下辽河平原地下水可更新能力及水量实时预报模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文依托于“十一五”国家科技支撑计划项目——“辽宁中部城市群地下水资源实时预报模型技术研究”(编号:2007BAB28B04-03)进行选题研究。在详细分析研究区气象、水文、地质及水文地质条件的基础上,结合区内大量钻孔资料,采用现代化理论及技术,建立了研究区三维地质结构实体模型,实现了地下水资源信息在空间上的可视化。结合研究区内长期观测的地下水水位、水质资料,分析了下辽河平原区第四系孔隙潜水的时空演化特征,采用地下水化学动力学与地下水动力学相结合的方法,将水化学场、水动力场相互耦合,建立了用水化学动力学指标表达的地下水实际运动速度(U)和年龄(t)的计算公式,对研究区地下水的循环特征进行了定量化的评价。从地下水补给条件、含水层的特征以及地下水循环模式三个环节分析了地下水可更新能力的主要影响因素,建立了研究区地下水可更新能力的评价指标体系,利用模糊综合评价法,结合GIS技术,对第四系地下水的可更新能力作出了定量评价,并根据评价结果对研究区内地下水合理开发及利用给出了建议。
     基于水均衡理论,建立了研究区地下水可开采量实时评价模型,结合研究区水文、气象、地下水动态监测网的实时监测数据,采用“下辽河平原第四系地下水可开采量实时预报系统”,实现了直观、快速、高效地对研究区地下水可开采资源量的计算与分析。同时,基于渗流理论,建立了研究区地下水流数值模型,并通过“下辽河平原第四系地下水可开采量实时预报系统”对实时监测数据进行调用、计算、格式处理、导入数值模型,再通过模型运行,实现了快捷、高效的地下水资源量实时预报。运行结果准确、直观,对于下辽河平原地下水的实时管理及调度有着重要的现实意义。
The thesis is chosen and specific studies are carried out according to“the Eleventh Five-year Program”National R & D Project (the Development and Demonstration of Water Resources Real-time Monitoring & Management in middle city groups of Liaoning Province).
     The Lower River Plain is located in central Liaoning Province, with abundant natural resources and obvious region advantage. The area is an important economic centre around Bohai Sea economic belt and the traditional national industry base. Meanwhile, as the largest alluvial plain of Liaoning Province, it is the most important base of commodity grain in Liaoning Province, playing a very important role. In recent years, with the adjustment and development of domestic economy, the contradiction of industrial use of water has become more and more serious, and the demands of groundwater has been more and more urgent. However, during the development and utilization of groundwater, there occurs a series of problems caused by irrational human activities. For example, the imbalance exploitation intensity and the poor exploitation techniques lead to groundwater cone of depression in Shenyang City and Liaoyang City and the environmental geologic problem of sea water intrusion in coastal cities such as Yingkou City. Therefore, it is a very urgent and necessary task to analyze the circulation characteristics of Quaternary groundwater in Lower River Plain, estimate the renew-ability, rationally evaluate the quantity of groundwater available exploitation, and achieve real-time prediction and forecast of groundwater resources, in order to implement reasonable, efficient and sustainable use of groundwater resources in Lower River Plain.
     On the basis of the analysis of regional conditions of meteorology, hydrology, geology and hydrogeology, the three-dimensional geological structure model is built with modern theory and techniques, combined with a lot of borehole data, achieving the spatial visualization of groundwater resources information. The lithology and distribution of unconsolidated porous Quaternary aquifer is analyzed by the model, laying a solid foundation for the generalization of aquifers and the analysis of groundwater circulation characteristics.
     The spatial-time evolutional characteristics of Quaternary porous phreatic water in Lower River Plain are analyzed according to long-time observed data of groundwater level and quality. Further more, the spatial-time variation rule of hydraulic and hydro-chemical indexes are calculated and analyzed from the angle of groundwater dynamics and groundwater chemical dynamics, providing reasonable support for quantitive analysis of groundwater circulation conditions.
     The hydro-chemical field and hydro-dynamic field are coupled by the associated method of hydrogeochemistry and groundwater dynamics, building the calculation formula for groundwater real velocity (U) and groundwater age (t) expressed by the indexes of hydrogeochemical indexes. Through plotting the chart of groundwater circulation characteristics, the groundwater circulation characteristics are evaluated quantitatively, improving the qualitative evaluation method described by“active”,“slow”and other qualitative words.
     The main influencing factors on groundwater renew-ability are analyzed from the three aspects of groundwater recharge conditions, aquifer characteristics and groundwater circulation pattern. The evaluation indexes system for groundwater renew-ability is built, and the groundwater renew-ability is evaluated quantitatively with the method of Fuzzy Comprehensive Assessment and GIS techniques. Some suggestions for groundwater rational development and utilization are given according to the evaluation result. The evaluation result shows that the groundwater renew-ability of west area is greater than the east area, and the alluvial-proluvial fan area is better than plain area. The groundwater renewable area of class“extremely strong”to“strong”is mainly distributed in the alluvial-proluvial fan of Hunhe River, Dalinghe River and Xiaolinghe River, and class“weak”to“extremely weak”mainly in central deposit plain and southern coastal alluvial delta plain. For extremely renewable area of Dalinghe River fan, the groundwater exploitation can be increased properly; but for the area of Xiaolinghe River fan, where has the same groundwater renew-ability but 80%~100%groundwater exploitation extent, and the area of Shenyang City and Liaoyang City, the groundwater exploitation intensity should be adjusted to avoid environmental geological problems. For the area with strong renew-ability but non-longtime supply ability, the groundwater exploitation should maintain current situation, ensuring safe and rational development and utilization. For the area with weak renew-ability but strong storage capacity, the groundwater exploitation can be increased under current situation, efficiently use the storage capacity of aquifer system. For the area of extremely weak renew-ability, it is not suggested exploit large quantity of groundwater, preventing from serious environmental geological problems.
     However, groundwater renew-ability can only reflect the natural recharge velocity of the area, but can not quantitatively calculate the groundwater available exploitation quantity. Therefore, the real-time groundwater available exploitation evaluation model is built based on water budget theory. With the model and real-time monitoring data of hydrology, meteorology, groundwater dynamic information, the groundwater available exploitation can be calculated and analyzed directly, fast and efficiently. The evaluation result shows the water budget is positive during the year 2004 and 2005, and the total groundwater available exploitation quantity is 3.49 billion in 2004 and 3.29 billion in 2005. The water budget is negative is negative in dry year 2006, and the actual exploitation is 0.84 billion more than available exploitation quantity. The groundwater exploitation potential is great in the area of Dalinghe River Basin, Dongling district and Sujiatun District; there still exists a little groundwater exploitation potential in the area of Haichenghe River Fan, Taizihe River Fan and Hunhe River Fan; the groundwater exploitation potential is medium in the lower reach area of Liaohe River Plain; the groundwater exploitation potential is weak in western and northern area influenced by meteorology; and groundwater exploitation module is less than 200 thousand m3/a?km2 in Shenyang City and Liaoyang City because of serious over-exploitation.
     Groundwater numerical model of the study area is built based on groundwater seepage theory. Through read, calculation and format transfer of real-time monitoring data by the use of“Real-time Forecast System of Quaternary Groundwater Available Exploitation in Lower River Plain, the real-time data is input into the numerical model and run, achieving fast and efficient real-time forecast of groundwater resources. Once the simulation period and annual source and sinks are determined, the model has solved the problem of repeated input and adjustment of source and sinks during traditional groundwater numerical simulation, saving time for data input, update and model calculation. The simulation result is accurate and visualized, and it is significant for the real-time management and regulation of groundwater resources in Lower Liaoher River Plain.
引文
[1]曾庆雨,田文英,王言鑫.基于复合权重- GIS的下辽河平原地下水脆弱性评价[J].水利水电科技进展, 2009, 29(2): 23-24.
    [2]樊杰,盛科荣.辽宁中部城市群发展的经济基础分析[J].城市规划, 2004, 20(1): 37-41.
    [3]水利部水资源司.南京水利科学研究院水资源研究所.21世纪初期中国地下水资源开发利用[M].北京:中国水利水电出版社,2004.19~28.
    [4]林柞顶.我国地下水开发利用状况及其分析[J].水文, 2004, 24(1): 18-21.
    [5]莫凤珍,潘明杰.辽宁中部城市群水资源问题与对策[J].辽宁经济, 2001, (2): 15-16.
    [6]高世斌,王旭.沈阳地区地下水超采问题探讨[J].东北水利水电, 1999,3 18-19.
    [7]胡国军,赵素梅.辽阳市地下水超采区水资源状况及治理保护[J].辽宁城乡环境科技.2005,4.. 25 (2) , 8-11.
    [8]薛丽,姚建.解决营口市水资源短缺的主要途径[J].吉林水利. 2006,(7), 29-30.
    [9]冯宝平,区域水资源可持续利用理论与应用[D],河海大学博士学位论文. 2004.4 10-13
    [10]张人权.地下水资源特性及其合理开发利用[J ] .水文地质工程地质,2003 ,30 (6) :1-5.
    [11]王金生,王长申,滕彦国.地下水可持续开采量评价方法综述[J] .水利学报,2006,37(5) :525-526.
    [12] Naik P K, Awasthi A K. Groundwater resources assessment of the Koyna River basin , India [J ] . Hydrogeology Journal ,2003 ,11 :582 - 594
    [13] W.E. Sanford, J.S. Caine.地下水科学的跨学科研究机遇[R].魏国强译.美国地质调查局(USGS).2000.
    [14]张丽君,刘树臣. 21世纪国际水资源研究趋势[M].国土资源部信息中心. 2001.10.
    [15]中国科学院规划战略局,中国科学院资源环境科学与技术局,中国科学院国家科学图书馆兰州分馆.中国科学院国家科学图书馆科学研究动态监测快报-资源环境科学专辑[D].2007.06:1-47.
    [16]张光辉,陈宗宇,费宇红.华北平原地下水形成与区域水文循环演化的关系[J] .水科学进展,2000,11(4) :415-420.
    [17]张光辉,杨丽芝,聂振龙,申建梅,王金哲,严明疆.华北平原地下水的功能特征与功能评价[J].资源科学. 2009,31(3):368-374.
    [18]郭娇,石建省,王伟.华北平原地下水年龄校正[J].地球学报.2007,28(4):396-404.
    [19]王仕琴,邵景力,宋献方,张永波,周小元,霍志彬.地下水模型MODFLOW和GIS在华北平原地下水资源评价中的应用[J].地理研究.2007,26(5):975-982.
    [20]王仕琴,宋献方,王勤学,肖国强,刘昌明.华北平原浅层地下水水位动态变化[J].地理学报, 2008,(05)
    [21]刘存富,晁念英,王佩仪,甘义群,李延河,宋鹤彬.河北平原地下水氦氩同位素特征[A].第八届全国同位素地质年代学和同位素地球化学学术讨论会论文集[C], 2005 .
    [22]张宗祜,施德鸿,沈照理,薛禹群.人类活动影响下华北平原地下水环境的演化与发展[J].地球学报-中国地质科学院院报, 1997,(04)
    [23]刘昌明.黄河流域水资源演化规律与可再生性维持机理[J].中国科学院院刊, 2000,3:202-203
    [24]王浩,贾仰文,王建华,秦大庸,周祖昊,仇亚琴,严登华.人类活动影响下的黄河流域水资源演化规律初探[J].自然资源学报. 2005,20(2):157-162
    [25]王浩,王建华,秦大庸.现代水资源评价及水资源学学科体系研究[J].地球科学进展.2002,17(1):12-17.
    [26]王宝成,张会言.黄河流域水资源经济模型研究项目专题简介[J].人民黄河, 1994,11
    [27]李炬.黄河流域经济发展的条件现状与趋势[J].地域研究与开发, 1995,02
    [28]夏军,王中根,刘昌明.黄河水资源量可再生性问题及量化研究[J].地理学报, 2003,04 .
    [29]韩青,袁学国.黄河流域水资源优化配置研究[J].调研世界, 2003,01
    [30]赵杰.黄河流域水资源开发利用浅论[J].河南大学学报(自然科学版), 1998,(04)
    [31]邢大韦,张玉芳;西北地区水资源可持续利用管理[J].水资源与水工程学报.2004, 15(1) :50-53
    [32]张卫东.西北地区水资源可持续利用与生态地质环境保护[J].资源产业, 2000,11:62-64.
    [33]师守祥,中国西北地区水资源可持续利用的问题与对策[J],西北师范大学学报(自然科学版). 2001,37(4):93-98.
    [34]狄美良.西北地区水资源可持续利用的探讨[J].节水灌溉. 2002,3:39-40.
    [35]杨志,李红霞,吴学华,等.利用放射性氚估算银川平原地下水系统的更新速率[J].宁夏工程技术,2007,6(1):84-87.
    [36] IAEA, Isotope based assessment of ground water renewal in water scarce regions,IAEA-TECDOC-1246,2001,Austria.
    [37]赵勇胜.水文地质数值模型应用中存在的问题及模型评价方法的探讨[J].勘察科学技术.1994(2).
    [38] Leduc,C.,et al.Groundwater recharge in Niamey,Niger, estimated from tritium measurements[J].Comptes Rendus de l'Academie des Science,1996,323(7):599-605.
    [39] Leduc,C.,et al.Comparison of recharge estimates for the two largest aquifers in Niger, based on hydrodynamic and isotopic data[J],IAHS Publ.2000,262:391-399.
    [40] Le Gal La Salle,C.,Marlin,C.,Leduc,C.,et al.Renewal rate estimation of groundwater based on radioactive tracers(3H,14C)in an unconfined aquifer in a semi-arid area, Lullemeden Basin,Niger[J].Journal of Hydrology,2001,254:145-156.
    [41]林学钰,王金生,等著.黄河流域地下水资源及其可更新能力研究[M] .郑州:黄河水利出版社,2006.
    [42]林祚顶.同位素技术在水文水资源领域的应用[J ] .水利水电技术,2003 ,34 (7) :6 - 8.
    [43]万军伟,刘存富,晁念英等.同位素水文理论与实践[M] .北京:中国地质大学出版社,2003.
    [44]文冬光.用环境同位素论区域地下水资源属性[J] .地球科学,2002 ,27 (2) :141 - 147.
    [45] Gibson J J , Edwards T W, Birks S J , et al. Progress in isotope tracer hydrology in Canada [J ] . Hydrological processes, 2005 ,19 :303 - 327.
    [46]苏小四,林学钰.包头平原地下水水循环模式及其可更新能力的同位素研究[J].吉林大学学报(地球科学版),2003,33(4):503-529.
    [47]苏小四,林学钰.银川平原地下水循环及可更新能力评价的同位素证据[J].资源科学.2004,26(2)
    [48]聂振龙.黑河干流中游盆地地下水循环及更新性研究[D].北京:中国地质科学院,2004.
    [49]张光辉,聂振龙,谢悦波等.甘肃西部平原区地下水同位素特征及更新性[J].地质通报,2005,24(2):149-155.
    [50]陈宗宇.利用氚估算太行山前地下水更新速率[J].核技术,2006,29(6):426-431.
    [51]王新娟,谢振华,李世君,等.北京市城近郊区地下水的环境同位素研究[J].地学前缘(中国地质大学(北京);北京大学),2006,13(1):205-210.
    [52]河南省地质调查院.淮河流域(河南段)环境地质调查报告[M].郑州:河南省地质调查院,2007.06:62,66-67.
    [53]高淑琴.河南平原第四系地下水循环模式及其可更新能力评价[D].吉林大学博士学位论文. 2008.12: 4-8.
    [54]创造绿色—甘肃省景泰川灌区发展纪实.中国水利报. 2002.8. http://www.envir.gov.cn/info/2002/8/813415.htm
    [55]谢新民,蒋云忠,闫继军,杨小庆等.水资源实时监控管理系统理论与实践[M].中国水利水电出版社,2005:6-8.
    [56]朱进星.水资源实时监控系统关键技术研究[J].中国水利.2004,22:46-47.
    [57]蒋秀华,钱云平,蒋昕辉,何炜,周建波.内蒙古河套灌区引黄水量实时监测研究[J].西北水资源与水工程. 2001, 12(1):24~27.
    [58]马振坤.太湖流域水量水质实时监测决策支持系统模型研究及应用[D].河海大学硕士毕业论文. 2007:2,4.
    [59]赵勇,裴源生,于福亮.黑河流域水资源实时调度系统[J].水利学报,2006,37(1):82~87.
    [60]张闻波,朱星明,范宏,陈煜.太子河流域水资源实时监控管理系统集成技术研究[J].中国水利水电科学研究院学报. 2005,3(2):143~149.
    [61]谢新民,蒋云钟,李昱,邓程林,苗政永.辽宁省太子河流域水资源实时管理模型研究[C]第六届世界华人地质科学研讨会和中国地质学会二零零五年学术年会论文摘要集, 2005 .
    [62]杨凤山,王劲.辽宁省取水远程实时监测网络系统设计[C].第九届中国科学家论坛论文汇编,2007:148~150.
    [63]齐建怀,曹盛军.京津地区重要水源地水资源实时监控数据库系统[J].中国水利.2007(3):68.
    [64] Jacek Gurwin. Maciek Lubczynski Modeling of complex multi-aquifer systems for groundwater resources evaluation—Swidnica study case (Poland) [D]. Hydrogeology Journal (2005) 13:627–639 DOI 10.1007
    [65] M. Nastev, A. Rivera. Numerical simulation of groundwater flow in regional rock aquifers, southwestern Quebec, Canada[D],Hydrogeology Journal (2005) 13: 835–848
    [66] W. Hardyanto,B. Merkel. Introducing probability and uncertainty in groundwater modeling with FEMWATER-LHS[D]. Journal of Hydrology (2007) 332, 206– 213
    [67] Yonas K. Demissie, Albert J. Valocchi, Barbara S. Minsker, Barbara A. Bailey. Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions [D], Journal of Hydrology 364 (2009) 257–271
    [68] David Pulido-Velazquez, Andrés Sahuquillo, Joaquín Andreu. Treatment on non-linear boundary conditions in groundwater modeling with Eigenvalue Methods[D], Journal of Hydrology 368 (2009) 194–204
    [69]张保祥,刘青勇,孟凡海.基于GIS的黄水河地下水库实时调度管理系统与数值模拟研究[J].地下水. 2005,27 (3):162~165
    [70]杨小冬.基于WebGIS的地下水资源实时模拟与评价系统设计及应用[D].武汉大学硕士学学位论文. 2005:4,27~40.
    [71]周秀艳,孙洪雨,李培军等.辽宁中部城市群生态环境问题与可持续发展[J].安全与环境学报,2005, 5 (3):52~53.
    [72]黄志兴.地下水可持续利用评价[J].资源产业. 2003.Vol.5 41-43.
    [73] Frans R P , Kalf D R , Woolley. Applicability and methodology of determining sustainable yield in groundwater systems [J ] . Hydrogeology Journal ,2005 ,13 (2) :295 - 312.
    [74]文东光.用环境同位素论区域地下水资源属性.[J].地球科学, 2002,27(2):141-147.
    [75]何俊仕,郭兵托,张军锋,曹丽娜.沈阳市水资源可持续开发利用对策[J].沈阳农业大学学报,2004, 10,35(5~6):498-500.
    [76]邹淑芳,王晓光,王志刚,汪圻.东北地区地下水资源与可持续利用[J].东北水利水电. 2006,6 vol.24 (263):28-42.
    [77]辽宁省统计局.辽宁统计年鉴—2008年.中国统计出版社.2008
    [78]柳庆武,吴冲龙,李绍虎.基于钻孔资料的三维数字地层格架自动生成技术研究[J].石油实验地质,2003,25(5):501-504.
    [79]谢轶,苏小四,高淑琴.基于GMS支持下的大庆地下水库区水文地质结构可视化模型[J].吉林大学学报(地球科学版), 2006, 36: 51-54.
    [80]沈阳市水利局水资源公报. 1998~2005.
    [81]周福俊,李绪谦,杜全友.水文地球化学[M].长春:吉林大学出版社,1993.
    [82]曹玉清,胡宽瑢,李振栓.地下水化学动力学与生态环境区划分[M].科学出版社. 2009.3.
    [83]薛禹群.地下水动力学原理[M].北京,地质出版社,1986,12.
    [84] Stem W , Morgan J J . Introduction of natural water body chemical balance [ M ] . Translated by TANG Hong-xiao , Xue Han-bin , Mao Mei-zhou , et al. Beijing :Science Press ,1987.
    [85]沈照理,朱宛华,钟佐燊.水文地球化学基础[M] .北京:地质出版社, 1993.8~9.
    [86]曹玉清,胡宽瑢.岩溶化学环境水文地质[M] .长春:吉林大学出版社,1994 :14~17,29~30 ,45~46.
    [87]苏志升,林聪俐,郭凤萍.石佛寺水源水文地质特征及地下水数字模型计算[J].东北水利水电. 2008,6(26):29~31.
    [88]王大纯,张人权等.水文地质学基础[M].北京:地质出版社,1995:63.
    [89]周成虎.地理信息系统概要[M] .北京:中国科学技术出版社,1992.
    [90] Roaza H , Roaza RM, Jeffry R W. Integrating geographic information systems in groundwater applications using numerical modeling techniques[J]. Water Resource Bull. ,1993 ,29 (4) :847 - 860.
    [91]刘明柱,陈鸿汉,叶念军,等. GIS在区域地下水资源评价中的应用[J] .水利学报,2002 , (1) :25 - 55 ,61.
    [92]于海英,曹剑峰.地理信息系统(GIS)在地下水领域中的应用及最新进展[J] .世界地质,1997 ,16 (4) :47 - 51.
    [93] Michael WS. Geographic Information System [J]. Water Environment Research,1996.68(4).
    [94]原国家冶金工业部主编.供水水文地质勘察规范( GB50027 -2001) .北京:中国计划出版社,2001.
    [95]辽宁省水利厅.辽宁省水资源[M].辽宁科学技术出版社. 2006,1:239.
    [96]辽宁省水利厅.辽宁省水资源管理年报(2004~2006年)[M].沈阳成教印刷厂,2004~2006年.
    [97]李淼.黑龙江省鸡东县水资源信息管理系统开发与设计[D]吉林大学硕士学位论文.2007,5:28~30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700