用户名: 密码: 验证码:
自主水下航行器同步定位与构图方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导航是自主水下航行器(Autonomous Underwater Vehicle,AUV)安全、有效执行任务的前提和基础。惯性导航和航位推算等方法的导航误差随时间增长而累积,通常需要定期上浮至水面通过GPS实现导航位置校正,不适合于AUV长航时隐蔽作业。本论文致力于解决结构化环境中,部分已知或无先验信息情况下AUV自主导航问题,基于同步定位与构图(Simultaneous Localization and Mapping,SLAM),依靠AUV携带的环境感知传感器和位姿测量传感器实现位置估计与环境地图构建,对于AUV长航时安全、可靠作业具有重要的理论意义和实际应用价值。
     首先,设计SLAM研究的基本框架,建立环境地图模型、坐标系统、特征模型、传感器测量模型及AUV运动学模型,为后续SLAM研究奠定基础;
     然后,深入研究SLAM过程中特征提取问题,针对Hough变换特征提取方法中所存在的投票量大、提取效率低的问题,提出基于模糊自适应Hough变换的海洋环境特征提取方法,根据梯度方向信息,模糊化处理声呐数据点,采用极小极大模糊推理方法评判数据点隶属于直线特征的概率,自适应地选择参与投票的数据点并提取港口环境的线特征。与传统Hough变换方法相比,降低了投票次数,具有存储空间小、计算效率高、实用性强等优点;
     其次,深入研究SLAM的数据关联问题,针对数据关联过程中所存在的关联精度与计算效率之间的矛盾,提出灰色预测ICNN-JCBB快速切换数据关联方法,利用灰色理论对环境特征密度进行预测,通过设定密度阈值实现数据关联算法的快速切换选择,仿真实验结果表明,所提出算法提高了关联效率,保证了关联精度;
     再次,深入研究SLAM中AUV位置估计问题,针对AUV运动学模型与实际模型无法完全匹配且噪声统计特性不准确所导致的EKF-SLAM导航精度降低的问题,提出Sage-Husa自适应EKF-SLAM方法,将模型及噪声统计特性的不确定性虚拟化为系统的过程噪声,利用噪声统计特性估值器实时有效预测噪声统计特性,并对其进行校正;基于AUV海试数据的试验结果表明,选择不同的噪声初值对Sage-Husa自适应EKF-SLAM位置估计准确性影响较大;为了避免上述初值选取问题,基于Sage-Husa自适应EKF-SLAM和强跟踪EKF-SLAM提出组合自适应EKF-SLAM方法,设计残差收敛判据判断滤波估计发散,从而实施强跟踪EKF-SLAM估计AUV位置参数。基于海试数据的试验结果表明,组合自适应EKF-SLAM不受噪声初值选取的影响,可一定程度上保证AUV及地图中特征的位置估计精度;
     最后,深入研究基于FastSLAM的AUV位置估计问题,以解决EKF-SLAM中运动模型非线性、噪声非高斯的影响,针对FastSLAM中存在的粒子退化及粒子贫化现象,提出基于线性优化重采样的FastSLAM方法,在重采样过程中将复制的粒子与符合一定条件的被抛弃粒子进行线性组合,从产生的新粒子集合中选取权值增大者,减轻粒子的简单复制压力,一定程度上保留更多粒子携带的信息。基于海试数据的试验结果表明线性优化重采样FastSLAM可有效地降低粒子贫化现象,相对于标准FastSLAM方法,可在一定程度上提高AUV及特征的位置估计精度,但其估计结果仍受少量小权值粒子丢失的影响;针对粒子丢失问题,提出基于粒子权值方差缩减的FastSLAM方法,通过模拟退火算法的退温函数产生自适应指数渐消因子,通过小权值粒子权值的升高、大权值粒子权值的降低,实现粒子权值方差的缩减,提高有效粒子数。基于海试数据的试验结果表明,所提出的模拟退火方差缩减FastSLAM方法避免了粒子的退化,提高了AUV位置估计及地图构建精度。
Navigation is the premise and basement of performing tasks for autonomous underwatervehicle (AUV). Error of inertial navigation and dead reckoning accumulates over time, soAUV must float to the suface of water periodically to correct the position by GPS which isnot fit for hidden mission. This paper concentrates on navigation of AUV with partial or nonepriori information in structured environment. AUV could achieve autonomous navigation andbuilds the environment map by environmental perception sensor, position and attitude sensors,which has a great theory significance and practice value to longtime and safe work of AUV.
     Firstly, the basic framework of SLAM was designed. Environment map model, featuremodel, coordinate system, kinematic model of AUV and measurement model of sensors wereestablished. The work above is the basis of the research for the following SLAM.
     Secondly, feature extraction of SLAM was reasearched deeply. Large memory capacityand low efficiency exist in traditional Hough transform. To solve the problem, featureextraction of marine environment was proposed based on fuzzy adaptive Hough transform.Sonar data was processed fuzzily with the information from gradient direction. Minimaxfuzzy reasoning was used to judge the probability that one data belongs to one line. Data thatparticipat in voting were selected adaptively. The line features of the port were extracted.Compared with traditional Hough transform, the method proposed has the advantage of smallmemory capacity and high efficiency and strong practicality.
     Thirdly, data association of SLAM was studied. To solve the contradiction betweenaccuracy and computational efficiency, ICNN-JCBB rapid swich data associatin based ongray prediction was designed. Gray theory was used to predict the feature density ofenvironment. A threshold was set to switch association method quickly. Simulations showthat the method proposed can improve data association efficiency with high accuracy.
     Fourthly, AUV position estimation method for SLAM was researched. In EKF SLAM,kinematic model of AUV can not match the actual model perfectly, and noise statisticalproperties are not accurate which makes the navigation accuracy of EKF-SLAM low.Sage-Husa adaptive EKF-SLAM was proposed to solve the problem above. The uncertaintyof model and statistics of noise were considered as process noise of system. Recursivefiltering was carried on based on observation data. With the estimatior of time-varying noise,the noise statistical properties were estimated and revised, which ruduces the impact of modelerror, and accuray of filter is improved. Experiment with trial data shows that different initial values had big influence on Sage-Husa adaptive EKF-SLAM. To sovle the prolem of initialnoise value, combined adaptive EKF-SLAM was designed based on Sage-Husa adaptiveEKF-SLAM and strong tracking EKF-SLAM. The convergence criterion of residual was usedto judge the estimation divergence. Simulation result with trial data shows that combinedadaptive EKF-SLAM isn’t affected by the initial noise value which can ensure the estimationaccuracy of the position of AUV and features to some extent.
     Finally, AUV position estimation method based on FastSLAM was researched to solvethe influence of nonlinear of model and non-Gaussian noise in EKF-SLAM. Particledegeneracy and impoverishment exist in FastSLAM. Linear optimization resamplingFastSLAM was designed. In the process of resamplng, the combinations of coied and lostparticles were done. Particles with bigger weight were selected from particles produced whichcan reduce the pressure of simple copy. The information carried by particles with smallweight can be reserved. Simulations with trial data show that linear optimization resamplingFastSLAM can reduce the particle impoverishment. Compared with standard FastSLAM, theposition estimated accuracy of AUV and features are enhanced. But the accuracy is stillinfluenced by the losing of little particles. Variance reduction of particle weights FastSLAMwas designed to avoid losing particle. An adaptive exponential fading factor was produced bycooling function of simulated annealing. With the weight rising of small weight particle andreducing of big weight particle, the variance of particles is reduced, and the effective particlenumber is improved. Simulation based on trial data shows that the method proposed can avoidparticle degeneracy, the accuracy of AUV navigation and map building were improved.
引文
[1] David Ribas, Pere Ridao. Underwater SLAM in man-made structured environments.Journal of Field Robotic.2008,25(11-12):898-921P
    [2]杨波,王跃钢,单斌,周小刚.长航时环境下高精度组合导航方法研究与仿真.宇航学报.2011,32(5):1054-1059页
    [3] Loebis D, Sutton R, Chudley J, et al. Adaptive tuning of a Kalman filter via fuzzy logicfor an intelligent AUV navigation system. CONTROL ENGINEERING PRACTICE.2004,12(12):1531-1539P
    [4] Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking andNavigation. London, John Wiley and Sons.2001:45-63P
    [5] Khodadadi H, Jazayeri-Rad H. Applying a dual extended Kalman filter for thenonlinear state and parameter estimations of a continuous stirred tank reactor.COMPUTERS&CHEMICAL ENGINEERING.2011,35(11):2426-2436P
    [6] Leonard J J. Directed sonar sensing for mobile robot navigation. MassachusettsInstitute of Technology. Phd thesis.1990:5-10P
    [7]王宏健,王晶,边信黔,等.基于组合EKF的自主水下航行器SLAM.机器人.2012,34(1):56-64页
    [8] WANG Hong-jian, WANG Jing, YU Le, et al. A new SLAM method based onSVM-AEKF for AUV. MTS/IEEE Kona Conference, OCEANS'11. Piscataway,NJ,USA: IEEE,2011:1-6P
    [9] Cho Bong-Su, Moon Woo-Sung, Seo Woo-Jin, et al. A dead reckoning localizationsystem for mobile robots using inertial sensors and wheel revolution encoding.JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY.2011,25(11):2907-2917P
    [10]王忠,龙宇.航位推算系统非线性过程处理新方法研究.电子科技大学学报.2010,39(3):351-354页
    [11]赵琳,程建华,赵玉新等.船舶导航定位系统.哈尔滨:哈尔滨工程大学出版社,2011:9页
    [12]赵卓,刘明雍,赵涛.自适应算法在捷联惯导初始对准中的应用.火力与指挥控制.2011,36(2):78-80页
    [13]付梦印,邓志红,闫莉萍.Kalman滤波理论及其在导航系统中的应用.2版.北京:科学出版社,2010:23-79页
    [14]张常云.自适应滤波方法研究.航空学报.1998,19(7):96-99页
    [15] Hegrenaes O, Hallingstad O. Model-Aided INS With Sea Current Estimation forRobust Underwater Navigation. IEEE JOURNAL OF OCEANIC ENGINEERING.2011,36(2):316-337P
    [16] Kurisky M, Goldstein M. Inertial navigation. In I. Cox and G. Wilfong, Editors.Autonomous robot vehicles. Springer-Verlag,1990:21-30P.
    [17] Yao K, Zhu Q D, Zhang B. On in-situ calibration of SINS and doppler dead reckoningnavigation system. Advanced Materials Research.2012,479-481:2610-2615P
    [18] Marco M, Pedro B, Paulo O, et al. Position USBL/DVL sensor-based navigation filterin the presence of unknown ocean currents. Automatica.2011,47:2604–2614P
    [19]黄晓瑞,崔平远,崔祜涛.GPS/INS组合导航系统自适应滤波算法与仿真研究.飞行力学.2001,19(2):69-72页
    [20]崔平远,郑黎方,裴福俊等.车载GPS/DR组合导航系统自适应信息融合算法研究.计算机测量与控制.2007,15(12):1807-1809页
    [21]崔平远,冯军华,朱圣英,崔祜涛.基于三维地形匹配的月球软着陆导航方法研究.宇航学报.2011,32(3):470-476页
    [22]张亮,蒋荣欣,陈耀武.移动机器人在未知环境下的同步定位与地图重建方法.控制与决策.2010.25(4):515-520页
    [23]王宏健,傅桂霞,边信黔等.基于SRCKF的移动机器人同步定位与地图构建.机器人.2013.35(2):200-207页
    [24] Durrant-Whyte, H. F. and Bailey, T.:2006, Simultaneous localization and mapping(SLAM): Part I, the essential algorithms. IEEE Robotics and Automation Magazine.13(2):99-108P
    [25] Bailey T, Durrant-Whyte H F. Simultaneous localization and mapping (SLAM): Part II,state of the art. IEEE Robotics and Automation Magazine.2006,13(3):108-117P
    [26] Bosse M, Newman P, Leonard J, et al. An Atlas framework for scalable mapping.Proceedings of the IEEE International Conference on Robotics and Automation.Piscataway, NJ, USA: IEEE.2003:1899-1906P
    [27] Kim J H, Sukkarieh S. Airborne simultaneous localisation and map building.Proceedings of the IEEE International Conference on Robotics and Automation.Piscataway, NJ, USA: IEEE.2003:406-411P
    [28] Guivant J E. Efficient Simultaneous Localisation and Mapping in Large Environments.PhD thesis. The University of Sydney.2002:39-59P
    [29] Stephen Tully, Hyungpil Moon, George Kantor, et al. Iterated Filters for Bearing-OnlySLAM. Proceedings of the IEEE International Conference on Robotics and Automation.Piscataway, NJ, USA: IEEE.2008:1442-1448P
    [30] Jeong-Gwan Kang, Won-Seok Choi, Su-Yong An, et al. Augmented EKF based SLAMmethod for Improving the Accuracy of the Feature Map. IEEE/RSJ InternationalConference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE.2010:3725-3731P
    [31] Fran ois Chanier, Paul Checchin, Christophe Blanc, et al. Comparison of EKF andPEKF in a SLAM context. Proceedings of the11th International IEEE Conference onIntelligent Transportation Systems. Piscataway, NJ, USA: IEEE.2008:1078-1083P
    [32] Carpenter R. N. Concurrent mapping and localization with FLS. Workshop onAutonomous Underwater Vehicles. Cambridge, MA, USA.1998:133-148P
    [33] Feder H J S. Simultaneous stochastic mapping and localization. Phd thesis.Massachusetts Institute of Technology.1999:107-124P
    [34] Montemerlo M., Thrun S, Koller D. et al. FastSLAM: A factored solution to thesimultaneous localization and mapping problem. Proceedings of the AAAI NationalConference on Artificial Intelligence,Edmonton, Canada.2002:48-56P
    [35] Maki T, Kondo H, Ura T. et al. Photo mosaicing of Tagiri shallow vent area by theAUV Tri-Dog1using SLAM based navigation scheme, Proceedings of the OceansMTS/IEEE, Boston, MA, USA.2006:78-85P
    [36] Grisetti, G., Tipaldi, G. D., Stachniss, C., Burgard, W. and Nardi, D.:2007, Fast andaccurate slam with rao-blackwellized particle filters, Robotics and AutonomousSystems.55(1):30-38P
    [37] Fairfield N, Kantor G, Wettergreen D. Real-time SLAM with octree evidence grids forexploration in underwater tunnels, Journal of Field Robotics.2007,24:3-21P
    [38]张洁.基于声呐的水下机器人同时定位与地图构建技术研究.中国海洋大学硕士学位论文.2008:49-60页
    [39] B. He, H.J. Zhang, C. Li, S.J. Zhang, Autonomous Navigation for AutonomousUnderwater Vehicles Based on Information Filters and Active Sensing, SENSORS.2011,11(11):10958-10980P
    [40] B. He, Y. Liang, X. Feng, R. Nian, AUV SLAM and Experiments Using a MechanicalScanning Forward-Looking Sonar, SENSORS.2012,12(7):9386-9410P
    [41]于妮妮.基于EKF的AUV同时定位与构图方法研究.中国海洋大学硕士学位论文.2009:20-24页
    [42]杨柯.大尺度未知海底环境下的AUV同时定位与地图构建方法研究.中国海洋大学硕士学位论文.2009:38-46页
    [43]任春云.自主式水下机器人的同时定位与地图构建算法及实现.中国海洋大学硕士学位论文.2010:11-28页
    [44]陈树娟.自主式水下机器人同时定位与地图构建算法的研究.中国海洋大学硕士学位论文.2011:34-56页
    [45]吕春荣.定深航行中AUV定位与闭环问题研究.中国海洋大学硕士学位论文.2009:19-29页
    [46]杨丽丽.基于粒子滤波器的大尺度环境下水下机器人的自主导航定位.中国海洋大学硕士学位论文.2009:20-33页
    [47]孙尧,张强,万磊.基于自适应UKF算法的小型水下机器人导航系统.自动化学报.2011,37(3):342-353页
    [48]石勇,韩崇昭.自适应UKF算法在目标跟踪中的应用.自动化学报,2011,37(6):755-759页
    [49] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation.PROCEEDINGS OF THE IEEE,2004,92(3):401-422P
    [50]马野,王孝通,李博等.舰船导航信号非线性UKF滤波定位解算方法研究.兵工学报.2007,28(5):539-542页
    [51]强志庄.水下机器人定位标图并行技术研究.哈尔滨工程大学硕士学位论文.2004.63-78页
    [52]曾文静,张铁栋,姜大鹏.SLAM数据关联方法的比较分析,系统工程与电子技术,2010,32(4):860-864页
    [53]赵晶.水下机器人同步建立地图和定位技术研究.哈尔滨工程大学硕士学位论文.2006.23-47页
    [54]王文晶.EKF-SLAM算法在水下航行器定位中的应用研究.哈尔滨工程大学硕士学位论文.2007:77-78页
    [55]曲镜圆.基于声纳的AUV环境感知与地形建模方法研究.哈尔滨工程大学硕士学位论文.2009:41-47页
    [56]熊磊.基于多测距仪的UUV结构环境SLAM方法研究.哈尔滨工程大学硕士学位论文.2011:53-59页
    [57]曾理,李宗剑,刘长江.基于Wedgelet的CT体数据线特征提取.仪器仪表学报,2010,31(3):606-611页
    [58] Daniel S, Leannec F L, Roux C, Soliman B, etc. Side-scan sonar image matching. IEEEJournal of Oceanic Engineering,1998,23(3):245-259P
    [59] Tena I R, Lane D M, Chantler M J. A comparison of inter-frame feature measures forrobust object classification in sector scan sonar image sequences. IEEE Journal ofOceanic Engineering,1999,24(4):458-469P
    [60] Pavlidis T. Algorithms for graphics and image processing. Computer Science Press,1982:55-63P
    [61] Fischler M A, Bolles R C. Random sample consensus: a paradigm for model fittingwith applications to image analysis and automated cartography. Communications of theACM,1981,24(6):381-395P
    [62]华贤兵.水下目标信号特征提取及识别技术的研究.江苏科技大学硕士学位论文.2009:23-46页
    [63]高苗.水声图像特征提取技术研究.哈尔滨工程大学硕士学位论文.2009:12-45页
    [64]刘丹丹.基于声纳图像多分辨率处理的目标检测与跟踪.哈尔滨工程大学硕士学位论文.2011:4-9页
    [65] Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics.Autonomous Robot Vehicles. New York, USA: Springer-Verlag,1990:167-193P
    [66] Aguado A S, Montiel E, Nixon M S. On the intimate relationship between the principleof duality and the Hough transform. Proceedings of the Royal Society A: Mathematics,Physics and Engineering. Piscataway, NJ, USA: IEEE,1995:503-526P
    [67] Aguado A S, Montiel E, Nixon M S. Bias error analysis of the generalized Houghtransform. Math Image Vision,2000,12:25-42P
    [68] Nixon M S, Aguado A S. Feature extraction and image processing.2nd ed. Singapore:Elsevier,2010:23-43P
    [69] Illingworth J, Kittler J. A survey of the Hough transform. Computer Vision, Graphics,and Image Processing,1988,44(1):87-116P
    [70] Princen J, Illingworth J, Kittler J. A formal definition of the Hough transform:properties and relationships, J math Imaging Vision,1,1992:153-168P
    [71] Junhong Ji, Guodong Chen, Lining Sun. A novel Hough transform method for linedetection by enhancing accumulator array. Pattern Recognition Letters,2011,32(11):1503-1510P
    [72] Kiryati N, Elar Y, Bruckstein A. A probabilistic hough transform. Pattern Recognition,1991,24(4):303-316P
    [73] Xu L, Oja E. Randomized hough transform (rht): basic mechanisms, algorithms andcomputational complexities. CVGIP: Image Understanding,1993,57(2):131-154P
    [74] Ser P, Siu W. Sampling hough algorithm for the detection of lines and curves IEEEInternational Symposium on Circuits and System. Piscataway, NJ, USA: IEEE,1992:2497–2500P
    [75] Matas J, Galambos C, Kittler J. Robust detection of lines using the progressiveprobabilistic hough transform. Computer Vision and Image Understanding,2000,78(1):119-137P
    [76] Cha J, Cofer R H, Kozaitis S P. Extended Hough transform for linear feature detection.Pattern Recognition,2006,39(6):1043-1043P
    [77] Liu Z Y, Chiu C K, Xu L. Strip line detection and thinning by RPCL-based local PCA.Pattern Recognition Letters,2003,24(14):2335-2344P
    [78] Zheng Y F, Li H P, Doermann D. A Parallel-Line Detection Algorithm Based onHMM Decoding. IEEE TRANSACTIONS ON PATTERN ANALYSIS ANDMACHINE INTELLIGENCE,2005,27(5):777-792P
    [79] Li Z R, Liu Y E, Hayward R, Zhang J L. Knowledge-based power line detection forUAV surveillance and inspection systems. Image and Vision Computing New Zealand2008IVCNZ200823rd International Conference. Piscataway, NJ, USA: IEEE,2008:1-6P
    [80] A L Kesidis, N Papamarkos. On the inverse Hough transform, IEEE Trans PatternAnalysis and Machine Intelligence,1999,21(12):1329-1343P
    [81] Castellanos J, Montiel J, Neira J, et al. The SPmap: A probabilistic framework forsimultaneous localization and map building. IEEE Trans on Robotics and Automation.1999,15(5):948-952P
    [82] Newman, P. M. On the structure and solution of the simultaneous localization and mapbuilding problem:[Ph.D. Dissertation]. Sydney: University of Sydney,1999:38-96P
    [83] Zhang Z, Faugeras O. A3D world model builder with a mobile robot. Int. J. Rob. Res.1992,11(4):269-285P
    [84] Feder H, Leonard J, Smith C. Adaptive Mobile Robot Navigation and Mapping. TheInternational Journal of Robotics Research.1999,18(7):650-668P
    [85] Guivant J, Nebot E. Optimization of the Simultaneous Localization and Map-BuildingAlgorithm for Real-Time Implementation. IEEE Transactions on Robotics andAutomation.2001,17(3):242-257P
    [86] Neira José, Tardós Juan Domingo. Data association in stochastic mapping using thejoint compatibility test. IEEE Transactions on Robotics and Automation.2001,17(6):890-897P
    [87] William, Eric, Leifur G. Object recognition by computer: the role of geometricconstraints. Cambridge, MA, USA: MIT Press,1990:33-87P
    [88]林尧瑞,马少平.人工智能导论北京:清华大学出版社,1989:21-28页
    [89]邓聚龙.灰色控制系统.武汉:华中理工大学出版社,1993:6-13页
    [90] Liping Qu, Hongjian Wang, An overview of robot SLAM problem, Proceedings of2011International Conference on Consumer Electronics, Communications andNetworks, CECNet2011:1953-1956P
    [91] Sage A P,Husa G W.Adaptive filtering with unknown prior statistics.Journal ofAmerican College of Cardiology,1969:769-774P
    [92]王永刚,王顺宏.改进Sage-Husa滤波及在GPS/INS容错组合制导中的应用.中国惯性技术学报,2003,11(5):29-32页
    [93]李振营,沈毅,胡恒章.带未知时变噪声系统的卡尔曼滤波算法研究.系统工程与电子技术.2000,26(2):160-162页
    [94]周东华.非线性系统的自适应控制导论.清华大学出版社,2002:55-60页
    [95] Neira J, Tardós J D. Data association in stochastic mapping using the jointcompatibility test. IEEE Transactions on Robotics and Automation,2001,17(6):890-897P
    [96] Del Moral P, Doucet A, Jasra A. Sequential Monte Carlo samplers. Journal of the royalstatistical society series B-statistical methodology,2006,68(3):411-436P
    [97] Kwak N, Yokoi K, Lee B H. Analysis of rank-based resampling based on particlediversity in the rao-blackwellized particle filter for simultaneous localization andmapping. Advanced Robotics,2010,24(4):585-604P
    [98] Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T.,“A Tutorial on Particle Filtersfor On-line Non-linear/Non-Gaussian Bayesian Tracking,” IEEE Transactions onSignal Processing, Vol.50, Feb.2002:174-188P
    [99] Randal Douc, Olivier Cappe. Comparison of Resampling Schemes for Particle Filtering.Proceedings of the4th International Symposium on Image and Signal Processing andAnalysis,2005:64-69P
    [100] J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems.J of theAmerican Statistical Association,1998,93(443):1032-1044P
    [101] Carpenter J, Clifford P, Fearnhead P. An improved particle filter for non-linearproblems. IEEE proceedings-Radar, Sonar and Navigation,1999,146:2-7P
    [102] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods forBayesian fitering. Statist. Comput.2000,10:197-208P
    [103] Casella, G. and Robert, C. P.. Rao-Blackwellisation of sampling schemes, Biometrika,1996,83(1):81-94P
    [104] Doucet A, Freitas N de, Murphy K, Russell S. Rao-blackwellised particle filtering fordynamic bayesian networks. Proceedings of sixteenth conference on uncertainty inartificial intelligence. Stanford,2000:176-183P
    [105] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solutionto the simultaneous localization and mapping problem. In AAAI National Conferenceon Artificial Intelligence,2002:593-598P
    [106] K. Murphy. Bayesian map learning in dynamic environments. In Advances in NeuralInformation Processing Systems (NIPS). MIT Press,1999:22-32P
    [107]白鹏.两个一元t分布之间的Kullback-Leibler距离.数学物理学报.2002,22A (1):121-127页
    [108] Wang Xiaoqun. The variance reduction techniques and Quasi-monte Carlo methods.MATHEMATICA APPLICATA,1999,12(2):90-96P
    [109]王凌.智能优化算法及其应用.北京:清华大学出版社,2001:17-21页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700