废旧镍镉、镍氢电池中有价值金属的回收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废旧电池含有毒有害物质及有价值金属元素,有效安全处置与回收废旧电池中有价值金属,不但可以解决目前因废旧电池所造成的环境污染问题,还可以实现资源循环利用,对我国经济、社会和环境可持续发展及再生资源回收利用具有重要意义。然而,目前缺少低成本、环境友好的废旧电池处理与资源化技术,致使废旧电池难以得到安全的处置与高效资源化。
     本论文基于循环经济的理念及“减量化、再利用、资源化”的原则,以废旧镍镉和镍氢电池为研究对象,首先对废旧镍镉、镍氢电池化学成分和物理结构进行分析,通过物理结构和化学成分分析,确定镉和铁、镍、钴等磁性金属为回收目标金属,并根据废旧镍镉、镍氢电池的物质组成及镉的易挥发性及铁、镍、钴与其它金属间的磁性强弱的差异,提出破碎、真空蒸馏和磁选工艺结合处理废旧镍镉、镍氢电池的新方法。本论文从废旧镍镉、镍氢电池中各金属组元的真空蒸馏分离热力学、动力学角度出发,研究了真空蒸馏分离镉的原理与机制及主要金属元素的真空蒸馏分离规律,并以此作为理论依据,优化真空蒸馏工艺参数,使有害金属镉得到回收。基于金属间的磁性强弱的差异,本论文采用磁选工艺进一步分离与提纯真空蒸馏后的残余物,对废旧镍镉、镍氢电池中铁、镍、钴的磁选分离机理与规律进行研究,以达到对铁、镍和钴这些有价值金属进行回收的目的。
     基于废镍镉、镍氢电池各组分在同一温度下具有不同的蒸气压,通过真空蒸馏分离工艺,将镉等低熔点高蒸气压金属从混合金属中分离,本文以2/3AA型号废旧镍镉电池为研究对象,探讨了真空蒸馏分离镉的热力学和动力学、氧化-还原反应机理及蒸发-冷凝规律。结果表明:镉在真空蒸馏过程中经历了从氢氧化物到氧化物到单质到蒸气形态的转化。拆解和破碎过程中,有些塑料及纤维没有被分离,而是粘附着电极材料,在真空蒸馏过程中这些塑料及纤维会随着加热温度的升高而发生热解,产生一氧化碳,还原系统中的氧化物。
     L_(16)(4~4)正交实验结果表明:真空蒸馏分离可以将镉从不同品牌和形状的镍镉电池中有效回收。在0.1~3.1 Pa的动态压强,1073 K加热温度,2.5小时加热时间,2 wt%活性炭加入量条件下,五种不同品牌、型号和形状的废旧镍镉电池中镉的回收率超过99.5%,回收的镉的纯度超过99%。
     基于废旧镍镉、镍氢电池中各金属元素的磁性差异,本文通过磁力分选工艺,在不均匀的磁场中,将铁、镍、钴等磁性金属从真空蒸馏后残余物中分离。磁选实验表明,滚径为0.16米的磁选机,在线速度为0.25-0.5 m/s,颗粒粒径在0.5-2毫米范围内时,磁选的分选效果及回收产物的品质均较好,回收率超过97%以上。磁选工艺使真空冶金后镍镉、镍氢电池的残余物得到进一步分离与提纯,该工艺使真空蒸馏工艺变得更简单、更高效,并且有助于金属的进一步分选和回收。
     环境效益评估结果表明,采用真空蒸馏分离工艺和机械-物理工艺处理废旧镍镉、镍氢电池,电池中的主要金属成分,尤其是毒性较强、含量较多的镉和镍,被转化为可重复利用的产品,该工艺减轻了镉和镍对环境的危害。经济分析结果表明,采用真空蒸馏分离法和机械-物理法回收镍镉、镍氢电池可以带来一定的经济利益,因此,破碎、真空蒸馏和磁选工艺结合处理废旧镍镉、镍氢电池是一种环境友好、经济可行的方法。
Waste batteries contain plenty of hazardous materials and valuable metals. Therefore, recycling of waste batteries is an important subject not only from the treatment for waste but also from the recovery of valuable materials. Resource utilization of waste batteries can protect environment and alleviate bottleneck for economic development constrained by resources shortage. However, a serious environmental problem is presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies. Therefore, it is urgent to develop a recycling technology with high performance and without negative impact to the environment to resolve the problems resulting from waste batteries.
     Based on circular economy concept and the principle of“reduce, reuse and recycling”, this paper considered the recycling of waste Ni-Cd and Ni-MH batteries. In the first stage of this work, the chemical and physical characterization of waste Ni-Cd and Ni-MH batteries was carried out. According to the chemical and physical characterization results, Cd, Fe, Ni and Co were determined to the recycling target metals. A new process including crush, vacuum distillation separation and magnetic separation was proposed through the chemical and physical characterization of waste batteries. Then this paper investigated the thermodynamic and dynamics theory of the recycling of Cd from waste Ni-Cd and Ni-MH batteries by vacuum distillation separation, and use the thermodynamic and dynamics theory and the distillation fundamentals to optimize operating parameters. The residues were magnetically separated after vacuum distillation separation based on the fact that different materials are extremely different in magnetic property. In order to recover major valuable metals, this paper investigated the fundamentals of magnetic separation process to recover Fe, Ni and Co from waste Ni-Cd and Ni-MH batteries.
     Based on the difference in vapor pressures of various metals at certain temperature, the metal with high vapor pressure and low boiling point (such as Cd, Zn, etc.) were separated from mixed metallic materials by vacuum distillation separation. With the thermodynamic theory and dynamics analysis, it has been shown that the Cd presented in the form from hydroxide to monoxides, and then presented in the form of Cd vapor in 2/3 AA type waste Ni–Cd batteries, respectively. The plastics and fabric used as a base for the electrolyte in waste Ni–Cd batteries, which were not separated during the dismantling and crushing process, generated CO originated from the pyrolysis in vacuum distillation separation process and acted as a reduction agent to reduce oxides.
     The L_(16) (4~4) orthogonal design performed with waste Ni–Cd batteries showed that it was able to effectively recycle cadmium from waste Ni–Cd batteries of different brands and models by using vacuum distillation separation. The recycling efficiency of Cd exceeded 99.5%, with the purity of 99%, in the condition of pressure = 0.1~3.1 Pa, temperature = 1073 K, heating time = 2.5 h, and the addition of carbon powder = 2 wt %, respectively.
     The residues after vacuum distillation separation were magnetically separated based on the fact that different materials are extremely different in magnetic property in nonuniform magnetic field. The magnetic separation tests performed with waste Ni–Cd and Ni–MH batteries showed that the size of particles between 0.5 and 2 mm and the rotational speed of separator between 0.25 and 0.5 m/s,with the diameter of 0.16 m,were suitable for magnetic separation, with recycling efficiency exceeding 97%. Magnetic separation process enhanced the recycling of waste Ni–Cd and Ni–MH batteries. It made the subsequent metallurgical recovery process more efficient and simpler, was beneficial to the further separation and recycling, and consequently significantly enhance the resource-utilization efficiency.
     According to environmental impact assessment results, the process including crush, vacuum distillation separation and magneitic separation can recover major heavy metals, particularly Cd and Ni, from the waste Ni-Cd and Ni-MH batteries and convert them into harmless or reusable products. Economic assessment results demonstrated that this new process for recycling of waste Ni–Cd and Ni-MH batteries will be benefits in economical terms in the industry-scale. Therefore,the proposed process including crush, vacuum distillation separation and magneitic separation was an environmentally friendly and economically feasible method.
引文
[1]李晓清.废旧电池回收路漫漫[N].人民日报, 2007-4-17 (009).
    [2]信息产业部.中国2008年电池生产量、销售量和出口量汇总统计-中国信息产业年鉴2009. 2009
    [3]兰杰.废电池是害也是宝.中国三楚传媒网. 2009-6-6.
    [4]陈军,陶占良,苟兴龙.化学电源-原理、技术与应用.北京:化学工业出版社, 2006.
    [5]程新群.化学电源.北京:化学工业出版社, 2008.
    [6]许绯绯.日本神奈川废电池事件.环境导报, 2003, (18), 20.
    [7]赵玲.废旧镍镉电池的生物沥滤处理及机理研究[博士学位论文].上海:上海交通大学, 2008.
    [8] Foulkes, E. C., Biological effects of heavy metals: Metals Carcinogenesis. Boston, CRC Press, 1990. 26-42.
    [9]张骁君,李光明,贺文智,等.废锂离子电池回收利用研究进展.化学世界. 2009, 50(1), 60-64.
    [10]李哲.废旧干电池对环境的污染及人体健康的危害.甘肃冶金. 2004, 26(1), 60-61.
    [11]孟紫强.环境毒理学.北京:中国环境科学出版社, 2003.
    [12]国家标准局,职业性接触毒物危害程度分级, GB5044-85-1985.
    [13]李建政.环境毒理学.北京:化学工业出版社, 2006.
    [14] Sekhar, K. C., Chary, N. S., Kamala, C. T., et al., Environmental risk assessment studies of heavy metal contamination in the industrial area of Kattedan, India-A case study. Hum. Ecol. Risk Assess. 2006, 12(2), 408-422.
    [15]杨忠芳,朱立,陈岳龙.环境地球化学.北京:地质出版社, 1999.
    [16] Lee, J. Y., Choi, J. C., Lee, K. K., Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea. Environ. Geochem. Health. 2005, 27(3), 237-257.
    [17] Onianwa, P. C., Fakayode, S. O., Lead contamination of topsoil and vegetation in the vicinity of a battery factory in Nigeria. Environ. Geochem. Health. 2000, 22(3), 211-218.
    [18] Chang, L. W., Cockerham, L. G., Toxic metals in the environment. In: Cockerham, L.G., Shane, B. S., Editors. Basic Environmental Toxicology. Florida, CRC Press Inc, 1994. 109-132.
    [19]史凤梅.废镍镉电池中隔的回收及资源化研究[硕士论文].青岛:青岛大学, 2004.
    [20]王颖.废旧干电池的环境污染防治及回收利用.本溪冶金高等专科学校学报, 2001, 3(3), 36-38.
    [21]牛东杰.废电池的环境污染及资源化价值分析.上海环境科学, 2000, 19(10), 461-463.
    [22]张凤玲.冶金方法处理废旧镍镉电池的研究进展.中国资源综合利用. 2007, 25(6), 14-16.
    [23]张翠玲,郝火凡.废旧锌锰电池中锰的回收方法研究.兰州交通大学学报(自然科学版). 2007, 26(1), 98-100.
    [24]唐艳芬,高虹.国内外废旧电池回收处理现状研究.有色矿冶. 2007, 23(4), 50-52.
    [25]王占华.我国废旧电池资源化处理现状及对策.能源与环境. 2005, (1), 63-64.
    [26] Zhang, P., Yokoyama, T., Itabashi, O., et al., Recovery of metal values from spent nickel-metal hydride rechargeable batteries. J. Power Sources 1999, 77(2), 116-122.
    [27] Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., et al., Global perspectives on e-waste. Environ. Impact. Assess. Rev, 2005, 25(5), 436-458.
    [28]梁晓辉,贺文智,李光明,等.中国电子产品废弃量预测.环境污染与防治. 2009, 33(7), 82-84.
    [29] Roman, L. S., Puckett, J., E-scrap exportation: challenges and considerations, in: Proceedings of the IEEE international symposium on electronics & the Environment, 2002. pp. 79-84.
    [30] Beukering, P. J. H., Recycling, International Trade and the Environment: a Empirical Analysis. Dordrecht, Kluwer Academic Publishers, 2001.
    [31]沈志刚.废印刷电路板回收处理技术进展.新材料产业. 2006, (10), 43-46.
    [32] He, W., Li, G., Ma, X., et al., WEEE recovery strategies and the WEEE treatment status in China, J. Hazard. Mater. 2006, 136(3), 502-512.
    [33] Li, J., Tian, B., Liu, T., et al., Status quo of e-waste management in mainland China. J. Mater. Cycles Waste 2006, 8(1), 13-20
    [34]夏越青.废电池管理和回收处理技术研究[博士论文].上海:同济大学, 2001.
    [35]韩骥,陈绍伟,韦鹤平.国内外废电池管理与回收处理分析.再生资源研究. 2002, (5), 24-27.
    [36] David, J., Nickel-cadmium battery recycling evolution in Europe. J. Power Sources 1995, 57(1-2), 71-73.
    [37] Genest, W., Situations in the European Community and German concerning regulations about used batteries with an overlook on other countries. J. Power Sources 1995, 57(1-2), 13-17.
    [38] Bernardes, A. M., Espinosa, D. C. R., Tenorio, J. A. S., Collection and recycling of portable batteries: a worldwide overview compared to the Brazilian situation. J. Power Sources 2003, 124(2), 586-592.
    [39] Freitas, M. B. J. G., Celante, V. G., Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. 2010, J. Power Sources 195(10), 3309-3315.
    [40] Freitas, M. B. J. G., Garcia, E. M., Celante, V. G., Electrochemical and structural characterization of cobalt recycled from cathodes of spent Li-ion batteries. J. Appl. Electrochem. 2009, 39(5), 601-607.
    [41] Mishra, D., Kim, D. J., Ralph, D. E., et al., Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 2008, 28(2), 333-338.
    [42] Weijma, J., Hoop, K., Bosma, W., et al., Biological conversion of anglesite (PbSO4) and lead waste from spent car batteries to galena (PbS). Biotechnol. Prog. 2002, 18(4), 770-775.
    [43] Ferella, F., Michelis, I. D., Veglio, F., Process for the recycling of alkaline and zinc-carbon spent batteries, J. Power Sources 2008, 183(2), 805-811.
    [44] Li, J., Shi, P., Wang, Z., et al., A combined recovery process of metals in spent lithium-ion batteries. Chemosphere 2009, 77(8), 1132-1136.
    [45] Xia, Y., Li, G.., The BATINTREC process for reclaiming used batteries. Waste Manage. 2004, 24(4), 359-363.
    [46] Li, L., Ge, J., Chen, R., et al., Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manage. 2010, 30(12), 2615-2621.
    [47] Li, L., Ge, J., Wu, F., et al., Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. 2010, J. Hazard. Mater. 176(1-3), 288-293.
    [48] Xu, J. Thomasb, H. R., Francis, R. W., et al., A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 2008, 177(2), 512-527.
    [49] Nan, J., Han, D., Yang, M., et al., Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy 2006, 84(1-2), 75-80.
    [50] Nan, J., Han, D., Yang, M., et al., Dismantling, recovery, and reuse of spent nickel-metal hydride batteries. J. the Electrochem. Soc. 2006, 153(1), 101-105.
    [51] Nan, J., Han, D., Cui, M., et al., Recycling spent zinc manganese dioxide batteries through synthesizing Zn-Mn ferrite magnetic materials. J. Hazard. Mater. 2006, 133(1-3), 257-261.
    [52] Panero, S., Romoli, C., Achilli, M., et al., Impact of household batteries in landfills. J. Power Sources 1995, 57(1-2), 9-12.
    [53]夏越青,李国建.废干电池对环境的污染及其资源化.重庆环境科学. 2000, 22(2), 60-62.
    [54]邱定蕃,徐传华.有色金属资源循环利用.北京:冶金工业出版社, 2006.
    [55] Yang, C. C., Recovery of heavy metals from spent Ni-Cd batteries by a potentiostatic electrodeposition technique. J. Power Sources 2003, 115(2), 352-359.
    [56] Reddy, B. R., Priya, D. N., Park, K. H., Separation and recovery of cadmium(II), cobalt(II) and nickel(II) from sulphate leach liquors of spent Ni-Cd batteries using phosphorus based extractants. Sep. purif. technol. 2006, 50(2), 161-166.
    [57] Rodrigues, L. E. O. C., Mansur, M. B. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries. 2010, J. Power Sources 195(11), 3735-3741.
    [58] Freitas, M. B. J. G., Penha, T. R., Sirtoli, S., Chemical and electrochemical recycling of the negative electrodes from spent Ni-Cd batteries, J. Power Sources 2007, 163(2), 1114-1119.
    [59] Nogueira, C. A., Delmas, F., New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni-Cd batteries by solvent extraction. 1999, Hydrometallurgy 52(3), 267-287.
    [60] Lacerda, V. G., Mageste, A. B., Santos, I. J. B., et al., Separation of Cd and Ni from Ni-Cd batteries by an environmentally safe methodology employing aqueous two-phase systems. 2009, J. Power Sources 193 (2), 908-913.
    [61] Bartolozzi, M., Bracci, G., Bonvini, S., et al., Hydrometallurgical recovery process for nickel-cadmium spent batteries. J. Power Sources 1995, 55(2), 247-250.
    [62] Kanamori, T., Matsuda, M., Miyake, M., Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst. J. Hazard. Mater. 2009, 169(1-3), 240-245.
    [63] Freitas, M. B. J. G., Rosalem, S. F., Electrochemical recovery of cadmium from spent Ni-Cd batteries. J. Power Sources 2005, 139(1-2), 366-370.
    [64]席国喜,杨理,路迈西.废镉镍电池再资源化研究新进展.再生资源研究. 2005, (3), 27-31.
    [65] Li, L. Xu, S., Ju, Z., et al., Recovery of Ni, Co and rare earths from spent Ni–metal hydride batteries and preparation of spherical Ni(OH)2. Hydrometallurgy 2009, 100(1-2), 41-46.
    [66]王红芬,赵晓梅.废旧电池资源化技术的研究分析.中国环境管理干部学院学报, 2004, 15(4),76-78.
    [67] Cerruti, C., Curutchet, G., Donati, E., Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidan. J. Biotechnol. 1998, 62(3), 209-219.
    [68] Zhao, L., Zhu, N., Wang, X., Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Chemosphere 2008, 70(6), 974-981.
    [69] Zhu, N., Zhang, L., Li, C., et al., Recycling of spent nickel–cadmium batteries based on bioleaching process. Waste Manage. 2003, 23(8), 703-708.
    [70] Zhao, L., Wang, L., Yang, D., et al., Bioleaching of spent Ni-Cd batteries andphylogenetic analysis of an acidophilic strain in acidified sludge. Front. Environ. Sci. Engin. China. 2007, 1(4), 459-465.
    [71] Zhao, L., Wang, X., Zhu, N., Simultaneous metals leaching and microbial production of sulphuric acid by sewage sludge: Effect of sludge solids concentration. Environ. Eng. Sci. 2008, 25(8), 1167-1174.
    [72] Zhao, L., Yang, D., Zhu, N., Bioleaching of spent Ni-Cd batteries by continuous flow system: Effect of hydraulic retention time and process load. J. Hazard. Mater. 2008, 160(2-3), 648-654.
    [73]陈绍伟,赵由才.瑞士和德国固体废物处理技术与管理.上海:上海科学技术出版社, 2000.
    [74] Bernardes, A. M., Espinosa, D. C. R., Tenorio, J. A. S., Recycling of batteries: a review of current processes and technologies. J. Power Sources 2004, 130(1-2), 291-298.
    [75] Espinosa, D. C. R., Bernardes, A. M., Tenorio, J. A. S., An overview on the current processes for the recycling of batteries. J. Power Sources 2004, 135(1-2), 311-319.
    [76]王德义,高书霞.废旧电池的回收利用与环境.保护再生资源研究, 2003, (6), 20-24.
    [77]郭廷杰.日本的废电池再生利用简况.中国资源综合利用, 2001, (11), 36-39.
    [78] Muller, T., Friedrich, B. Development of a recycling process for nickel-metal hydride batteries. 2006, J. Power Sources 158(2), 1498-1509.
    [79] Espinosa, D. C. R., Tenorio, J. A. S., Recycling of nickel-cadmium batteries- Thermogravimetric behavior of electrodes. J. Power Sources 2006, 160(1), 744-751.
    [80] Espinosa, D .C. R., Tenorio, J. A. S., Recycling of nickel-cadmium batteries using coal as reducing agent. J. Power Sources 2006, 157(1), 600-604.
    [81] Espinosa, D. C. R., Tenorio, J. A. S., Fundamental aspects of recycling of nickel-cadmium batteries through vacuum distillation. J. Power Sources 2004, 135(1-2), 320-326.
    [82]朱建新,聂永丰,李金惠.废镍镉电池的真空蒸馏回收技术.清华大学学报(自然科学版), 2003, 43(6), 858-861.
    [83] Zhu. J., Li. J., Nie. Y., et al., Vacuum-Aided recovery technology of spent Ni-Cd batteries. J. Mater. Sci. Technol. 2003, 19(1), 215-220.
    [84] Ito, M., Kashiwaya, K., Sumiya, N., et al., Estimating the size distribution of anode and cathode activating agents in the crushed products of nickel metal hydride batteries from hybrid vehicles and its classification. 2010, Int. J. Miner. Process. 97(1-4), 92-95.
    [85] Ruffino, B., Zanetti, M. C., Marini, P., A mechanical pre-treatment process for the valorization of useful fractions from spent batteries. 2011, Resour. Conserv. Recy. 55(3), 309-315.
    [86] Ito, M., Kashiwaya, K., Sumiya, N., et al., Anode activating agent recovery by magnetic separation from the <0.075 mm fraction of crushed nickel metal hydride batteries from hybrid vehicles. 2009, Sep. Purif. Technol. 69(2), 149-152.
    [87] Salgado, A. L., Veloso, A. M. O., Pereira, D. D., et al., Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272. J. Power Sources 2003, 115(2), 367-373.
    [88] Veloso, L. R. S., Rodrigues, L. E. O. C., Ferreira, D. A., et al., Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries. J. Power Sources 2005, 152(1-2), 295-302.
    [89] Sayilgan, E., Kukrer, T., Civelekoglu, G., et al., A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy 2009, 97(3-4) 158-166.
    [90] Bertuol, D. A., Bernardes, A. M., Tenorio, J. A. S., Characterization and metal recovery through mechanical processing. J. Power Sources 2006, 160(2), 1465-1470.
    [91] Tenorio, J. A. S., Espinosa, D .C. R., Recovery of Ni-based alloys from spent NiMH batteries. J. Power Sources 2002, 108(1-2), 70-73.
    [92] Rabah, M. A., Farghaly, F. E., Motaleb, A. M. A., Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manage. 2008, 28(7), 1159-1167.
    [93] Baba, A. A., Adekola, A. F., Bale, R. B., Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries. J. Hazard. Mater. 2009, 171(1-3), 838-844.
    [94] Nogueiraa, C. A., Margarido, F., Leaching behaviour of electrode materials of spent nickel-cadmium batteries in sulphuric acid media. Hydrometallurgy 2004, 72(1-2), 111-118.
    [95] Pietrelli, L., Bellomo, B., Fontana, D., et al., Rare earths recovery from NiMH spent batteries. Hydrometallurgy 2002, 66(1-3), 135-139.
    [96] Lupi, C., Pasquali, M., DellEra, A., Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Manage. 2005, 25(2), 215-220.
    [97] Shin, S. M., Kim, N. H., Sohn, J. S., et al., Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 2005, 79(3-4), 172-181.
    [98] Yang, C. Recovery of heavy metals from spent Ni-Cd batteries by a potentiostatic electrodeposition technique. J. Power Sources 2003, 115(2), 352-359.
    [99] Kuo, Y. M., Chang, J. E., Jin, C. H., et al., Vitrification for reclaiming spent alkaline batteries. Waste Manage. 2009, 29(7), 2132-2139.
    [100] Rozario, A., Silva, R. K. S., Freitas, M. B. J. G., Recycling of nickel from NiOOH/Ni(OH)2 electrodes of spent Ni-Cd batteries. J. Power Sources 2006, 158(1), 754-759.
    [101] Briffaerts, K., Spirinckx, C., Van der Linden, A., et al., Waste battery treatment options: Comparing their environmental performance. Waste Manage. 2009, 29(8), 2321-2331.
    [102] Lee, J. Y., Pranolo, Y., Cheng, C. Y., et al., The Recovery of Zinc and Manganese from Synthetic Spent-Battery Leach Solutions by Solvent Extraction. 2010, Solvent Extr.Ion Exc. 28(1), 73-84.
    [103] Kang, J., Senanayake, G., Sohn, J., et al., Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. 2010, Hydrometallurgy 100(3-4), 168-171.
    [104] Wang, R., Lin, Y., Wu, S., A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. 2009, Hydrometallurgy 99(3-4), 194-201.
    [105] Furlani, G., Moscardini, E., Pagnanelli, F., et al.,batteries by reductive acid leaching using carbohydrates as reductant. 2009, Hydrometallurgy 99(1-2), 115-118.
    [106] Volpe, M., Oliveri, D., Ferrara, G., et al., Metallic lead recovery from lead-acid battery paste by urea acetate dissolution and cementation on iron. 2009, Hydrometallurgy 96(1-2), 123-131.
    [107] Cui, J., Forssberg, E., Mechanical recycling of waste electric and electronic equipment: a review. 2003, J. Hazard. Mater. 99(3), 243-263.
    [108] Cui, J., Forssberg, E., Characterization of shredded television scrap and implications for materials recovery. 2007, Waste Manage. 27(3), 415-424.
    [109] Cui, J., Zhang, L. Metallurgical recovery of metals from electronic waste: A review. 2008, J. Hazard. Mater. 158(2-3), 228-256.
    [110] Zhang, S., Forssberg, E. Intelligent Liberation and classification of electronic scrap. 1999, Powder Technol. 105(1-3), 295-301.
    [111] Zhang, S., Rem, P.C., Forssberg, E. Particle trajectory simulation of two-drum eddy current separators. 1999, Resour. Conserv. Recy. 26(2), 71-90.
    [112] Zhang, S., Forssberg, E., Arvidson, B., et al., Separation mechanisms and criteria of a rotating eddy-current separator operation. Resour. Conserv. Recy. 25(3-4), 215-232.
    [113] Zhang, S., Forssberg, E., Van Houwelingen, J., et al., End-of-life electric and electronic equipment management towards the 21st century. 2000, Waste Manage. Res. 18(1), 73-85.
    [114] Li, J., Gao, S., Duan, H., et al., Recovery of valuable materials from waste liquid crystal display panel. 2009, Waste Manage. 29(7), 2033-2039.
    [115] Vassura, I., Morselli, L., Bernardi, E., et al., Chemical characterisation of spent rechargeable batteries. Waste Manage. 2009, 29(8), 2332-2335.
    [116] Zand, A. D., Abduli, M. A., Current situation of used household batteries in Iran and appropriate management policies. Waste Manage. 2008, 28(11), 2085-2090.
    [117] Chang, T. C., You, S. J., Yu, B. S., et al., A material flow of lithium batteries in Taiwan. J. Hazard. Mater. 2009, 163(2-3), 910-915.
    [118] Manuel, F. A., Susana, M. X., Julanda D., et al., Characterization of spent AA household alkaline batteries. Waste Manage. 2006, 26(5), 466-476.
    [119] Pietrelli, L., Bellomo, B., Montereali, M. R., Characterization and leaching of NiCd and NiMH spent batteries for the recovery of metals. Waste Manage. 2005, 25(2), 221-226.
    [120] Souza, C. C. B. M., Oliveira. D. C. D., Tenorio, J. A. S., Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching. J. Power Sources 2001, 103(1), 120-126.
    [121]武占耀.镉电极材料综述.电池工业. 2001, 6(3), 129-132.
    [122]董琪,韩恩山,闫艳波,等.二次电池中氢氧化镍的物理和电化学性质.电池工业. 2005, 10(3), 173-176.
    [123]何亚群,段晨龙,王海峰,等.电子废弃物资源化处理.北京:化学工业出版社, 2006.
    [124]夏志东,史耀武,郭福.电子电气产品的循环经济战略及工程.北京:科学出版社, 2007.
    [125] Lupi, C., Pilone, D., Ni-MH spent batteries: a raw material to produce Ni-Co alloys. Waste Manage. 2002, 22(8), 871-874.
    [126] Bertuol, D. A., Bernardes, A. M., Tenorio, J. A. S., Spent NiMH batteries-The role of selective precipitation in the recovery of valuable metals. J. Power Sources 2009, 193(2), 914-923.
    [127] Nogueira, C. A., Margarido, F., Chemical and physical characterization of electrode materials of spent sealed Ni-Cd batteries. Waste Manage. 2007, 27(11), 1570-1579.
    [128] Leung, A. O. W., Duzgoren-Aydin, N. S., Cheung, K. C., et al., Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ. Sci. Technol. 2008, 42(7), 2674-2680.
    [129] Wong, C. S. C., Wu, S. C., Duzgoren-Aydin, N. S., et al., Trace metal contamination of sediments in an e-waste processing village in China. Environ. Pollut. 2007, 145(2), 434-442.
    [130] Wang, F., Leung, A. O. W., Wu, S. C., et al., Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays. Environ. Pollut. 2009, 157(7), 2082-2090.
    [131] Zhang, J., Min, H., Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area. J. Hazard. Mater. 2009, 165(1-3), 744-750.
    [132] Leung, A. O. W., Cai, Z. W., Wong, M. H., Environmental contamination from electronic waste recycling at Guiyu, southeast China. J. Mater. Cycles Waste Manag. 2006, 8(1), 21-33.
    [133] Zhan, L., Xu, Z., Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps. Environ. Sci. Technol. 2008, 42(20), 7676-7681.
    [134]戴永年,杨斌.有色金属材料的真空冶金.北京:冶金工业出版社, 2000.
    [135]戴永年,杨斌.有色金属真空冶金(第二版).北京:冶金工业出版社, 2009.
    [136]胡赓祥,蔡珣,戎咏华.材料科学基础(第二版).上海:上海交通大学出版社, 2006, 243-244.
    [137] Macdonald, D. D., Challingsworth, M. L., Thermodynamics of nickel-cadmium and nickel-hydrogen batteries, J. Electrochem. Soc. 1993, 140(3), 606-609.
    [138] Zhan, L., Xu, Z., Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy. Environ. Sci. Technol. 2009, 43(18), 7074-7078.
    [139] Zhan, L., Qiu, Z., Xu, Z., Separating zinc from copper and zinc mixed particles using vacuum sublimation. Sep. Purif. Technol. 2009, 68(3), 397-402.
    [140] Taguchi, G., Introduction to quality engineering. Tokyo, Asian Production Organization, 1986.
    [141] Hedayat, A. S., Sloane, N. J. A., Stufken, J., Orthogonal arrays: theory and applications. New York, Springer, 1999.
    [142]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社, 2001.
    [143] Mantuano, D. P., Dorella, G., Elias, R. C. A., et al., Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272. J. Power Sources 2006, 159(2), 1510-1518.
    [144] Avraamides, J., Senanayake, G., Clegg, R., Sulfur dioxide leaching of spent zinc-carbon battery scrap. J. Power Sources 2006, 159(2), 1488-1493.
    [145] Liang, Y., Che, Y., Inorganics thermodynamics manual. Northeastern University Press, Shenyang, 1994.
    [146]乔芝郁,许志宏,刘洪霖.冶金和材料计算物理化学.北京:冶金工业出版社, 1999.
    [147]傅献彩,沈文霞,姚天杨.物理化学(第四版).北京:高等教育出版社, 1989, 896-897.
    [148] Qin, Y., Wu, J., Zhou, Q., et al., Quadratic nonlinear models for optimizing electrostatic separationof crushed waste printed circuit boards using response surface methodology. 2009, J. Hazard. Mater. 167(1-3), 1038-1043.
    [149] Ferreira, D. A., Prados, L. M. Z., Majuste, D., et al., Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. 2009, J. Power Sources 187(1), 238-246.
    [150] Sonmez, M. S., Kumar, R. V., Leaching of waste battery paste components. Part 1: Lead citrate synthesis from PbO and PbO2. 2009, Hydrometallurgy 95(1-2), 53-60.
    [151] Sonmez, M. S., Kumar, R. V., Leaching of waste battery paste components. Part 2: Leaching and desulphurisation of PbSO4 by citric acid and sodium citrate solution. 2009, Hydrometallurgy 95 (1-2), 82-86.
    [152] Veit, H. M., Diehl, T. R., Salami, A. P., et al., Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. 2005, Waste Manage. 25(1), 67-74.
    [153] Veit, H. M., Bernardes, A. M., Ferreira, J. Z., et al., Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy, 2006, J. Hazard. Mater. 137(3), 1704-1709.
    [154] Veit, H. M., Pereira, C. D. C., Bernardes, A. M., et al., Using mechanical processing in recycling printed wiring boards. 2002, JOM 54(6), 45-47.
    [155] Veit, H. M., Bernardes, A. M. , Bertuol, D. A., et al., Use of mechanical and electrochemical process for recycling of copper from electronic scraps. 2008, Rem-Rev. Esc. Minas 61(2), 159-164.
    [156]张一敏.固体物料分选理论与工艺.北京:冶金工业出版社, 2007.
    [157] Svoboda, J., Fujita, T., Recent developments in magnetic methods of material separation. 2003, Miner. Eng. 16(9), 785-792.
    [158] Sayilgan, E., Kukrer, T., Yigit, N. O., et al., Acidic leaching and precipitation of zinc and manganese from spent battery powders using various reductants. 2010, J. Hazard. Mater. 173(1-3), 137-143.
    [159] Karami, H., Asadi, R., Recovery of discarded sulfated lead-acid batteries. 2009, J. Power Sources 191(1), 165-175.
    [160] Karami, H., Masoomi, B., Asadi, R. Recovery of discarded sulfated lead-acid batteries by inverse charge. Energy Convers. Manage. 50(4), 893-898.
    [161]周全法,尚通明.废电池与材料的回收利用.北京:化学工业出版社, 2004. 225-236.
    [162] Winkier, O., Bakish, R.,康显澄等译.真空冶金学.上海:上海科学技术出版社, 1982.
    [163] Turton, R., Bailie, R. C., Whiting W. B., et al., Analysis, synthesis and design of chemical processes. PTR Upper Saddle River, New Jersey, USA: Prentice Hall, 1998. p. 41-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700