李民才,崔永平,2005,河套盆地生物气成藏条件及勘探前景。中国石油勘探,10(3):16-21。
    271.杨景春,1985,地貌学教程。北京:高等教育出版社,47-72。
    272.杨丽萍,夏敦胜,陈发虎,2007,Landsat7 ETM+全色与多光谱数据融合算法的比较。兰州大学学报(自然科学版),43(4):7-11。
    273.杨晓平,冉勇康,胡博,郭文生,2002,内蒙色尔腾山山前断裂(乌句蒙口-东风村段)的断层活动与古地震事件。中国地震,18(2):127-140。
    274.杨晓平,冉勇康,胡博,郭文生,2003,内蒙古色尔腾山山前断裂带乌加河段古地震活动。地震学报,25(1):62-71。
    275.杨友运,2004,内蒙河套盆地第四系生物气藏形成地质条件分析。西安科技大学学报24(3):320-323。
    276.杨振京,刘志明,张俊牌,童国榜,阳小兰,2001,银川盆地中更新世以来的孢粉记录及古气候研究。海洋地质与第四纪地质,21(3):43-49。
    277.杨志荣,1998,内蒙古中西部地区全新世大暖期气候与环境初步研究。地理科学,18(5):479-485。
    278.杨志荣,2001,内蒙古大青山调角海子地区全新世气候与环境重建研究。生态学报,21(4):538-543。
    279.于革,赖格英,刘健,施雅风,2003,MIS3晚期典型阶段气候模拟的初步研究。第四纪研究,23(1):12-24.
    280.于革,薛滨,刘建,陈星,郑益群,2001,中国湖泊演变与古气候动力学研究。北京:气象出版社出版,42-178。
    281.袁宝印,孙建中,1980,华北新生代沉积与断块构造。见“中国科学院地质研究所与国家地震局地质研究所编,华北断块区的形成与发展”,北京:科学出版社,221-229。
    282.袁宝印,王振海,1995,青藏高原隆起与黄河地文期。第四纪研究,15(4):353-359。
    283.曾方明,向树元,路玉林,马新民,路晶芳,2007,甘肃临洮晚更新世黄土环境变迁。地球科学-中国地质大学学报,32(5):703-712。
    284.张凤举,王宝山,1997,“GPS”定位技术。北京:煤炭工业出版社,92-93。
    285.张虎才,马玉贞,彭金兰,李吉均,曹继秀,祁元,陈光杰,方红兵,穆德芬,Pachur,H.J.,Wünnemann,B.,冯兆东,2002,距今42-18 ka腾格里沙漠古湖泊及古环境。科学通报,47(24):1847-1857。
    286.张辉,韩风清,刘兴起,2001,吉兰泰盐湖地区沙漠环境变化的遥感研究。盐湖研究,9(4):48-51。
    287.张辉,韩凤清,2002,柴达木盆地中部盐湖环境遥感初步解译。盐湖研究,10(1):28-34。
    288.张会平,刘少峰,孙亚平,陈永生,2006,基于SRTM-DEM区域地形起伏的获取及应用。国土资源遥感,(1):31-35。
    289.张彭熹,张保珍,钱桂敏,李海军,徐黎明,1994,青海湖全新世以来古环境参数的研究。第四纪研究,(3):225-238。
    290.张显峰,崔伟宏,2000,运用差分GPS动态获取高精度土地资源变化数据的新技术。地球科学进展,15(5):609-613。
    291.张学成,潘启民等,2006,黄河流域水资源调查评价。郑州:黄河水利出版社,23-90。
    292.赵淑贞,任世芳,任伯平,1998,中国沙漠南缘的纬度分布规律及其在历史时期的变迁。山西大学师范学院学报(哲学社会科学版),2(3):60-63。
    293.赵松乔,1985,中国沙漠、戈壁的形成和演变。见《中国干旱区自然地理》,北京:科学出版社,1-17。
    294.赵希涛,吴中海,胡道功,严富华,马志邦,麦学舜,鄢犀利,2005,西藏错鄂及邻区晚更新世高位湖相沉积的发现及其意义。地球学报,26(4):291-298。
    295.赵希涛,朱大岗,吴中海,马志邦,2002,西藏纳木错晚更新世以来的湖泊发育。地球学报,23(4):329-334。
    296.赵希涛,朱大岗,严富华,吴中海,马志邦,麦学舜,2003,西藏纳木错末次间冰期以来的气候变迁与湖面变化。第四纪研究,23(1):41-52。
    297.赵英时等,2003,遥感应用分析原理与方法。北京:科学出版社,1-477。
    298.郑绵平,1999,论盐湖学。地球学报,20(4):395-401。
    299.郑绵平,刘俊英,齐文,1996,从盐湖沉积探讨40 ka B.P.以来的青藏高原古气候的演替。见“郑绵平主编,盐湖资源环境与全球变化:第六届国际盐湖学术讨论会论文集”,北京:地质出版社,6-20。
    300.郑绵平,袁鹤然,赵希涛,刘喜方,2006,青藏高原第四纪泛湖期与古气候。地质学报,80(2):169-180。
    301.郑绵平,赵元艺,刘俊英,1998,第四纪盐湖沉积与古气候。第四纪研究,1(4):132-135。
    302.郑喜玉,1983,内蒙高原的盐湖。地理科学,3(4):369-378。
    303.郑喜玉,1992,内蒙古盐湖。北京:科学出版社,195-210。
    304.中国历史地图编辑组编,1998,中国历史地图集(电子版)。北京:中国地图出版社。
    305.周笃珺,1996,青海湖北岸土地利用遥感分析。青海科技,3(3):5-7。
    306.周军,高鹏,田勤虎,刘磊,李得成,2005,新疆巴里坤ETM数据遥感地质填图的探索。国土资源遥感,(3):57-61,65。
    307.周启明,刘学军,2006,数字地形分析。北京:科学出版社,1-60。
    308.朱长青,史中文,2006,空间分析建模与原理。北京:科学出版社,168-188。
    309.朱大岗,孟宪刚,赵希涛,邵兆刚,杨朝斌,马志邦,吴中海,王建平,2004,西藏纳木错和藏北高原古大湖晚更新世以来的湖泊演化与气候变迁。中国地质,31(3):269-277。
    310.朱大岗,赵希涛,孟宪刚,吴中海,邵兆刚,吴珍汉,杨超斌,王建平,2003,西藏纳木错第四纪湖泊沉积与湖成地貌-兼论藏北高原古大湖问题。吉林大学学报(地球科学版),33(2):156-162。
    311.左其亭,王中根,2006,现代水文学。郑州:黄河水利出版社,13-17。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700