用户名: 密码: 验证码:
三唑磷降解菌的分离鉴定及其降解酶特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三唑磷是广泛使用的有机磷农药之一,作为甲胺磷等高毒有机磷农药的替代品,大量用于农业生产来防治病虫害。然而它毒性较高、半衰期长,大量频繁的使用使环境与农产品受到污染。如何降低和消除三唑磷及其它有机磷农药的副作用,成为人们亟待解决的问题。微生物降解具有高效、无毒、且操作简便、无二次污染、经济实用和应用范围广等特点,目前己成为去除农药残留污染的一种重要方法。基于上述认识,本课题拟以有机磷农药生产企业的污水处理池活性污泥及其周边土壤为样品,通过不断增加三唑磷选择压力的办法,驯化富集并最终分离三唑磷降解菌,并对分离菌株做进一步的研究,以期为有机磷农药污染的生物治理提供基础。主要内容如下:
     1.从福建建瓯福农生化有限公司污水处理池活性污泥及其出水口污泥中,通过富集培养基和基础培养基驯化培养分离到5株对三唑磷农药有较高降解率的细菌菌株INI-1、TAP-1、SS-1、Soil-1和Ter-2。在32°C、180r/min条件下培养5天,5株细菌对三唑磷(浓度为100mg/L)的降解率分别为53.8±1.42%、95.8±1.06%、66.7±2.21%、52.8±1.84%和46.8±1.15%。本论文对降解率最高的菌株TAP-1进行了进一步试验。
     2.形态与生理生化试验表明,TAP-1为革兰氏阳性杆菌,大小为(0.4~0.6)μm×(1.5~2.2)μm。菌株TAP-1能水解淀粉、葡萄糖、果糖、蔗糖、麦芽糖和乳糖。甲基红试验、接触酶试验和脲酶试验阳性。但不能液化明胶,V-P试验、H2S试验、苯丙氨酸裂解酶试验和柠檬酸盐试验阴性。TAP-1在牛肉膏蛋白胨培养基上,TAP-1菌落圆形,边缘整齐,中凹状,乳白色,不透明,较易从培养基上挑取。TAP-1生长的温度范围为10~37°C,生长的pH范围5.2~8.0,能耐受的最高NaCl浓度为6.5%。TAP-1对左氧氟沙星、克林霉素、罗红霉素和庆大霉素等抗生素敏感,而对头孢唑啉、头孢氨苄和头孢曲松等抗生素有抗性。16S rDNA同源性分析表明,TAP-1与Bacillus sp.cp-h58最为接近,同源性为100%,与其他14个芽孢杆菌菌株的同源性均为99%。系统进化分析表明,菌株TAP-1可能是芽孢杆菌属的一个新种。综合形态生理生化以及16S rDNA序列分析,菌株TAP-1鉴定为芽孢杆菌属细菌。其在Genbank上的登录号为Bacillus sp. TAP-1(HQ156466)。
     3.TAP-1对辛硫磷、毒死蜱、乐果和敌敌畏等有机磷农药都有不同程度的降解。研究了营养因子与环境因子对TAP-1生长与三唑磷降解的影响。结果表明,TAP-1在三唑磷为唯一碳、氮和磷源时,生长与降解能力较弱。葡萄糖浓度小于2%时,外加葡萄糖促进菌体生长与对三唑磷的降解。TAP-1以共代谢方式降解三唑磷农药。TAP-1降解三唑磷的适合温度与pH范围是28~33°C和pH6.5~8.0。
     4.在生物学研究的基础上,对TAP-1在茶园土壤中三唑磷的降解作用进行了研究。结果表明,在15d的试验周期里,灭菌土、灭菌土加菌、新鲜土、新鲜土加菌4个处理对三唑磷的降解率分别为39.9%、54.8%、73.3%和92.2%。新鲜土壤中三唑磷的降解速率明显快于灭菌土壤,而添加TAP-1则对茶园土壤中三唑磷的降解有显著的促进作用。
     5.降解酶定域试验表明,TAP-1三唑磷降解酶为组成型表达的胞内蛋白组分。研究了菌株TAP-1(Bacillus sp.)三唑磷降解酶的提取条件。采用超声波法破碎TAP-1细胞以获得三唑磷降解酶,通过单因素试验考察破碎功率、超声时间和菌体浓度对破碎效果的影响。进一步采用响应面分析法优化破碎条件。结果表明,当破碎功率为380W,超声时间12min,菌体浓度为200mg/mL时,酶活力达最高值1890U/mL。
     6.研究了菌株TAP-1(Bacillus sp. TAP-1)三唑磷降解酶的酶学特性。该酶降解三唑磷的最适pH6.5~7.0,在pH5.0~7.5之间,酶活力均能保持在最高酶活力的68%以上。该酶降解三唑磷的最适温度为35℃,在25~40℃的温度范围内能保75%以上的降解活性。以三唑磷为底物,该酶的米氏常数Km和最大反应速度Vmax分别为23.02μmol/L和0.738μmol/mg·min。
     7.研究了降解酶的固定化方法。选取包埋剂海藻酸钠、CaCl2及包埋比(酶液:海藻酸钠溶液)三个因素,设计正交实验。将TAP-1三唑磷降解酶进行固定化,测定组合条件制备的固定化酶对三唑磷的降解特性。研究表明,固定化酶的最佳固定化条件为海藻酸钠浓度为3.5%,酶液与海藻酸钠的包埋比为5%,氯化钙浓度为5.0%,固定化时间为2~4h。研究了固定化酶对三唑磷的降解特性。固定化酶对三唑磷的最适降解温度为35℃,在温度范围25~40℃内该固定化酶均能保持最高活力的83%以上。固定化酶的最适作用pH为7.0,但在pH6.0~7.5之间,酶活性都保持83%以上。稳定性试验表明,经过固定化,三唑磷降解酶的pH稳定范围往碱性方向偏移。以三唑磷为底物,粗酶液与固定化酶的Km分别为23.02μmol/L和84.95μmol/L,Vmax分别为0.738μmol/mg·min和2.076μmol/mg·min。与粗酶相比,固定化酶Km和Vmax均大于粗酶液,表明经过固定化,酶与底物的亲和力下降。
     8.菌株TAP-1三唑磷降解酶的分离纯化。通过硫酸铵沉淀、DEAE-SepharoseF.F.阴离子交换和Sephacryl S-200分子筛层析三个步骤,分离纯化到一个电泳纯的三唑磷降解酶,分子量约为83.3ku。酶的回收率为13.8%,纯化倍数为22.46。
Triazophos is an organophosphate pesticide widely used for insect control inmany countries. However, as a substitute for other highly toxic pesticides includingmethamidophos, triazophos has caused serious problems to the environment andagricultural products because of its own toxicity and long half-life, thus making it apublic concern. The degradation of pesticides by microorganisms is one of the mostimportant methods for the detoxification of insecticide. This thesis includes eightchapters as follows:
     1. Five bacterial strains (INI-1, TAP-1, SS-1, Soil-1, and Ter-2) capable ofdegrading triazophos were isolated using enrichment culture and the streak platemethod from the sewage sludge of a wastewater treatment system fororganophosphate pesticides produced by the Funong Group Co. in Jianou, Fujian,southeastern China. The biodegradation rates of triazophos (100mg/L) at32°C withshaking (180r/min) for INI-1, TAP-1, SS-1, Soil-1, and Ter-2were53.8±1.42%,95.8±1.06%,66.7±2.21%,52.8±1.84%and46.8±1.15%, respectively. Further studieswere performed on the TAP-1strain, which had the highest biodegradation rate.
     2. Morphological and physiological tests showed that TAP-1is a Gram-positive rodapproximately1.5~2.2μm in length and0.4~0.6μm in width during late exponentialphase. When grown on TBG medium, TAP-1generally produced round, beige,mucoid, smooth-edged colonies with entire margins and opaque surfaces; underprolonged incubation times, the edges of the colonies became rough. Colonies testedpositive for catalase, starch hydrolysis and acid production from carbohydrates, butnegative for the Voges-Proskauer (V.P.) test, gelatin liquefaction, H2S production,indole and the phenylalanine ammonia-lyase test. Growth was observed attemperature range of10~37°C and a pH range of5.2~8.0. The highest concentrationof NaCl tolerated by TAP-1was6.5%. TAP-1showed sensitivity to antibiotics such aslevofloxacin, clindamycin, roxithromycin and gentamycin, but was resistant tocefazolin, cephalexin and ceftriaxone. The analysis of16S rDNA sequences revealed100%similarity between TAP-1and Bacillus sp. cp-h58and99%similarity betweenTAP-1and the other14Bacillus strains analyzed. The phylogenetic tree constructed using the16S rDNA sequence data was closest to that of Bacillus. Thus, TAP-1wasproposed to be a new species of Bacillus based on phenotypic, physiological andbiochemical characteristics, as well as the phylogenetic analysis of16S rDNAsequences. The GenBank number for TAP-1is Bacillus sp. TAP-1(HQ156466).
     3. TAP-1was also found to degrade other organophosphate pesticides such asphoxim, chlorpyrifos, dimethoate, and dichlorvos. The effects of nutritional andenvironmental factors on the growth of TAP-1and its biodegradation of triazophoswere investigated under laboratory conditions. The results showed that the growth ofthe strain as well as its degradation rate were poor if triazophos was used as the solesource of carbon, nitrogen and phosphorous. Increasing the glucose concentration ofthe medium enhanced both the growth and degradation rate of TAP-1so long as theconcentration of glucose remained below2%. Thus, TAP-1could degrade triazophosthrough co-metabolism. The results showed that TAP-1degrades triazophos veryefficiently between28°C~33°C and at a pH range of6.5~8.0.
     4. We also studied the degradation of triazophos by TAP-1in soil from a tea garden.The results of15-day tests showed that the degradation rates for sterilized soil,sterilized soil with TAP-1, native soil, and native soil with TAP-1, were39.9%,54.8%,73.3%, and92.2%, respectively. Compared with sterilized soil, greater degradationrates were observed in native soil. Thus, TAP-1could greatly enhance the degradationof triazophos in the soil from tea gardens.
     5. Enzyme distribution experiments showed that the TAP-1enzyme responsible fortriazophos degradation appears to be a constitutive intracellular component. Theextraction conditions for the TAP-1triazophos-hydrolase were subsequentlydetermined. Sonication was used to lyse the TAP-1cells to obtain thetriazophos-hydrolase. Three factors were investigated, including disruption power,disruption time and cell concentration, for their effects on enzyme activity;concurrently, single-factor tests were combined with the Response Surface Analysis(RSA) method to optimize the treatment conditions. The results showed that optimumconditions were achieved using a disruption power of380W, a disruption time of12min and a cell concentration of200mg/mL. Under these conditions, crude enzymeactivity could reach1,890U/mL.
     6. The characteristics of the crude triazophos-hydrolase were determined. Theenzyme demonstrated greatest enzymatic activity in the pH range of6.5~7.0with itshighest activity occurring in the pH range of5.5~7.5. Enzymatic activity occurred atan optimum temperature of30°C for the degradation of triazophos; activity remainedabove75%of the maximum over a temperature range of25°C~40°C. The Km valueand the maximal degradation rate of the triazophos-hydrolase for triazophos were23.02μmol/L and0.738μmol/mg·min, respectively.
     7. Immobilization methods for the free enzyme were also studied. The free enzymeextracted from TAP-1was immobilized using an L9(43) orthogonal array whose threefactors were sodium alginate, calcium chloride and a proportion of crude enzyme andsodium alginate. The ability of the immobilized enzyme to degrade triazophos wasthen determined. The results indicated that the free enzyme was immobilized for2to4h with3.5%sodium alginate content,5.0%calcium chloride content and a5%proportion of crude enzyme and sodium alginate. The characteristics of triazophosdegradation by the immobilized enzyme were determined. Enzymatic activity of theimmobilized enzyme occurred at an optimum temperature of35°C and remainedabove83%of the maximal activity across the temperature range of25~40°C. Theimmobilized enzyme also showed maximal degradative activity against triazophos atpH7.0but retained greater than83%of the maximal activity over a pH range of6.0~7.5. Additional experimental evidence suggested that the immobilized enzymewas more stable at alkaline pH than the free enzyme. The immobilized enzymeshowed Km and Vmax values for triazophos of84.95μmol/L and2.076μmol/mg·min,respectively, both of which were higher than for the free enzyme, indicating a declinein affinity between the enzyme and triazophos during immobilization.
     8. The triazophos-hydrolase from Bacillus sp. TAP-1was isolated and purified inthree steps: ammonium sulfate precipitation, DEAE Sepharose Fast Flow anionexchange chromatography and Sephacryl S-200filtration. The electrophoreticallyhomogeneous triazophos-hydrolase was obtained with an apparent molecular weightof approximately83.3ku, a yield of13.8%and a22.4-fold purification.
引文
Adus LJ. Biologicl detoxication of hormone herbicides in soil. Plant and soil,1951(2):170–192
    Agnieszka Obojska. Organophosphonate utilization by the thermophile geobacilluscaldoxylosily ticus T20. Applied and Environmental Microbiology,2002,5:208l–2084
    Aislabie J, Lloyd JG. Australia Journal of Soil Research.1995,33:925–942
    Alexander M.Biodegradation of organic chemicals. Environ.Sci.Techno1.,1985,19:l06111
    Barbara D.Di Sioudi, Charles E. Miller,Kaihua Lai, et al. Rational design of organo-phosphorous hydrolase for altered substrate specificities.Chemi-BiologicalInteraction,1999,119:211–223
    Barik S. Metabolism of insecticides by microorganism in insecticides microbiology.Berling: Spronger,1984
    Benning MM., Kuo JM., Raushel EM.,et al. Three-dimensional structure of phosphor-triesterase: an enzyme capable of detoxifying organophosphate nervea gents.Biochemistry.1994,33:1500115007
    Benning MM, Shim H, Ranshel, et al. High resodution X-ray structures of differentmetal-substituted forms phosphotriesterase from Pseudomonas diminuta. Bioch-emistry-US,2001,40:2712–2722
    Berne C, Montjarret B, Guountti Y, et al.Tributyl phosphate degradation by Serratiaodorifera. Biotechnol.Lett.,2004,26(8):681–686
    Bhadbhade BJ, Sarnik SS, Kanekar PP. Biomineralization of an organophosphoruspesticide, monocrotophos, by soil bacteria. J Appl Microbiol.,2002,93(2):224–234
    Bollag JM. Microbial accumulations of insecticides: In Microbial transformation ofbioactive compounds. Roca Raton: CRC,1982
    Bondarenko S, Gan J Y, Hayer D L, et al. Persistence of selected organophosphate andcarbamate insecticides in waters from a coastal watemhed. Envlmn Toxlcol Chem.,2004,23(11):26492654
    Bozena Bujacz. Organophosphonate utilization by the wild-type strain of Penicilliumnotatum. Applied and Environmental Microbiology, l995,4:2905–29l0
    Bradford M.A rapid and sensitive method for the quantitation of microgram quantitiesof protein utilizing the principle of protein-dye binding. Anal.Biochem.,1976,72:248254
    Brian JR, Fermor TR, Semple KT. Induction of PAH-catabolism: in mushroomcompost and its use in the biodegradation of soil-associated phenanthrene.Environmental Pollution,2002,118(1):65–73
    Brown KA. Phosphotriesterases of Flavobacterium sp. Soil Biol.Biochem.,1980,12:105–112
    Caldwell SR, Raushel FM. Detoxification of organophosphate pesticides using animmobilized phsphotriesterase from Pseudomonas diminuta Biotech Bioeng,1991,37(1):103–109
    Cha HJ, Chi-Fang Wu, James J. Valdes, et al.Observations of green fluorescentprotein as a fusion partner in genetically engineered Escherichia coli:monitoringprotein expression and solubility. Biotechnol Bioeng.,2000,67(5):565–574
    Chaudhry GR, Ali AN, Wheeler WB. Isolation of a methyl parathion-degrading Pseu-domonas sp. that possess DNA homologous to the opd gene from aFlavobacterium sp. Appl Environ Microbiol.,1988,54:288–93
    Cheng TC, Harvey SP. Purification and properties of a highly active organo-phosphorus acid anhydrolase from Alteromonas undina. Appl. Environ. Microbiol.,1993,59(9):3138–3140
    Cheng TC, Harvey SP, Chen GL.Cloning and expression of a gene encoding abacterial enzyme for decontamination of organophosphorus nerve agents andnucleotide sequence of the enzyme. Appl Environ Microbiol.,1996,62:1636–1641
    Cho TH, Wild JB, Donnelly KC. Utility of organophosphorus hydrolase for theremediation of mutagenicity of methyl parathion. Environ Toxicol Chem.,2000,19(8):2022–2028
    Cui ZL, Li SP, Fu GP. Isolation of methyl-parathion degrading strain M6and cloningof the methyl parathion hydrolase gene.Appl Environ Microbiol.,2001,67(10):4922–4925
    Dave Kl, Phillips L, Luckow VA. Expression and post-translational processing of abroad-spectrum organophosphorus-neurotoxin-degrading enzyme in insect issueculture. Biotechnol.Appl.Biochem,1994,19(3):271284
    David PD,Caldwell SR,Wild JR,et al. Purification and properties of the phosphor-triesterase from Pseudomonas diminuta.J Biol Chem,1989,33:19659–19665
    Defrank JJ, Cheng TC. Purification and properties of an organophosphorus acidanhydrase from a Halophilic bacterial isolate. J. Bacterial.,1991,173(6):1938–1943
    Demirel D, Hakki Boyaci I, Mutlu M. Determination of kinetic parameters ofpectolytic enzymes at low pectin concentrations by a simple method.Eur FoodRes.Technol.,2003,217:39–42
    Dumas DP. Purification and properties of the phosphotriesterase from Pseudomonasdiminuta. J Biol Chem.,1989,264(33):19659–19665
    Edwards U, Rogall TB, Emde H, et al. Isolation and direct complete determination ofentire genes. Nucleic Acids Res.,1989,17:7843–7853
    Felsenstein J. PHYLIP (Phylogeny Inference Package) Version3.6(alpha3). Seattle,WA, USA: Department of Genome Sciences, University of Washington;2002
    Grimsley JK, Rastogi VK,Wild JR.Biological detoxication oforganophosphorusneurowxins. In: Sikdar SK and Irvine RL(eds), Bioremediation: Principles andPractice, vo1.II. Technornic publishing Co.,Lancaster,1988,577–613
    Haimi J.Decomposer animals and bioremediation of sois. Envionmental pollution,2000,107(2):233–238
    Harcourt RL, Horne I, Sutherland TD, et al. Development of a simple and sensitivefluorimetric method for isolation of coumaphos-hydrolysing bacteria. Lett ApplMicrobiol,2002,34(4):263–268
    Horne I, Harcourt RI, Sutherland TD,et al.Isolation of a Pseudomonas monteilli strainwith a novel phosphotresterase.FEMS Microbiol Lett.,2002b,206(1):51–55
    Horne I, Sutherland TD, Harcourt RL, et a1.Identifcatian of an opd(organophosphatedegradation) gene in an Agrobacterium isolate.Appl Environ Microbiol,2002,68:33713376
    Imelda J, Raj RP. Isolation and characterization of phytase producing Bacillus strainsfrom mangrove ecosystem. J Mar Biol Assoc.,2007,49(2):177–182
    Jain RK, Kapur M, Labana S, et al. Microbial diversity: application of micro-organisms for the biodegradation of xenobiotics. Current Science,2005,89(1):101–112
    Jilani S, Khan MA. Isolation, characterization and growth response of pesticide degra-ding bacteria. J Biol Sci.,2004,4(1):15–20
    John GH, Noel RK, Peter HA.Bergey's Manual of Determinative Bacteriology,1997
    JuhaszAL, Smith E, Smith J, et al. Biosorption of organochlorine pesticides usingfungal biomass. J. Ind. Microbio. Biotech,2002,29:163–169
    Karpouzas DG, Singh BK. Microbial degradation of organophosphorus xenobiotics:metabolic pathways and molecular basis. Adv Microb Physiol.,2006,51:119185
    Kazufumi O, Takasuke K, Takashi S, et al.Biodegradation of organophosphorusinsecticides by bacteria isolated from turf green soil. Journal of Fermentation andBioengineering,1996,82(3):299305
    Kimura M. A simple method for estimating evolutionary rates of base substitutionsthrough comparative studies of nucleotide sequences. J Mol Evol.,1980,16(2):111–120
    Konstantinou IK, Hela DG, Albanis TA. The status of pesticide pollution insurfacewaters (rivers and lakes) of Greece part I review on occurrence and levels.Environ Pollut.,2006,141(3):555570
    Kumar M, Philip L. Enrichment and isolation of a mixed bacterial culture forcomplete mineralization of endosulfan. J Environ Sci Health B.,2006,41:81–96
    Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionarygenetics analysis and sequence alignment. Brief Bioinform.,2004,5(2):150–163
    Lan WS, Gu JD, Zang JL, et al. Coexpression of two detoxifying pesticide-degradingenzymes in a genetically engineered bacterium. Int Biodeterior Biodegrad,2006,58(2):70–76
    Laurence G, Didier H, Sebastien K, et al.Reductive cleavage of Demeton-S-methyl byCorynebacterium glutamicum in cometabolism on more readily metabolizablesubstrates. Appl.Environ.Microbiol,2000,66(3):1202–1204
    Laveglia J, Dahm PA. Degradation of organophosphorus and carbamate insecticidesin the soil and by soil microorganisms. Annu Rev Entomol.,1977,22:483–513
    Lichtenstein EP, Schultz KR.The effects of moisture and microorganisms on thepersistence and metabolism of some organophosphorus insecticides in soils, withspecial emphasis on parathion. J. Econ Entomol.,1964,57:618627
    Lin KD, Yuan DX.Degradation kinetics and products of triazophos intertidal sediment.Journal of Environmental Sciences,2005,17(6):933–936
    Li TO, Anil S. Degradation of methyl parathion by a mixed bacterial culture and aBacillus sp. isolated from different soils. J Agric Food Chem.,1989,37(6):1514–1518
    Liu H, Zhang JJ, Wang SJ, et al. Plasmid-borne catabolism of methyl parathion andρ-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun.2005,334(4):1107–1114
    Liu YH, Liu Y, Chen ZS,et al. Purification and characterization of a novelorganophosphorus pesticide hydrolase from Penicillium lilacinum BP303.Enzyme and Microbial Technology,2004,34(3-4):297–303
    Liu YH,Chung YC,Xiong Y. Purification and characterization of a dimethoate-degra-ding enzyme of Aspergillus niger ZHY256, isolated from sewage.Appl EnvironMicrobiol.,2001,67(8):37463749
    Maloney SE,Maule A,Smith AR. Purification and preliminary characterization ofpermethrinase from a pyrethroid-transforming strain of Bacillus cereus. Appliedand Environmental Microbiology,1993,59(7):20072013
    Masahito H, Hirano M, Tokuda S. Involvement of two plasmids in fenitrothiondegradation by Burkholderia sp.strain NF100. Appl Environ Microbiol,2000,66:1737–1740
    Matsumura F, Murti CRK. Biodegradation of Pesticides.New York and London:Plenum Press.,1983,67–87
    McDaniel CS, Harper LL,Wild JR.Cloning and sequencing of a plasmid-borne gene(opd) encoding a phosphotriesterase. J.Bacteriol.,1988,170:23062311
    Moore MT, Schulz R, Cooper CM, et al. Mitigation of chlorpyrifos runoff usingconstructed wetlands.Chemosphere,2002,46(6):827–835
    Moorman TB. Pesticide degradation by soil microorganisms: environmental,ecological and management effects. Adv Soil Sci.,1994,33:121–165
    Muhammad A, Tatheer AN, Maria K, et al. Detection of the organophosphatedegrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1.Ann Microbiol.,2011,4:152–158
    Mulbry WW. Characterization of a novel organophosphorus hydrolase from Nocar-diodes simplex NRRLB-24074. Microbiol.Res.,2000,154(4):285–288
    Mulbry WW. The aryldialkylphospharose-encoding gene adpB from Nocardia sp.strain B-1: cloning, sequencing and expression in Escherichia coli, Gene,1992,121:149–153
    Mulbry WW, Karns JS. Parathion hydroLase specified by the Flavobacterium opdgene: relationship between the gene and protein.J.Bacterial,1989,171:67406746.
    Mulbry WW, Karns JS. Purification and characterization of three parathion hydrolasesfrom gram-negative bacterial strains. Appl.Environ.Microbiol.,1989,55(2):289–293
    Mulbry WW, Kanrs JS, et al. Identifieation of a Plasmid-bore parathion hydrolasegene from Flavobacterium sp. by southern hybridization with opd fromPseudomonas diminuta. APPl. Enviorn.Microbiol.,1986,51:926–930
    Mulchandani A, Chen W, Mulchandani P, et al.Biosensors for direct determination oforganophosphate pesticide. Biosens.Bioelectr.,2001,16:225–230
    Munnecke DM. Enzyme hydrolysis of ogranophosphate insecticide, a possible pesti-cide disposal method. APPl. Environ.Microbiol.,1976,32:7–13
    Munnecke DM. Enzymatic detoxification of waste organophosphate pesticide. Agric.Food Chem.,1980,48(1):105111
    Munnecke DM, Hsieh DPH. Pathways of microbial metabolism of parathion.ApplEnviron Microbial,1976,31(1):6369
    Nannipieri P.and Bollag J.M.Use of enzymes to detoxify pesticides-contaminated soilsand waters.J.Environ.Qual.,1991,20:510–517
    Nelson LM. Biologically induced hydrolysis of parathion in soil: isolation of hydroly-zing bacteria. Soil Biol Biochem.,1982,14:223–229
    Ohshiro K. Molecular cloning and nucleotide sequencing of organophosphorusinsecticide hydrolase gene from Arthrobacter sp strain B-5. J Biosci Bioeng.,1999,87,531–534
    Pandey G, Jain RK. Bacterial chemotaxis toward enviromnental pollutants: role inbioremediation. Appl.Environ.Microbiol.,2002,68:5789–5795
    Racke KD, Laskowski DA, Schultz MR, et al. Resistance of chlorpyrifos to enhancebiodegradation in soil. Journal of Agriculture and Food Chemistry.1990,38:1430–1436
    Rangaswamy V, Venkateswaralu K. Degradation of selected insecticides by bacteriaisolated from soil. Bull Environ Contam Toxicol.,1992,49:797–804
    Raushel FM, Holden HM. Phosphotriesterase: an enzyme in search of its naturalsubstrate. Adv Enzymol Relat Areas Mol Biol.,2000,74:51–93
    Reddyprm, R, Seenayya G. Production of thermostable pullulanase by clostridium thermosulfuro genes SV2in solidstate fermerntation: optimization of nutrients levelsusing response surface methodology. Bioprocess Engineering,1999,21:497–503
    Richins RD, Kaneva I, Mulchandani A, et al. Biodegradation of organophosphoruspesticides by surface-expressed organophosphorus hydrolase. Nat Biotechnol.,1997,15:984–987
    Ronald BC, Jean AM. Enhanced degradation of the fungicide vinclozolin: isolationand characterization of a responsible organism. Pesticide Science,1996,48:13–23
    Rowland SS, Speedie MK, Pogell BM. Purification and characterization of a secretedrecombinant phosphotrierase (parathion hydrolase) from Streptomyces lividans.Appl. Environ. Microbiol,1991,57(2):440–444
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructingphylogenetic trees. Mol Biol Evol.,1987,4(4):406–25
    Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. ColdSpring Harbor, NY, USA: Cold Spring Harbor Laboratory;1989
    Serdar CM,Gibson DT,Munnecke DM, et al. Plasmid involvement in parathionhydrolysis by Pseudomonas diminuta. APPl. Environ. Microbiol.,1982,44:246–249
    Sethunarhan N, Yoshida T. A Flavobacterium that degrades diazinon and parathion.Can.J. Microbiol.,1973,19:873–875
    Sharmila M, Ramanand K, Sethunathan N. Effect of yeast extract on the degradationof organophosphorus insecticides by soil enrichment and bacterial cultures. Can JMicrobiol.,1989,35(12):1105–1110
    Shimazu M, Mulchandani A, Chen W.Simultaneous degradation of organophosphoruspesticides and p-nitrophenol by a genetically engineered Moraxella sp. withsurface-expressed organophosphorus hydrolase. Biotechnol Bioeng.,2001,76:318–324
    Shma ZM, Mulchandan IA, Chen W. Simultaneous degradation of organophosphoruspesticides and p-nitrophenol by a genetically engineered Moraxella sp. withsurface expressed organophosphorus hydrolase. Biotechnol Bioeng.,2001,76(4):318–324
    Singh BK,Walker A. Microbial degradation of organophosphorus compounds. FEMSMicmbiol Rev.,2006,30(3):428471
    Singh DK. Biodegradation and bioremediation of pesticide in soil: concept, methodand recent developments. Indian J Microbiol.,2008,48(1):35–40
    Steiert JG, Pogell BM, Speedie MK, et al. A gene coding for a membrane-boundhydrolase is expressed as a secreted, soluble enzyme in Streptomyces lividans.Biotechnology,1989,1:6568
    Takayama K, Suye S, Kuroda K, et al. Surface display of oganophosphorus hydrolaseon Saccharomyces cerevisiae. Biotechnol Prog.,2006,22:939943
    Urwin R, Maiden MC. Multi-locus sequence typing: a tool for global epidemiology.Trends Microbiol.,2003,11(10):479–487
    Walker A, Moon YH, Welch SJ. Influence of temperature, soil moisture and soil cha-racteristics on the persistence of alachlor. Pestic Sci.,1992,35:109–116
    Walker AW, Keasling JD. Metabolic engineering of Pseudomonas putida for theutilization of parathion as a carbon and energy source. Biotechnol Bioeng.,2002,78(7):715–721
    Walker A, Weloh SJ, Roberts SJ.Induction and transfer of enhanced biodegradationof Pesticide Science,1996,47:131–135
    Wang JF, Gao MH, Wu NF, et al. The Degradation effects of a Pseudomonashydrolase OPHC2to organophosphorus insecticides. Phosphorus, Sulfur andSilicon and the related elements,2008,183(2/3):804–810
    Wilson KH. Blitchington RB, Green RC.Amplification of bacterial16S ribosomalDNA with polymerise chain reaction. J Clin Microbiol.,1990,28:1942–1946
    Wu CF, Valdes JJ, Rao G, et al. Enhancement of organophosphorus hydrolase yield inEscherichia coli using multiple gene fusions. Biotechnol Bioeng.,2001,75(1):100–103
    Yucel U, Ylim M, Gozek K, et al. Chlorpyrifos degradation in Turkish soil. Journalof Environmental Science Health,1999,34(1):75–95
    Yuan SY, Yu CH, Chang BV. Biodegradation of nonylphenol in river sediment.Environ. Pollut.,2004,127(3):425–430
    Zech R,Wigand KD. Organophosphate-detoxicating enzymes in Escherichia coli gelfiltration and isoelectric focusing of DFPase, paraoxonase,and unspecificphosphohydrolase. Experientia,1975,31:157–158
    Zhang RF, Cui ZL, Jiang JD, et al.Diversity of organophosphorus pesticide-degradingbacteria in a polluted soil and conservation of their organophosphorus hydrolasegenes. Can J Microbiol.,2005,51:337–343
    鲍红荣.高效液相色谱法测定血清中敌敌畏的质量浓度.药物研究,2010,19(17):12–14
    蔡道基.农药环境毒理学研究.北京:中国环境科学出版社, l999.7576
    岑家磊,梁莹.20%乐·乙酰甲乳油的液相色谱分析.化工技术与开发,2005,34(5):13–15
    陈波宇,郑斯瑞,牛希成,等.水生生物对三唑磷的物种敏感度分布研究.环境科学,2011,32(4):1101–1107
    陈金霞,徐璋,张小莉.生物修复技术在污染治理中的应用.上海化工,2000,9:4
    陈铭,周晓云.固定化细胞技术在有机废水处理中的应用和前景.水处理技术,1997,4(2):98–104
    陈容,杨桂朋,周立敏,等.三唑磷在水体系中的光化学降解研究.中国海洋大学学报.2010,40(Sup.):185–190
    陈亚丽,张先恩,刘虹.黄杆菌(Flavobacterium sp.)ATCC27551opd基因在E.coli中的克隆及表达.武汉大学学报,2001,47(2):200–204
    陈亚丽,张先恩,刘虹,等.甲基对硫磷降解菌假单胞菌WBC-3的筛选及其降解性能的研究.微生物学报,2002,42(4):490–497
    楚晓娜,张先恩,陈亚丽,等.假单胞菌WBC23甲基对硫磷水解酶性质的初步研究.微生物学报,2003,43(4):453456
    戴青华,张瑞福,蒋建东,等.一株三唑磷降解菌mp-4的分离鉴定及降解特性的研究.土壤学报,2005,42(1):120–124
    戴青华,张瑞福,蒋建东,等.三唑磷水解酶基因的克隆及水解产物的确定.中国环境科学,2007,27(6):777–780
    截树桂,庄源益,陈勇生.两种假单孢菌中二氯酚降解酶活性及其定域研究.环境科学学报,1996.16(2):173–177
    邓敏捷,伍宁丰,梁果义,等.一种新的有机磷降解酶基因ophc2的克隆与表达.科学通报,2004,49(11):1068–1072
    东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    段海明,王开运,王冕,等.蜡状芽孢杆菌HY-1降解甲基对硫磷和毒死蜱的影响因素研究.农业环境科学学报,2010,29(3):437443
    方玲.有机氯农药在茶叶及其环境中的残留状况与评价.福建农业大学学报,211215
    方晓航,仇荣亮.有机磷农药在土壤环境中的降解转化.环境科学与技术,2003,(2):57–62
    傅国平,崔中利,徐玮,等.甲基对硫磷水解酶的重组表达及其纯化和性质研究.微生物学报,2004,44(3):357–360
    付文祥,郭立正.敌敌畏降解真菌的分离及其特性研究.环境科学与技术.2006,29(4):32–35
    高瑞英,王玉生,卢桂宁,等.土壤有机农药污染微生物修复及降解菌基因工程研究进展.甘蔗糖业,2007,2:12–17
    顾立锋,何健,黄星,等.多功能降解菌Pseudomonas putida KT2440-DOP的构建与降解特性研究.微生物学报,2006,46(5):763–766
    郭宇星,潘道东.超声波破碎法提取瑞士乳杆菌氨肽酶条件的优化.食品科学,2008,29(8):140–145
    郭军,姜广,初晓宇,等.有机磷降解酶的固定化及其工业化应用初探.环境工程学报,2009,3(1):3942
    郭新强,李荣,林栋青,等.三唑磷降解菌株GS-1的分离鉴定及其降解特性的研究.微生物学通报,2009,36(8):1143–1149
    韩熹来.农业百科全书(农药卷).北京:农业出版社,1993,68
    洪源范,洪青,沈雨佳,等.甲氰菊酯降解菌Sphingomonas sp.JQL4-5对污染土壤的生物修复.环境科学,2007,28(5):1121–1125
    黄琼辉,王志波.20%辛硫·三唑磷乳油的高效液相色谱分析.现代农药,2009,8(1):38–40
    黄秀梨,辛明秀.微生物学实验指导.北京:高等教育出版社,2008
    贾开志,李晓慧,何健,等.久效磷降解菌的分离及其酶促降解特性研究.环境科学,2007,28(4):908–912
    江玉姬,邓优锦,刘新锐,等.一株能高效降解几种有机磷农药的菌株JS018的鉴定.微生物学报,2006,46(3):463–466
    赖万勇,苏智先.应用超声波破碎苏云金芽孢杆菌试验.四川蚕业,2006,1(2):5–7
    兰亚红,谢明,陈福良,等.施氏假单胞菌JHY01菌株毒死蜱降解酶的定位及其提取条件的优化.中国生物防治,2008,24(4):349353
    雷国明.农药残留危害和降解.植物医生,2007,20(2):5152
    黎小军,林陈水,胡军民.有机磷水解酶的大肠杆菌细胞表面展示.江西师范大学学报:自然科学版,2010a,34(1):3134
    黎小军,林陈水.有机磷水解酶全细胞生物催化剂的特性.江西师范大学学报(自然科学版),2010b,34(4):397400
    李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展.土壤,2004,36(6):577–583
    李阳,王玉玲,李敬苗.有机农药对土壤的污染及生物修复技术研究.中国环境管理干部学院学报,2009,19(3):64–66
    林玉堂,龚瑞中,朱忠林.农药与生态环境保护.北京:化学工业出版社.1999:174–176
    刘建平,王银善,曹志方,等.甲基营养细菌Nol甲氨脱氢酶的纯化和性质研究.武汉大学学报(自然科学版),1997,43(2):243–248
    刘琴.“十二五”农药工业发展专项规划.农药市场信息,2011,20:8–10
    刘阳,刘玉焕,陈志仕,等.米曲霉LY-128广谱有机磷农药水解酶的纯化和鉴定.菌物系统,2003,22(4):557–564
    刘阳,刘玉焕,李方,等.广谱降解有机磷农药的真菌酶解研究.中山大学学报(自然科学版),2004,43(2):76–81
    刘玉焕,钟英长.真菌降解有机磷农药乐果的研究.环境科学学报,2000,20(1):9599
    刘玉焕,钟英长.华丽曲霉Z58有机磷农药降解酶的纯化和性质.微生物学报,2000,40(4):430–434
    刘智,洪青,徐剑宏,等.甲基对硫磷水解酶基因的克隆与融合表达.遗传学报,2003,30(11):1020–1026
    刘智,孙建春,李顺鹏.甲基对硫磷降解菌DLL-1的分离、鉴定及降解性研究.应用与环境生物学报,1999,5(增刊):147–150
    栾雨时,包永明.生物工程实验技术手册.北京:化学工业出版社,2005,96–99
    罗永侦,董桂清,余钧池,等.产有机磷农药降解酶菌株的筛选及酶学特性研究.广西轻工业,2007,4(4):25–26
    年跃刚,顾国维.酶及其微生物的固定化生物技术在水处理工程中的应用.铁道劳动安全卫生与环保,1995,22(4):292–294
    秦曙,乔雄梧,王霞,等.三唑磷原药及其中相关杂质治螟磷的水解特性研究.农药学学报,2009,11(1):126–130
    权桂芝.土壤的农药污染及修复技术.天津农业科学,2007,13:35–38
    石成春,郭养浩,刘用凯.环境微生物降解有机磷农药研究进展.上海环境科学,2003,22(12):863–867
    石利利,单正军,蔡道基.三唑磷在土壤中的降解与吸附特性.上海环境科学,2006,25(1):1114
    沈德中.污染环境的生物修复.北京:化学工业出版社,2001,5l52
    孙兰英,花日茂,唐欣昀.有机磷农药降解菌及其基因工程研究新进展.激光生物学报,2010,19(2):278–284
    唐玉斌,梁林林,陈芳艳,等.蒽的高效降解菌的固定化小球的制备及其降解特性.环境工程学报,2007,1(5):31–35
    汪家政,范明.蛋白质技术手册.北京:科学出版社,2000
    王桂珍.福建省种植业农药施用的研究.福建农林大学硕士论文,2009
    王军,王秀国,朱鲁生,等.海藻酸钠固定化莠去津降解酶的研究.农业环境科学学报,2007,26(5):17331737
    王开勤,王军,董升,等.超声波灭菌的试验研究.中国园艺,2008,1(5):41–43
    王丽红,张林,陈欢林.三唑磷降解菌的筛选及其降解途径研究.生物工程学报,2005,21(6):954–959
    王丽红.有机磷农药残留的生物降解和OPH法检测研究.浙江大学博士论文,2006
    王丽红,张林,陈欢林.三唑磷降解菌的筛选及其降解途径研究.生物工程学报,2005,21(6):954959
    王银善,庞学军,方慈祺,等.黄杆菌P3-2降解对硫磷的质粒.环境科学学报,1985,5(4):468–473
    王永杰,李顺鹏.有机磷农药广谱活性降解菌的分离及其生理特性研究.南京农业大学学报,1999,22,2:42–45
    王永杰,李顺鹏.原生质体转化法构建有机磷农药降解工程菌.应用环境生物学报,1999,5(Suppl):162–165
    王永杰,李顺鹏,沈标.有机磷农药乐果降解菌的分离及其活性研究.南京农业大学学报,200l,24(2):7l74
    王永杰,李顺鹏,严淑玲.活性微生物与农药的降解.中国沼气,1999,17(4):10–13
    魏德洲,贾春云,曹成有,等.Nocardia细胞的破碎方法及其IR光谱分析.东北大学学报(自然科学版),2007,28(12):1749–1754
    吴祥为,花日茂,汤锋,等.毒死蜱在水溶液中的光化学降解.应用生态学报,2006,17(7):1301–1304
    伍宁丰,邓敏捷,史秀云,等.一种新的有机磷降解酶的分离纯化及酶学性质研究.科学通报,2003,48(23):2446–2450
    肖乾芬,王晓栋,魏忠波,等.三唑磷农药水解动力学研究.农药,2005,44(8):356–358
    谢慧,朱鲁生,李文海,等.利用降解酶去除蔬菜表面农药毒死蜱残留.农业环境科学学报,2006,25(5):1245–1249
    谢慧,朱鲁生,王军,等.真菌WZ-1对有机磷杀虫剂毒死蜱的酶促降解研究.环境科学,2005,26(6):164–168
    谢翎,陈红梅,陈安徽,等.超声波破碎法提取球孢白僵菌麦角甾醇的条件优化研究.徐州工程学院学报,2007,22(2):10–13
    杨开莲.高效液相色谱分析20%三唑磷微乳剂.化工时刊,2006,20(3):27–28
    杨苏声.细菌分类学.北京:中国农业出版,1997
    杨英利,朱小燕,李爱民,等.3种淡水藻对三唑磷的降解研究.环境科学研究,2007,20(1):8589
    尤民生,刘新.农药污染的生物降解与生物修复.生态学杂志,2004,23(1):73–77
    虞云龙,陈鹤鑫,樊德方,等.Alcaligenes sp.YF11菌对杀灭菊酯的降解机理.环境污染与防治,1998,20(6):5–7
    虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略.环境科学进展,1996,4(3):28–36
    虞云龙,盛国英,傅家漠.农药降解酶的固定化及其降解特性.应用与环境生物学报,1999,5(增刊):166169
    虞云龙,史锋,樊德方.一种固定化酶对氰戊菊酷的降解特性.农药学学报,1999,1(1):74–77
    张超,李冀新.微生物降解有机磷农药残留机理及菌种筛选研究进展.农药科学与管理,2006,27(4):29–32
    张德咏,谭新球,罗香文,等.一株能降解有机磷农药甲胺磷的光合细菌HP-1的分离及生物学特性的研究.生命科学研究,2005,9(3):247–253
    张寒俊,刘大川,李永明.响应面分析法在菜籽浓缩蛋白制备工艺中的应用.中国油脂,2004,29(8):41–44
    张明星,洪青,何健,等. BHC-A与CDS-1降解菌对六六六、呋喃丹污染土壤的原位生物修复.土壤学报,2006,43(4):693–696
    张润楚,郑海涛,兰燕.试验设计与分析及参数优化.北京;中国统计出版社,2005:341–382
    张彤,黄慧,赵庆祥.造纸废水中有机氯化物的酶处理技术研究进展.环境科学,1997,18(2):79–81
    张一宾,孙晶.国内外有机磷农药的概况及对我国有机磷农药发展的看法.农药,1999,38(7):1–3
    张志勇,何丹军,徐敦明,等.三唑磷在水中消解和残留动态研究.现代农药,2005,4(1):2527.
    郑红艳,王兆勇.农药跻身生产大国.中国化工报,2011,10
    郑玲玲,撒世军,赵莹,等.三唑磷降解菌的筛选及降解特性研究.安徽农业科学,2009,37(22):10347–10350
    郑重.农药的微生物降解.环境科学,1990,11(2):6872
    钟国华,何玥,刘萱清,等.毒死蜱高效降解酶保护剂配方优化及稳定性.中国农业科学,2009,42(1):136144
    钟宁,曾清如,姜洁凌,等.有机磷农药的降解及其研究进展.现代农药,2005,4(6):16
    钟善锦,黄懂宁.化学农药对生态环境的影响及其控制对策.广西科学院学报,1998,4:3235
    钟志,刘琴,顾蓓乔,等.气相色谱法测定水产品中三唑磷农药残留量.浙江海洋学院学报(自然科学版),2006,25(2):196–198
    周德庆.微生物学实验手册.上海:上海科技出版社,1986
    周丽珍,李冰,李琳,等.超声处理对酵母细胞的致死及相关影响.华南理工大学学报(自然科学版),2007,35(12):121–125
    周作明.水体中三唑磷的光化学降解性能研究.长沙:湖南农业大学博士论文,2002
    邹小明,朱立成,肖春玲,等.三唑磷的土壤微生物生态效应研究.农业环境科学学报,2008,27(1):238–242
    朱福兴,王沫,李建洪.降解农药的微生物.微生物学通报,2004,31(5):120–122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700