夏热冬冷地区低碳住宅技术策略的CO_2减排效用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球面临能源危机和气候危机的形势下,2009年哥本哈根会议前夕,中国政府提出到2020年单位国内生产总值CO2排放比2005年下降40%至45%的发展战略目标。当“低碳经济”方兴未艾之际,“低碳住宅”的概念也应运而生。而夏热冬冷地区是我国气候分区中住宅总面积最高的地区,根据“十一五”规划,该地区的新建住宅节能任务量占全国新建住宅任务总量的50.8%,因此这一地区的住宅节能和CO2减排对实现我国全局性的“节能减排”目标具有重要意义。针对目前夏热冬冷地区存在对低碳住宅概念认识模糊、有低碳住宅技术策略却无低碳程度评价的问题,本文尝试量化分析低碳住宅技术策略的CO2减排效用。
     文中首先通过认知调研、国内外实践分析,从微观层面总结了低碳住宅建设的基本技术策略。然后转换视角,借助技术创新理论从中观层面将低碳住宅技术策略划分为改良性低碳住宅技术策略和革新性低碳住宅技术策略两类,并进一步提出,前者CO2减排作用显现的关键阶段是住宅生命周期中的使用阶段,主要依赖标准规范推动;后者作用显现的关键阶段是建造阶段,主要依赖工业化生产方式的推动。
     在明确了两个作用阶段后,分别采用计算机模拟和数学模型计算的方式对夏热冬冷地区住宅这两个阶段低碳住宅技术的CO2减排效用进行量化分析。1)对于使用阶段,使用权威的EnergyPlus/DesignBuilder软件,对四种不同节能减排程度的低碳技术组合进行模拟计算。四种组合对应四种不同的情景,严格根据现有或即将出台的国家标准规范进行推导,因此能够比较贴切地反映或预测该地区目前和将来一段时间内的低碳住宅CO2排放水平。2)对于建造阶段,进一步细分为建材生产、建材运输和营造施工3个分阶段,借鉴建筑全生命周期能耗的数学模型,提出各阶段的CO2排放数学模型,然后通过案例分析,对比传统方式和工业化方式在建造阶段带来的CO2排放差异。
     结果显示,在满足居民合理舒适度的前提下,按照国家相关节能标准(含近期可能出台的标准)要求采取低碳措施后,夏热冬冷地区住宅使用过程中的能耗和CO2排放参考范围如下:总能耗(折算成标准电)区间为62.2-37.0kWh/(m2·a),中度优化时为47.7kWh/(m2·a);CO2排放区间是36.0-21.7kg-CO2/(m2·a),中度优化值为25.7kg-CO2/(m2·a)。对比不采取任何低碳措施的情况,“节能减排”相对值如下:总能耗节能区间为:24.9%-55.3%,中度优化时,节能42.4%;总CO2减排区间为:30.3%-58.1%,中度优化时,减排50.3%。就建造阶段而言,工业化方式能够实现CO2减排14.6%,建造阶段的CO2排放量为296.2kg-CO2/m2。以使用时间50年计,采取低碳技术策略后,夏热冬冷地区低碳住宅使用阶段和建造阶段总的CO2排放区间为2096.2-1381.2kg-CO2/m2,其中建造阶段的CO2排放占使用阶段的16.5%-27.3%。
     结论包括:从生命周期的CO2减排总量来看,夏热冬冷地区住宅使用阶段的低碳住宅技术策略效用远高于建造阶段,但后者的低碳住宅技术策略在单位时间内的作用效率更高。如果能在使用阶段和建造阶段均使用低碳技术策略,则可趋近CO2减排效用的最大化。对具体低碳技术策略的CO2减排效用而言,使用阶段,采用可再生能源和提高电器能效是最有效的方式;建造阶段,在提高生产效率的同时,如果能提高预制率、减少钢材和水泥等主要建材用量并提高其可回收再利用的性能,则更有利于该阶段的CO2减排。
Facing energy crisis and climate crisis around the world, before the Copenhagen conference, China announced CO2 intensity target for 2020 that reducing the CO2 emissions per unit of GDP in 2020 by 40 to 45 percent compared with the level of 2005. Under this background, the "low-carbon housing" concept emerges with the ascendant "low-carbon economy". The Hot Summer and Cold Winter Zone (HSCW) covers the most densely populated areas in China compared to other climate zones, which leads to considerable energy consumption and CO2 emission in the residential building sector. Energy saving in these areas would affect 50.8% of national goal in this sector according to China's the Eleventh Five-year Plan. The purpose of this paper is to make quantified assessment to the effect of low-carbon housing technology in this area.
     Firstly, made summary of primary low-carbon housing technologies on the basis of field research and international practice exploring, then classified the technology into two categories:improved ones and innovative ones using the theory of Tecnlogy Innovation. Furthermore, pointed out that the former take CO2 reduction effect mainly on occupancy phase of life cycle stage with the push of code and the latter work well during construction phase, triggered by industrial production methods.
     Secondly, made quantified analysis on the technologies efforts of the two phases with computer simulation and mathematical model.1) For the occupancy phase, presented an energy modeling study with Design Builder/Energy plus software to quantify the annual amount of operational energy consumption and CO2 emission of major types of residential building by comparing four illustrative scenarios. Each scenario has a close relationship with relevant national energy conservation/efficiency standards.2) For the construction phase, the phase was subdivided into manufacture, transportation and erection, mathematics models of CO2 emission are set up for each one. Case study was made to compare the differences between factory-build and traditional methods on CO2 emission.
     The respective results indicate that when low-carbon housing measures are taken, the range of total energy consumption is 62.2-37.0 kWh/(m2·yr) the CO2 emission range is 36.0-21.7 kg/(m2·yr) Compared to conditions without the measures, the potential range of energy saving is 24.9-55.3% while CO2 emission reduction is 30.3-58.1%. The total CO2 emission in construction phase is 296.2kg-CO2/m2, the CO2 reduction can achieve 14.6% by factory build method in construction phase. The range of CO2 emission in the whole phase which covers occupancy and construction is 2096.2-1381.2kg-CO2/m2 when the life time of housing is calculated as 50 years.
     The conclusions include that, the low-carbon housing technologies make stronger effect in occupancy phase rather than construction phase during the whole life time, but the latter works more efficient. If the technologies are taken in both of the two phases, the CO2 reduction can be maximized. For the specific technologies, making use of renewable energy and high energy efficiency household appliances are the most effective choices in occupancy phase. In the construction phase, the pre-frication and on-site assembly plays significant role in CO2 reduction. The effect would be better if the ratios of prefabrication and recyclable materials rise in the main body of housing structure.
引文
[1]国际能源署.世界能源展望2001——为促进明天的发展而评价今天的供应[M].北京:地质出版社,2002.
    [2]陈其珏.2050年后,全球将有四大能源替代方向[N].上海证券报.
    [3]崔守军.气候危机治理:开启“后哥本哈根”时代[Z].2009.
    [4]Butler Declan. Earth Monitoring:The planetary panopticon[J]. NATURE,007,450:778-781.
    [5]Tvinnereim Endre, R(?)ine Kjetil. Carbon 2010-Return of the sovereign[R].Point Carbon Trading Analytics and Research,2010.
    [6]郑国光.中国气象局局长解读《哥本哈根协议》[EB/OL].[12月23日].人民网.
    [7]Agency European Environment. Energy and environment report 2008 [M]. Copenhagen: European Environment Agency,2008.
    [8]周小苑.减排目标缘何定在40%-45%[N].人民日报海外版.
    [9]Fridley David, Aden Nathaniel, Zhou Nan,等. Impacts of China's Current Appliance Standards and Labeling Program to 2020[R]. Berkeley:Lawrence Berkeley National Laboratory,2007.
    [10]国家统计局.中国统计年鉴2004[M].北京:中国统计出版社,2005.
    [11]Yoshino Hiroshi, Yoshino Yasuko, Zhang Qingyuan,等.Indoor thermal environment and energy saving for urban residential buildings in China[J]. Energy and Buildings, 2006,38(11):1308-1319.
    [12]Li Jun, Colombier Michel. Managing carbon emissions in China through building energy efficiency[J]. Journal of Environmental Management,2009,90(8):2436-2447.
    [13]国家统计局.2009年国民经济和社会发展统计公报[M].北京:中国统计出版社,2010.
    [14]陈滨,孟世荣,陈星,等.中国住宅中能源消耗的CO2排放量及减排对策[J].可再生能源,2005(5):75-79.
    [15]黄志甲.建筑物能量系统生命周期评价模型与案例研究[D].上海:同济大学,2003.
    [16]乔永锋.基于生命周期评价法(LCA)的传统民居的能耗分析与评价[D].西安:西安建筑科技大学,2006.
    [17]魏一鸣.中国能源报告(2008):碳排放研究[M].科学出版社,2008.
    [18]黄国仓.辦公建築生命週期節能與二氧化碳減量评估之研究[D].台湾:国立成功大学,2006.
    [19]曾正雄.公寓住宅设备管线二氧化碳排放量评估[D].台湾:国立成功大学建筑研究所,2005.
    [20]王婧.严寒地区城镇典型居住建筑围护结构的生命周期评价[D].上海:同济大学,2005.
    [21]张荣鹏.基于LCA的钢结构装配式住宅建筑的环境性能评价[D].上海:同济大学机械工程学院,2009.
    [22]Suzuki Michiya, Oka Tatsuo, Okada Kiyoshi. The estimation of energy consumption and CO2 emission due to housing construction in Japan[J]. Energy and Buildings, 1995,22(2):165-169.
    [23]Adalberth K. Energy use during the life cycle of buildings:a method[J]. Building and Environment,1997,32(4):317-320.
    [24]Li Jun. Towards a low-carbon future in China's building sector-A review of energy and climate models forecast[J]. Energy Policy,2008,36(5):1736-1747.
    [25]Ochoa Franco Luis A. Life cycle assessment of residential buildings [D]. Pittsburgh, PA: Carnegie Mellon University,2004.
    [26]Thormark Catarina. A low energy building in a life cycle-its embodied energy, energy need for operation and recycling potential[J]. Building and Environment,2002,37(4):429-435.
    [27]中国建筑业协会建筑节能专业委员会中国建筑科学研究院重庆大学.JGJ 134-2001夏热冬冷地区居住建筑节能设计标准[S].2001.
    [28]Yu Jinghua, Yang Changzhi, Tian Liwei. Low-energy envelope design of residential building in hot summer and cold winter zone in China[J]. Energy and buildings, 2008,40(8):1536-1546.
    [29]李俊鸽.夏热冬冷地区人体热舒适气候适应模型研究[D].西安建筑科技大学,2006.
    [30]付祥钊,杨李宁,马晓雯,等.夏热冬冷地区居住建筑空调能耗预测[J].暖通空调,2007,37(11):1-5.
    [3l]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2008[M].北京:中国建筑工业出版社,2008.
    [32]薛磊,刘东卫.建国六十年以来我国住宅工业化与技术发展(一)[J].住宅产业,2009(10):10-14.
    [33]薛磊,刘东卫.建国六十年以来我国住宅工业化与技术发展(二)[J].住宅产业,2009(11):31-34.
    [34]楚先锋.国内外工业化住宅的发展历程[J].住区,2008,33(5).
    [35]季宽,孟锦,沈蕾.住宅产业化对节能省地型住宅推广的影响分析[J].建筑科学, 2007(12).
    [36]王玲,刘美霞.住宅产业化进程中的政府行为研究[J].建筑经济,2008(01).
    [37]开彦.中国住宅产业化60年历程与展望[J].住宅科技,2009(10):1-5.
    [38]张斌.预制混凝土结构的应用与住宅产业化[J].山西建筑,2009(33):82-83.
    [39]李华.绿色建筑技术在住宅产业化中的应用[J].民营科技,2009(09):213.
    [40]Jaillon Lara, Poon C. S. The evolution of prefabricated residential building systems in Hong Kong:A review of the public and the private sector[J]. Automation in Construction, 2009,18(3):239-248.
    [41]于春刚.住宅产业化—钢结构住宅围护体系及发展策略研究[D].同济大学,2006.
    [42]韩俊强.钢结构住宅产业化研究[D].武汉理工大学,2008.
    [43]胡沈健.住宅装修产业化模式研究[D].同济大学,2006.
    [44]高颖.住宅产业化—住宅部品体系集成化技术及策略研究[D].上海:同济大学,2006.
    [45]赵睿.住宅产业化中的标准化研究[D].天津大学,2007.
    [46]章峻怡.住宅产业化进程中的工业化设计应用研究[D].天津大学,2008.
    [47]陈宏伟.计算机集成制造系统在住宅产业化领域的应用研究[D].武汉理工大学,2005.
    [48]季宽.住宅产业化进程中之节能省地型住宅建设研究[D].西安建筑科技大学,2008.
    [49]贾维.我国住宅产业化中的国家康居示范工程研究[D].天津大学,2008.
    [50]戴飞鸥.住宅产业化:经济学视角[D].重庆大学,2005.
    [51]周楠.适合住宅产业化的房地产企业发展模式研究[D].南京林业大学,2007.
    [52]刘思.工业化住宅产品的市场发展战略研究[D].武汉理工大学,2006.
    [53]董良峰.推进我国住宅产业化政策框架体系的构建及措施研究[D].南京林业大学,2006.
    [54]郝胜梅.住宅产业化综合评价指标体系及评价方法研究[D].西安建筑科技大学,2004.
    [55]McCutcheon Robert. Industrialised house building in the UK,1965-1977[J]. Habitat International,1989,13(1):33-63.
    [56]D R International Ltd. The 2009 Buildings Energy Data Book[R].US Department of Energy, 2009.
    [57]Kim L. Building technological capability for industrialization:analytical frameworks and Korea's experience[J]. Industrial and Corporate Change,1999,8(1):111-136.
    [58]Richard Roger-Bruno. Industrialised building systems:reproduction before automation and robotics [J]. Automation in Construction,2005,14(4):442-451.
    [59]Pauly Justin T. Justin Talbott. Innovation and the big builders:barriers to integrating sustainable design and construction practices into the production homebuilding industry:the case of Pulte Homes[D]. Boston:Massachusetts Institute of Technology. Dept. of Urban Studies and Planning,2005.
    [60]Ku Kihong. Flexibility in Prefabrication Approaches:Lessons from two US Homebuilders: 2008 Northeast Fall Conference of the Association of Collegiate Schools of Architecture, University of Massachusetts, Amherst,2009 [C]. University of Massachusetts Architecture+Design Program.
    [61]W. L. Lee, J. Burnett. Benchmarking energy use assessment of HK-BEAM, BREEAM and LEED[J]. Building and Environment,2007(11):1-10.
    [62]BRE. EcoHomes 2006 Pre Assessment Estimator[Z]. Garston:Building Research Establishment Ltd,2006.
    [63]Kaan Henk F., de Boer Bart J. Passive houses:achievable concepts for low CO2 housing[R].Energy research Centre of the Netherlands,2004.
    [64]张季超,楚先锋,邱剑辉,等.高效、节能、环保预制钢筋混凝土结构住宅体系及其产业化[J].工程力学,2008.
    [65]周全.PC结构住宅工业化模板体系研究[D].上海:同济大学,2009.
    [66]薛磊,刘东卫,周静敏.新中国成立以来住宅工业化及其技术发展[J].北京规划建设,2009(06):38-46.
    [67]Le Corbusier. Toward an Architecture[M]. Los Angeles:Getty Publications,2007.
    [68]Crawley Drury B., Hand Jon W., Kummert Michael,等. Contrasting the Capabilities of Building Energy Performance Simulation Programs[R].U S Department of Energy,2005.
    [69]黄献明.绿色建筑的生态经济优化问题研究[D].北京:清华大学,2006.
    [70]楚先锋.中国住宅产业化路在何方[J].住区,2007,26(8):22-26.
    [71]仇保兴.我国城市发展模式转型趋势:低碳生态城市[J].城市发展研究,2009,16(8):1-6.
    [72]专家建议长株潭试点全球首个低碳城市群[N].中国国门时报.
    [73]刘金松.社科院潘家华:低碳城市概念尚不清晰[N].经济观察报.
    [74]Industry Secretary Of State For. Our energy future-creating a low carbon economy[M]. Norwich:TSO (The Stationery Office),2003.
    [75]Natarajan Sukumar, Levermore Geoffrey J. Predicting future UK housing stock and carbon emissions[J]. Energy Policy,2007,35(11):5719-5727.
    [76]DECC. Warm Homes,Greener Homes:A Strategy for Household Energy Management[R]. London:Department of Energy and Climate Change,2010.
    [77]Government Department For Communities And. Code for Sustainable Homes[S]. London: 2006.
    [78]刘志林,戴亦欣,董长贵,等.低碳城市理念与国际经验[J].城市发展研究,2009.
    [79]Dunster Bill, Simmons Craig, Gilbert Bobby. The ZEDbook:solutions for a shrinking world [M]. London:Taylor & Francis,2007.
    [80]EERE. Building Technologies Program:Planned Program Activities for 2008-2012[R].US Department of Energy,2008.
    [81]DUNLEAVEY M. P. Don't Overlook the Rewards for Thinking Green[N]. The New York Times, (Your Taxes).
    [82]DOE. A Consumer's Guide:Get Your Power from the Sun[R].Energy efficiency and renewable energy,2003.
    [83]EPA.2030 CHALLENGE Targets:U.S. Residential Regional Averages[R].Environmental Protection Agency,2001.
    [84]日本建筑学会.建筑环境管理[M].北京:中国电力出版社,2009.
    [85]Sekisui House LTD. Sustainability report 2009[R].Sekisui House, LTD,2009.
    [86]中国房地产评测中心.低碳地产绿色生活测评研究报告[R].北京:中国房地产评测中心.2010.
    [87]傅家骥.技术创新学[M].北京:清华大学出版社,1998.
    [88]Chesbrough Herry. Open innovation:The new imperative for creating and profiting from technology[M]. Boston:Harvard business school press,2003.
    [89]Tassey Gregory C. The Economics of R&D Policy [M]. Westport:Quorum Books,1997.
    [90]吴贵生.技术创新管理[M].北京:清华大学出版社,2000.
    [91]Rapport DJ. Optimal foraging for complementary resources[J]. The American Naturalist, 1980,116:324-346.
    [92]刘军.高新技术产业化生态机理研究[D].太原:山西大学,2007.
    [93]中华人民共和国建设部.绿色建筑评价标准(GB/T 50378-2006)[S].北京:中国建筑工业出版社,2006.
    [94]Lee W. L., Burnett J. Benchmarking energy use assessment of HK-BEAM, BREEAM and LEED[J]. Building and Environment,2008,43(11):1882-1891.
    [95]杨尚平.上海万科基于“工业化住宅”的核心能力战略研究[D].上海:复旦大学,2008.
    [96]谢芝馨.工业化住宅系统建模和控制的初步分析[J].力学与实践,2003(01):45-47.
    [97]东地产.万科越过住宅产业化第一坎[EB/OL].www.cnfol.com.
    [98]王石.徘徊的灵魂[M].北京:中信出版社,2000.
    [99]Sartori I., Hestnes A. G. Energy use in the life cycle of conventional and low-energy buildings:A review article[J]. Energy and Buildings,2007,39(3):249-257.
    [100]Utama Agya, Gheewala Shabbir H. Life cycle energy of single landed houses in Indonesia[J]. 2008,40(10):1911-1916.
    [101]Norman Jonathan, MacLean Heather L., Kennedy Christopher A. Comparing High and Low Residential Density:Life-Cycle Analysis of Energy Use and Greenhouse Gas Emissions[J]. J. Urban Plng. and Devel,2006.
    [102]Adalberth K. Energy use during the life cycle of single-unit dwellings:Examples[J]. 1997,32(4):321-329.
    [103]张又升.建筑物生命周期二氧化碳减量评估[D].台湾:台湾成功大学,2003.
    [104]田灵江.推进住宅产业现代化的政策措施[J].住宅产业,2002(7):37-38.
    [105]姜阵剑.国内外住宅产业发展现状与发展方向[J].住宅建设,2004(5):81-83.
    [106]新华网.关于调整住房供应结构稳定住房价格的意见[EB/OL].http://news.xinhuanet.com/newscenter/2006-05/29/content_4616608.htm.
    [107]尚政.上海居住建筑节能设计标准近期出台[N].中国建设报.
    [108]Ipcc.2006 IPCC Guidelines for National Greenhouse Gas Inventories[R].2006.
    [109]王铮,朱永彬.我国各省区碳排放量状况及减排对策研究[J].中国科学院院刊,2008,23(2):109-115.
    [110]国家统计局能源统计司,国家能源局综合司.中国能源统计年鉴2008[M].北京:中国统计出版社,2008.
    [111]徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口,资源与环境,2006,16(6):158-161.
    [112]Zhang Ming, Mu Hailin, Ning Yadong. Accounting for energy-related CO2 emission in China,1991-2006[J]. Energy Policy,2009,37(3):767-773.
    [113]Wang Can, Chen Jining, Zou Ji. Decomposition of energy-related CO2 emission in China: 1957-2000[J]. Energy,2005,30(1):73-83.
    [114]CCNUCC UNFCCC. ACM0002 (version06) [R].2006.
    [115]马保国,李明.夏热冬冷地区节能65%住宅围护结构研究[J].墙材革新与建筑节能,2008(11):46-48.
    [116]孙海萍.上海地区高层住宅建筑围护结构节能技术探讨[D].上海:同济大学,2007.
    [117]建设部信息中心.夏热冬冷地区新建建筑节能现状与《夏热冬冷地区居住建筑节能设计 标准》实施情况[R].2007.
    [118]蔡大风.杭州地区居住建筑墙体节能设计研究[D].杭州:浙江大学,2004.
    [119]杨子江,黄恒栋.夏热冬冷地区小城镇住宅外墙体节能技术措施研究[J].四川建筑科学研究,2007(02).
    [120]羊晓萍,李东,王翠萍.倒置式屋面与新型保温材料[J].西北建筑工程学院学报(自然科学版),2001,18(3):51-54.
    [121]董子忠,许永光,陈启高.窗户传热系数的简化计算方法[J].保温材料与建筑节能,2002(9):40-44.
    [122]李保峰.适应夏热冬冷地区气候的建筑表皮之可变化设计策略研究[D].北京:清华大学,2004.
    [123]魏彩欣.夏热冬冷地区住宅建筑能耗模拟与空调方案的技术经济分析[D].上海:东华大学,2007.
    [124]江亿,林波荣,曾剑龙,等.住宅节能[M].北京:中国建筑工业出版社,2006.
    [125]常丽莎,冷御寒.武汉地区城市住宅室内热环境现状分析[J].2002.
    [126]中国城市科学研究会.绿色建筑2009[M].北京:中国建筑工业出版社,2009.
    [127]80%消费者更愿选择冷暖空调省电单冷空调难觅踪影[N].中国质量报.
    [128]和讯.高能效空调价格探底4、5级能效加速退市[EB/OL].http://news.hexun.com/2009-05-18/117793457.html.
    [129]余晓平,付祥钊,黄光德,等.夏热冬冷地区采暖期/空调期划分对居住建筑能耗限值的影响分析[J].建筑科学,2007,23(08):27-31.
    [130]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2009[M].北京:中国建筑工业出版社,2009.
    [131]发展改革委召开绿色照明工程实施成果新闻发布会[EB/OL].http://www.gov.cn/xwfb/2006-06/19/content_314226.htm.
    [132]梁贞,叶欣.2006年全国荧光灯生产企业节能环保产品市场调研报告[J].中国照明电器,2008(2):5-11.
    [133]Brockett Debbie, Fridley David, Lin Jieming,等. A Tale of Five Cities:The China Residential Energy Consumption Survey[R]. Berkeley:Lawrence Berkeley National Laboratory,2002.
    [134]安森美半导体.LED驱动电路的控制方案[EB/OL].http://www.cntronics.com/public/art/artinfo/id/80002011?page=1.
    [135]黄启兵.平板彩电比CRT彩电的能耗更大更费电[N].羊城晚报.
    [136]万里.传统CRT电视淡出家电卖场停售是未来趋势[N].重庆晚报.
    [137]王琳.红外线燃气灶热效率的讨论[EB/OL].http://www.zmde.cn/shownews.asp?id= 146.
    [138]浙江在线.万和诞生最节能燃气灶热效率突破70%[EB/OL].http://jd.zjol.com.cn/08jd/system/2008/04/25/009458684.shtml.
    [139]李兆坚,江亿.家用燃气灶热效率特性测试分析[J].应用基础与工程科学学报,2006,14(03):368-374.
    [140]余晓平,彭宣伟,廖小烽,等.重庆市居住建筑能耗调查与分析——以某高校住宅能耗为例[J].重庆建筑,2008(5).
    [141]国家住宅与居住环境工程技术研究中心.住宅建筑太阳能热水系统整合设计[M].北京:中国建筑工业出版社,2006.
    [142]Wier Mette. Sources of Changes in Emissions from Energy:A Structural Decomposition Analysis[J]. Economic Systems Research,1998,10(2):99-112.
    [143]HENDRICKSON CHRIS, HORVATH ARPAD, JOSHI SATISH,等. Economic Input-Output Models for Environmental Life-Cycle Assessment[J]. POLICY ANALYSIS, 1998,32(7):184-191.
    [144]酒井宽二,漆崎升.建设业资源消费解析与环境负荷推定[J].环境情报科学,1992,21(2).
    [145]林志栋,许耀文,庄昀,等.配合营建产业需求之生命周期简化评估研究:第七届铺面材料再生学术研讨会,台湾,2006[C].建国科技大学.
    [146]黄志甲.建筑物能量系统生命周期评价模型与案例研究[D].上海:同济大学,2003.
    [147]顾道金.建筑环境负荷的生命周期评价[D].北京:清华大学,2005.
    [148]顾道金,谷立静,朱颖心,等.建筑建造与运行能耗的对比分析[J],暖通空调,2007,37(05):58-60.
    [149]李惠强,李思堂.住宅建筑施工初始能耗定量计算[J].华中科技大学学报(城市科学版),2005,22(04):54-57.
    [150]彭文正.以生命周期评估技术应用于建筑能耗之研究[D].台湾:朝阳科技大学,2003.
    [151]日本可持续建筑协会.建筑物综合环境性能评价体系——绿色设计工具[M].北京:中国建筑工业出版社,2005.
    [152]林宪德.绿建筑解说与评估手册(2003更新版)[M].台北:内政部建筑研究所,2003.
    [153]龚志起,张智慧.建筑材料物化环境状况的定量评价[J].清华大学学报(自然科学版),2004(09):1209-1213.
    [154]马明珠.上海地区典型办公建筑围护结构生命周期清单分析[D].上海:同济大学,2008.
    [155]沈卫国,刘志民,胡金强.浅谈水泥混凝土工业低二氧化碳排放技术[J].新世纪水泥导 报,2008,14(4):1-6.
    [156]赵平,同继峰,马眷荣.建筑材料环境负荷指标及评价体系的研究[J].中国建材科技,2004,13(6):1-6.
    [157]陈庆文,马晓茜.建筑陶瓷的生命周期评价[J].中国陶瓷,2008,44(7):36-39.
    [158]张群,龚先政,王志宏,等.典型玻璃生产线的生命周期评价研究,2008[C].
    [159]郭鹿.铜塑铝板和纯铜板的生命周期评价[J].中国建材科技,2007,16(6):7-11.
    [160]王慧英.预制混凝土工业化住宅结构体系研究[D].广州:广州大学,2007.
    [161]封浩,颜宏亮.工业化住宅技术体系研究——基于“万科”装配整体式住宅设计[J].住宅科技,2009(08):33-38.
    [162]邓文龙,陈伟忠,范如春.预制装配式高层住宅施工新技术——上海“十一五”住宅产业化建筑施工科技创新示范工程介绍[J].建筑施工,2007(12):975-978.
    [163]楚先锋.日本KSI住宅[J].住区,2007(26).
    [164]张海燕.香港地区新型预制混凝土结构体系施工研究[J].建筑技术,2009,40(8):747-750.
    [165]Yee Alfred A. Social and Environmental Benefits of Precast Concrete Technology[J]. PCI Journal,2001,46(3):14-19.
    [166]朱家平,沈孝庭.产业化住宅绿色施工节能降耗减排分析与测算[J].建筑施工,2007(12):983-985.
    [167]日本建筑环境与节能学会.建筑物环境效率综合评价体系手册1:绿色设计工具[M].北京:中国建筑工业出版社,2004.
    [168]杨建新,徐成,王如松.产品生命周期评价[M].北京:国家气象出版社,2002.
    [169]乔永锋.基于生命周期评价法(LCA)的传统民居的能耗分析与评价[D].,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700