贵金属纳米材料在元素标记、生物传感和成像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属纳米材料由于其独特的表面等离子体共振(SPR)性质引起了科研工作者的巨大兴趣。随着多种形貌贵金属纳米材料的可控合成及其功能化表面化学技术的日臻成熟,贵金属纳米材料已广泛应用于生物标记、传感成像、分析分离及生物医学领域。本论文旨在利用贵金属纳米材料电感耦合等离子体质谱(ICP-MS)信号放大、SPR和荧光等特性,将不同形貌的贵金属纳米材料应用于生物标记、生物传感和成像。本论文的主要内容与创新点如下:
     (1)基于毛细管电泳(CE)电感耦合等离子体质谱-(ICP-MS)联用技术和纳米金(AuNPs)信号放大及其对于生物分子的静电吸附作用,发展了一种简单、快速、经济、高效的元素标记方法,实现了对尿白蛋白的超高灵敏度高选择性检测。采用柠檬酸钠还原法合成粒径分散均匀的纳米金颗粒,将白蛋白(albumin)与过量的纳米金通过静电吸附作用结合,然后通过毛细管电泳将白蛋白-纳米金结合物和反应剩余的纳米金分离,最后同时进入ICP-MS检测。金元素在ICP-MS上具有高灵敏度,单个纳米金颗粒中含有几十万个金原子,因此将纳米金标记到白蛋白上可以实现理想的信号放大效果。实验中采用自行设计的四通联用接口,并详细优化了纳米金和白蛋白的结合条件以及毛细管电泳的分离条件。在优化的条件下,纳米金颗粒可以特异性地结合白蛋白并能与剩余纳米金颗粒得到良好的CE分离。本方法可以实现尿液中白蛋白的高灵敏度高选择性准确定量,线性范围为1.8pM-18nM,检出限(S/N=3)为0.5pM。应用该方法测得人尿液样品中白蛋白的含量在270~330nM之间,加标回收率在93%-100%之间。
     (2)基于适配体(aptamer)和抗体(antibody)的特异性识别目标蛋白,纳米金(AuNPs)和纳米银(AgNPs)的ICP-MS元素标记效果,借助适配体修饰的纳米金颗粒(apt-AuNPs)和抗体修饰的纳米银颗粒(ab-AgNPs)分别作为目标物细胞色素C和胰岛素的特异性识别探针,构建了一种多元素标记贵金属纳米颗粒信号放大的ICP-MS生物检测方法,实现了对于两种目标蛋白的高灵敏度高选择性的同时准确定量。制备了醛基表面功能化的磁性微球(MMPs)作为磁性分离载体,可以保证快速分离过量的元素标记探针。对实验中的表面功能化的MMPs合成条件、MMPs的用量、apt-AuNPs和ab-AgNPs探针的用量以及反应时间等条件进行了详细优化。在优化条件下,该方法对细胞色素C和胰岛素检测的线性范围分别为0.1~20nM和0.2~40nM,检出限(3s)分别为30pM和110pM。该方法对细胞色素C和胰岛素具有很好的选择性,并成功应用于人血清样品中的两种目标蛋白的同时检测,加标回收率在87%-98%之间。
     (3)以半胱氨酸(cys)修饰的金纳米棒作为比色探针,借助金纳米棒长轴SPR峰的高灵敏度和半胱氨酸与铜离子的特异性配位结合作用,实现了铜离子的高灵敏度高选择性快速检测。金纳米棒的SPR峰的强度和位置对于金纳米棒微环境介质的折光率异常敏感。首先在金纳米棒的短轴端通过Au-S共价键修饰上半胱氨酸,铜离子存在时与半胱氨酸发生强烈的配位结合形成cys-Cu-cys三元结合态,使得金纳米棒发生头尾相接的自组装过程,从而引起金纳米棒SPR峰红移,同时金纳米棒溶液颜色由蓝绿色变为暗灰色,据此过程产生对于铜离子的特异性响应,实现比色探针快速检测铜离子。对可能影响金纳米棒比色探针检测效率的实验条件进行了详细优化,包括缓冲介质的pH值、半胱氨酸的浓度、体系盐浓度以及半胱氨酸和铜离子配位结合的动力学过程。在优化的条件下,该方法对铜离子的检测线性范围为1~100μM,检出限(3s)为0.34μM。该方法对铜离子具有很好的选择性,并成功应用于环境水样中铜离子的准确检测,加标回收率在90%-107%之间。
     (4)基于碱基T与金属配对结构(T-Hg-T)和适配体(aptamer)构建了一种分子构型开关(MCS)生物传感器用于选择性检测三磷酸腺苷(ATP),这种传感器结合了适配体的特异性、单链DNA的序列可调性、T-Hg-T配对的分子构型开关以及巯基十一烷酸修饰的金纳米簇(MUA-AuNCs)对于汞离子的高选择性高灵敏度的定量能力。ATP的适配体与汞离子竞争结合富含碱基T序列的分子构型开关,目标物ATP与适配体结合后打破竞争反应从而影响到游离态汞离子的量,释放出的汞离子由MUA-AuNCs的荧光猝灭程度定量,最终实现信号转导。对实验中荧光纳米簇的种类、反应动力学、缓冲体系的pH值、以及汞离子和单链DNA的浓度进行了详细优化。在优化的条件下,该方法对ATP的检测线性范围为100~2000nM,检出限(3s)为48nM。该方法对ATP有很好的选择性,并成功应用于人尿液样品中腺苷的准确检测,加标回收率在89%-105%之间。
     (5)基于胰蛋白酶修饰的金纳米簇(try-AuNCs)多功能荧光探针,构建表面等离子体增强能量转移(SPEET)生物传感器用于选择性检测肝素钠,进一步通过叶酸表面功能化的try-AuNCs构建了一种近红外荧光探针用于生物活体靶标荧光成像。SPEET/try-AuNCs生物传感器是基于try-AuNCs和巯基乙胺修饰的纳米金之间的能量转移过程,目标物肝素钠的存在可以使得纳米金SPR吸收红移并且拉远纳米金与纳米簇之间的距离,从而打破能量转移过程,使得体系荧光恢复。在优化的条件下,该方法对肝素钠的检测线性范围为0.1-4.0μgmL-1,检出限(3s)为0.05μg mL-1。该方法对肝素钠有很好的选择性,并成功应用于人血清样品中肝素钠的准确测定,加标回收率在97%-100%之间。进一步的叶酸表面功能化try-AuNCs得到具有靶标肿瘤能力的近红外荧光成像探针,并应用于叶酸受体过表达的hela肿瘤的活体靶标成像。这种探针表现了良好的生物相容性和低细胞毒性,并且对于hela冲瘤具有较强的特异性靶标能力。
Noble metal nanomaterials (NMNMs) have been proven to be highly versatile and tunable materials for a range of bioapplications including biosensing, bioimaging, biophysical research, medical diagnostics, and cancer therapy. Noble metal nanostructures possess significant ICP-MS signal amplification effect and optical field enhancements, unique surface plasmon resonance (SPR) and fluorescence property, controllable size and morphology in preparation, excellent biocompatibility and stability, and the availability of surface modification of diverse bioactive molecules. This dissertation aims at developing NMNMs-based elemental tagging ICP-MS ultrasensitive assay, biosensing and bioimaging assays. The main contents and novelty of the dissertation are summarized as follows:
     (1) A strategy based on capillary electrophoresis with on-line inductively coupled plasma mass spectroscopic detection (CE-ICP-MS) in conjunction with gold nanoparticles (AuNPs) amplification was constructed for ultrasensitive quantification of human urinary protein. The albumin in the sample solution was incubated with excess AuNPs to form the AuNP-albumin adduct. The excess AuNPs and the AuNP-albumin adduct were then effectively separated by CE for on-line ICP-MS detection. As a result of AuNPs-tagging, more than2000gold atoms on average were attached to each albumin molecule to successfully achieve a significant amplification of ICP-MS signal with extremely low limit of detection (0.5pM for280nL of sample injection, corresponding to0.1amol) and a wide linear response over4orders of magnitude. The relative standard deviations of the migration time, peak area, and peak height for seven replicate injections of a mixture of0.4pM AuNPs and9.0pM albumin ranged from1.8%to4.4%. The developed method was successfully applied for detecting albumin in human urine samples with quantitative recoveries in the range of93.0-99.7%. The methodology demonstrated here has potential for simultaneous determination of low-abundance multiple biomarkers of interest via multiple nanomaterials tags because of high-resolution CE separation and ultrasensitive ICP-MS detection.
     (2) An ultrasensitive method for simultaneous determination of cytochrome c (cyt-c) and insulin was developed by combining aptamer-based bioassay and immunoassay, multielement-tagging and ICP-MS. Aptamer-modified gold nanoparticles (apt-AuNPs) and antibody-modified silver nanoparticles (ab-AgNPs) were employed as specific element tags for cyt-c and insulin, respectively. The prepared surface-functionalized magnetic microparticles (MMPs) were used for efficient and fast magnetic separation. The bioassay conditions were carefully optimized, including the amount of MMPs, the concentration of AuNPs and AgNPs, and the reaction time. Under optimal conditions, the developed method gave a linear range of0.1-20nM for cyt-c and0.2-40nM for insulin, a detection limit (3s) of1.5fmol (30pM in50mL) for cyt-c and5.5fmol (110pM in50mL) for insulin. The precision (relative standard deviation) for six replicate determinations of cyt-c (0.6nM) and insulin (2.0nM) was6.6%and6.0%, respectively. The present method exhibits good specificity with recoveries from87%to98%for spiked cyt-c and insulin in human serum samples. The methodology demonstrated here provides a new possibility for bioassays and clinical diagnoses, which has potential for simultaneous determination of two or more low-abundance biomarkers of interest via multi-element tags.
     (3) A gold nanorod (AuNR) based colorimetric probe was reported for the rapid and selective detection of Cu2+ions. The probe was fabricated by functionalizing cysteine (Cys) onto AuNR (Cys-AuNR) with an aspect ratio of2.3. The strong coordination of Cu2+with cysteine resulted in a stable Cys-Cu-Cys complex, and induced the aggregation of the colloidal nanorods along with a rapid colour change from blue-green to dark gray. Potential factors affecting the performance of the probe for the detection of Cu2+were carefully optimized, including the pH value of the buffer media, the concentration of cysteine, and the kinetics for the coordination of Cu2+with Cys-AuNR. Under optimal conditions, the developed colorimetric method gave a linear range of1-100mM for Cu2+, and a detection limit (3s) of0.34mM. Moreover, the developed method exhibited excellent selectivity for Cu2+, and quantitative spike-recoveries from90%to107%in environmental water samples. The proposed colorimetric approach can in principle be used to detect other metal ions by functionalizing various specific ligands onto the AuNR that can selectively bind the other target metal ions.
     (4) A competitive aptamer bioassay was developed for the selective detection of adenosine triphosphate (ATP). The proposed bioassay employed the T-Hg-T induced hairpin-structure as the molecule conformational switch (MCS), aptamer as a specific recognizer, and mercaptoundecanoic acid modified gold nanoclusters (MUA-AuNCs) as a sensitive signal reporter. The T-rich MCS ssDNA with the sequence complementary with that for the aptamer of ATP was bound with Hg2+to form the metal-paired hairpin-structure. Addition of the aptamer and its target biomolecule ATP resulted in a competitive aptamer bioassay. The aptamer competed with Hg2+to hybridize with T-rich MCS ssDNA, thereby destroyed the hairpin-structure. As a result, the Hg2+was released and the signal transduction was achieved. The ATP affected the interaction between aptamer and hairpin-structure, thus mediated the release of Hg2+, which was sensitively quantified by fluorescent MUA-AuNCs. Under selected conditions, the developed method allowed sensitive and selective detection of ATP with a linear range of100-2000nM and a detection limit (3s) of48nM. The relative standard deviation for sixty replicate detections of200nM ATP was2.1%, and the recoveries of the spiked ATP in urine samples ranged from89%to105%. The developed metal-paired MCS can be easily extended to the sensitive and selective detection of other biomolecules by changing the base sequence of hairpin structure and choosing the corresponding aptamer for the target biomolecule.
     (5) A multifunctional fluorescence probe was fabricated by the preparation of trypsin stabilized gold nanoclusters (try-AuNCs) with near-infrared fluorescence for biosensing heparin based on surface plasmon enhanced energy transfer (SPEET), and folic acid (FA) modified try-AuNCs for in vivo cancer bioimaging. The SPEET/try-AuNCs fluorescence biosensor was designed via heparin mediated energy transfer between try-AuNCs and cysteamine modified gold nanoparticles (cyst-AuNPs). The developed SPEET/try-AuNCs fluorescence biosensor allowed sensitive and selective detection of heparin with a linear range of0.1-4.0μg mL-1and a detection limit (3s) of0.05μg mL-1. The relative standard deviation for eleven replicate detections of2.5μg mL-1heparin was1.1%, and the recoveries of the spiked heparin in human serum samples ranged from97%to100%. In addition, folic acid was immobilized on the surface of try-AuNCs to ameliorate the specific affinity of AuNCs for tumors, and the near-infrared fluorescent FA-try-AuNCs were applied for in vivo cancer imaging of high folate receptor (FR) expressing Hela tumor. In vivo study of the dynamic behavior and targeting ability of FA-try-AuNCs probe to Hela tumor bearing mice and normal nude mice validated the high specific affinity of FA-try-AuNCs probe to FR positive tumors. The results show that the prepared try-AuNCs have great potential as multifunctional biomaterials for biosensing biomolecules with SPEET mode and in vivo cancer imaging with high targeting ability.
引文
[1]Hochella M F. Nanoscience and technology the next revolution in the Earth sciences, Earth Planet Sc Lett,2002,203:593-605
    [2]Lieber C M. Nanoscale science and technology:Building a big future from small things, Mrs Bull,2003,28:486-491
    [3]Roco M C. Converging science and technology at the nanoscale:opportunities for education and training, Nat Biotechnol,2003,21:1247-1249
    [4]Vaia R A, Tolle T B, Schmitt G F, et al. Nanoscience and nanotechnology:Materials revolution for the 21(st) century, Sampe J,2001,37:24-31
    [5]Whitesides G M. Nanoscience, nanotechnology, and chemistry, Small,2005,1:172-179
    [6]Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries, Angew Chem Int Ed,2008,47:2930-2946
    [7]Ferrari M. Cancer nanotechnology:Opportunities and challenges, Nat Rev Cancer,2005,5: 161-171
    [8]Love J C, Estroff L A, Kriebel J K, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem Rev,2005,105:1103-1169
    [9]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics, Chem Rev,2005,105:1547-1562
    [10]Barth J V, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces, Nature,2005,437:671-679
    [11]Maynard A D, Aitken R J, Butz T, et al. Safe handling of nanotechnology, Nature,2006,444: 267-269
    [12]Huang Y, Duan X F, Wei Q Q, et al. Directed assembly of one-dimensional nanostructures into functional networks, Science,2001,291:630-633
    [13]Sun Y G, Mayers B, Xia Y N. Metal nanostructures with hollow interiors, Adv Mater,2003, 15:641-646
    [14]Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:Synthesis, characterization, and applications, Adv Mater,2003,15:353-389
    [15]Hamley I W. Nanotechnology with soft materials, Angew Chem Int Ed,2003,42:1692-1712
    [16]Chen X, Mao S S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications, Chem Rev,2007,107:2891-2959
    [17]Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem Rev,2004,104:293-346
    [18]Leininger S, Olenyuk B, Stang P J. Self-assembly of discrete cyclic nanostructures mediated by transition metals, Chem Rev,2000,100:853-907
    [19]Paul D R, Robeson L M. Polymer nanotechnology:Nanocomposites, Polymer,2008,49: 3187-3204
    [20]Jain P K, Huang X H, El-Sayed I H, et al. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, Acc Chem Res,2008,41:1578-1586
    [21]Guo S, Wang E. Noble metal nanomaterials:Controllable synthesis and application in fuel cells and analytical sensors, Nano Today,2011,6:240-264
    [22]Shang L, Dong S, Nienhaus G U. Ultra-small fluorescent metal-nanoclusters:Synthesis and biological applications, Nano Today,2011,6:401-418
    [23]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes, Chem Rev,2005,105:1025-1102
    [24]Giljohann D A, Seferos D S, Daniel W L, et al. Gold Nanoparticles for Biology and Medicine, Angew Chem Int Ed,2010,49:3280-3294
    [25]Daniel M-C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem Rev,2004,104:293-346
    [26]Boisselier E, Astruc D. Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity, Chem Soc Rev,2009,38:1759-1782
    [27]Cobley C M, Chen J, Cho E C, et al. Gold nanostructures:a class of multifunctional materials for biomedical applications, Chem Soc Rev,2011,40:44-56
    [28]Chou L Y T, Ming K, Chan W C W. Strategies for the intracellular delivery of nanoparticles, Chem Soc Rev,2011,40:233-245
    [29]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment, J Phys Chem B,2003,107:668-677
    [30]Uechi I, Yamada S. Photochemical and analytical applications of gold nanoparticles and nanorods utilizing surface plasmon resonance, Anal Bioanal Chem,2008,391:2411-2421
    [31]Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications, J Phys Chem B,2005,109:13857-13870
    [32]Huang X J, Choi Y K. Chemical sensors based on nanostructured materials, Sensor Actuat B-chem,2007,122:659-671
    [33]Qian X M, Peng X H, Ansari D O, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat Biotechnol,2008,26:83-90
    [34]Fan C H, Wang S, Hong J W, et al. Beyond superquenching:Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles, P Natl Acad Sci USA,2003,100: 6297-6301
    [35]Georganopoulou D G, Chang L, Nam J M, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease, P Natl Acad Sci USA, 2005,102:2273-2276
    [36]Thaxton C S, Elghanian R, Thomas A D, et al. Nanoparticle-based bio-barcode assay redefines "undetectable" PSA and biochemical recurrence after radical prostatectomy, P Natl Acad Sci USA,2009,106:18437-18442
    [37]Cao Y W C, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science,2002,297:1536-1540
    [38]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science,2003,301:1884-1886
    [39]Zhang J, Wang L H, Zhang H, et al. Aptamer-Based Multicolor Fluorescent Gold Nanoprobes for Multiplex Detection in Homogeneous Solution, Small,2010,6:201-204
    [40]Sanchez-Iglesias A, Pastoriza-Santos I, Perez-Juste J, et al. Synthesis and Optical Properties of Gold Nanodecahedra with Size Control, Adv Mater,2006,18:2529-2534
    [41]Dreaden E C, Alkilany A M, Huang X, et al. The golden age:gold nanoparticles for biomedicine, Chem Soc Rev,2012,41:2740-2779
    [42]Jain P K, Huang X H, El-Sayed I H, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems, Plasmonics,2007,2:107-118
    [43]Link S, EI-Sayed M A. Optical properties and ultrafast dynamics of metallic nanocrystals, Annu Rev Phys Chem,2003,54:331-366
    [44]Kreibig U, Vollmer M. Optical Properties of Metal Clusters, Berlin:Springer-Verlag,1995, 25:
    [45]Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem Soc Rev,2006,35:209-217
    [46]Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:Applications in biological imaging and biomedicine, J Phys Chem B,2006,110:7238-7248
    [47]El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes, Acc Chem Res,2001,34:257-264
    [48]Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, et al. Gold nanorods:Synthesis, characterization and applications, Coordin Chem Rev,2005,249:1870-1901
    [49]Huang X H, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J Am Chem Soc,2006,128:2115-2120
    [50]Jain P K, El-Sayed M A. Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells, Nano Lett,2007,7:2854-2858
    [51]Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications:recent advances and perspectives, Chem Soc Rev,2012,41:2256-2282
    [52]Hu M, Chen J Y, Li Z Y, et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications, Chem Soc Rev,2006,35:1084-1094
    [53]Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis, Chem Soc Rev,2012,41:2849-2866
    [54]Sperling R A, Gil P R, Zhang F, et al. Biological applications of gold nanoparticles, Chem Soc Rev,2008,37:1896-1908
    [55]Grabar K C, Freeman R G, Hommer M B, et al. Preparation and Characterization of Au Colloid Monolayers, Anal Chem,1995,67:735-743
    [56]Musick M D, Keating C D, Lyon L A, et al. Metal Films Prepared by Stepwise Assembly.2. Construction and Characterization of Colloidal Au and Ag Multilayers, Chem Mater,2000, 12:2869-2881
    [57]Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 run diameter gold nanoparticles, Langmuir,2001,17:6782-6786
    [58]Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution, J Am Chem Soc,2004,126:8648-8649
    [59]Frens G. Contralled nucleation for regulation of particle-size in monodisperse gold suspensions, Nat Phys Sci,1973,241:20-22
    [60]Grzelczak M, Perez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis, Chem Soc Rev,2008,37:1783-1791
    [61]Zhou J F, Ralston J, Sedev R, et al. Functionalized gold nanoparticles:Synthesis, structure and colloid stability, J Colloid Interf Sci,2009,331:251-262
    [62]Murphy C J, Gole A M, Stone J W, et al. Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging, Acc Chem Res,2008,41:1721-1730
    [63]Huang X H, Neretina S, El-Sayed M A. Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications, Adv Mater,2009,21:4880-4910
    [64]Vigderman L, Khanal B P, Zubarev E R. Functional Gold Nanorods:Synthesis, Self-Assembly, and Sensing Applications, Adv Mater,2012,24:4811-4841
    [65]Busbee B D, Obare S O, Murphy C J. An improved synthesis of high-aspect-ratio gold nanorods, Adv Mater,2003,15:414-+
    [66]Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem Mater,2003,15:1957-1962
    [67]Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods:Role of the size and nature of the seed, Chem Mater,2004,16:3633-3640
    [68]Yu, Chang S-S, Lee C-L, et al. Gold Nanorods:Electrochemical Synthesis and Optical Properties, J Phys Chem B,1997,101:6661-6664
    [69]Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods, J Am Chem Soc, 2002,124:14316-14317
    [70]Gao C B, Zhang Q, Lu Z D, et al. Templated Synthesis of Metal Nanorods in Silica Nanotubes, J Am Chem Soc,2011,133:19706-19709
    [71]Gou L F, Murphy C J. Fine-tuning the shape of gold nanorods, Chem Mater,2005,17: 3668-3672
    [72]Orendorff C J, Hankins P L, Murphy C J. pH-triggered assembly of gold nanorods, Langmuir,2005,21:2022-2026
    [73]Ali M R K, Snyder B, El-Sayed M A. Synthesis and Optical Properties of Small Au Nanorods Using a Seedless Growth Technique, Langmuir,2012,28:9807-9815
    [74]Ye X, Jin L, Caglayan H, et al. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives, Acs Nano,2012,6:2804-2817
    [75]Lourdu Xavier P, Chaudhari K, Baksi A, et al. Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience, Nano Reviews,2012,3: 14767
    [76]Huang C C, Yang Z, Lee K H, et al. Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II), Angew Chem Int Ed,2007,46:6824-6828
    [77]Yan L, Cai Y Q, Zheng B Z, et al. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission, J Mater Chem,2012,22:1000-1005
    [78]Heinecke C L, Ni T W, Malola S, et al. Structural and Theoretical Basis for Ligand Exchange on Thiolate Monolayer Protected Gold Nanoclusters, J Am Chem Soc,2012,134: 13316-13322
    [79]Wu Z W, Gayathri C, Gil R R, et al. Probing the Structure and Charge State of Glutathione-Capped Au25(SG)18 Clusters by NMR and Mass Spectrometry, J Am Chem Soc, 2009,131:6535-6542
    [80]Xie J, Zheng Y, Ying J Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters, J Am Chem Soc,2009,131:888-889
    [81]Jin R. Quantum sized, thiolate-protected gold nanoclusters, Nanoscale,2010,2:343-362
    [82]Zheng J, Zhou C, Yu M, et al. Different sized luminescent gold nanoparticles, Nanoscale, 2012,4:4073-4083
    [83]Annie Ho J-a, Chang H-C, Su W-T. DOPA-Mediated Reduction Allows the Facile Synthesis of Fluorescent Gold Nanoclusters for Use as Sensing Probes for Ferric Ions, Anal Chem,2012,84:3246-3253
    [84]Lin Y H, Tseng W L. Ultrasensitive Sensing of Hg2+and CH3Hg+Based on the Fluorescence Quenching of Lysozyme Type Ⅵ-Stabilized Gold Nanoclusters, Anal Chem, 2010,82:9194-9200
    [85]Wen F, Dong Y H, Feng L, et al. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing, Anal Chem,2011,83:1193-1196
    [86]Peng J, Feng L-N, Zhang K, et al. Calcium Carbonate-Gold Nanocluster Hybrid Spheres: Synthesis and Versatile Application in Immunoassays, Chem Eur J,2012,18:5261-5268
    [87]Tian D, Qian Z, Xia Y, et al. Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells, Langmuir,2012,28:3945-3951
    [88]Wang H-H, Lin C-A J, Lee C-H, et al. Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells, Acs Nano,2011,5: 4337-4344
    [89]Liu C-L, Wu H-T, Hsiao Y-H, et al. Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters:Preservation of Insulin Bioactivity and Versatility in Cell Imaging, Angew Chem Int Ed,2011,50:7056-7060
    [90]Wang C, Li J, Amatore C, et al. Gold Nanoclusters and Graphene Nanocomposites for Drug Delivery and Imaging of Cancer Cells, Angew Chem Int Ed,2011,50:11644-11648
    [91]Sun C, Yang H, Yuan Y, et al. Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging, J Am Chem Soc,2011,133:8617-8624
    [92]Chen H, Li S, Li B, et al. Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy, Nanoscale,2012,4:6050-6064
    [93]Wu X, He X, Wang K, et al. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo, Nanoscale,2010,2:2244-2249
    [94]Shang L, Azadfar N, Stockmar F, et al. One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging, Small,2011,7:2614-2620
    [95]Zheng J, Zhang C W, Dickson R M. Highly fluorescent, water-soluble, size-tunable gold quantum dots, Phys Rev Lett,2004,93:077402
    [96]Das T, Ghosh P, Shanavas M S, et al. Protein-templated gold nanoclusters:size dependent inversion of fluorescence emission in the presence of molecular oxygen, Nanoscale,2012,4: 6018-6024
    [97]Chen C-T, Chen W-J, Liu C-Z, et al. Glutathione-bound gold nanoclusters for selective-binding and detection of glutathione S-transferase-fusion proteins from cell lysates, Chem Commun,2009,7515-7517
    [98]Shang L, Yang L X, Stockmar F, et al. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+in living cells using fluorescence imaging, Nanoscale, 2012,4:4155-4160
    [99]Triulzi R C, Micic M, Giordani S, et al. Immunoasssay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex, Chem Commun,2006,5068-5070
    [100]Gonzalez B S, Rodriguez M J, Blanco C, et al. One Step Synthesis of the Smallest Photo luminescent and Paramagnetic PVP-Protected Gold Atomic Clusters, Nano Lett,2010,10: 4217-4221
    [101]Chen W-Y, Lan G-Y, Chang H-T. Use of Fluorescent DNA-Templated Gold/Silver Nanoclusters for the Detection of Sulfide Ions, Anal Chem,2011,83:9450-9455
    [102]Wei H, Wang Z D, Yang L M, et al. Lysozyme-stabilized gold fluorescent cluster:Synthesis and application as Hg2+sensor, Analyst,2010,135:1406-1410
    [103]Lin C A J, Lee C H, Hsieh J T, et al. Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application:Recent Progress and Present Challenges, J Med Biol Eng,2009,29: 276-283
    [104]Chen S J, Chang H T. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation, Anal Chem,2004,76:3727-3734
    [105]Lee S, Cha E J, Park K, et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination, Angew Chem Int Ed,2008,47:2804-2807
    [106]Lin Z, Zhang G, Yang W, et al. CEA fluorescence biosensor based on the FRET between polymer dots and Au nanoparticles, Chem Commun,2012,48:9918-9920
    [107]Maxwell D J, Taylor J R, Nie S M. Self-assembled nanoparticle probes for recognition and detection of biomolecules, J Am Chem Soc,2002,124:9606-9612
    [108]Oh E, Hong M Y, Lee D, et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles, J Am Chem Soc,2005,127:3270-3271
    [109]Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:Radiative and nonradiative effects, Phys Rev Lett,2002, 89:203002
    [110]Huang C-C, Chiu S-H, Huang Y-F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor, Anal Chem,2007,79: 4798-4804
    [111]Liu D B, Wang Z, Jiang X Y. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules, Nanoscale,2011,3:1421-1433
    [112]Wang Z D, Lee J H, Lu Y. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme, Adv Mater,2008,20:3263-+
    [113]Chen S, Fang Y-M, Xiao Q, et al. Rapid visual detection of aluminium ion using citrate capped gold nanoparticles, Analyst,2012,137:2021-2023
    [114]Huy G D, Zhang M, Zuo P, et al. Multiplexed analysis of silver(i) and mercury(ii) ions using oligonucletide-metal nanoparticle conjugates, Analyst,2011,136:3289-3294
    [115]Wu S P, Chen Y P, Sung Y M. Colorimetric detection of Fe(3+) ions using pyrophosphate functionalized gold nanoparticles, Analyst,2011,136:1887-1891
    [116]Wu Y, Liu L, Zhan S, et al. Ultrasensitive aptamer biosensor for arsenic(iii) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles, Analyst, 2012,137:4171-4178
    [117]Xue Y, Zhao H, Wu Z, et al. Colorimetric detection of Cd2+using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and 1-Cysteine, Analyst,2011,136: 3725-3730
    [118]Zhang M, Liu Y-Q, Ye B-C. Colorimetric assay for parallel detection of Cd2+, Ni2+and Co2+using peptide-modified gold nanoparticles, Analyst,2012,137:601-607
    [119]Zhang Z, Zhang J, Lou T, et al. Label-free colorimetric sensing of cobalt(ii) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine, Analyst,2012,137:400-405
    [120]Lin C Y, Yu C J, Lin Y H, et al. Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles, Anal Chem,2010,82: 6830-6837
    [121]Liu D B, Qu W S, Chen W W, et al. Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature, Anal Chem,2010,82:9606-9610
    [122]Wang H, Wang Y X, Jin J Y, et al. Gold Nanoparticle-Based Colorimetric and "Turn-On" Fluorescent Probe for Mercury(II) Ions in Aqueous Solution, Anal Chem,2008,80: 9021-9028
    [123]Kim S, Park J W, Kim D, et al. Bioinspired Colorimetric Detection of Calcium(II) Ions in Serum Using Calsequestrin-Functionalized Gold Nanoparticles, Angew Chem Int Ed,2009, 48:4138-4141
    [124]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles, Angew Chem Int Ed,2007,46: 4093-4096
    [125]Xu X W, Wang J, Jiao K, et al. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range, Biosens Bioelectron,2009,24:3153-3158
    [126]Huang C C, Chang H T. Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles, Chem Commun,2007,1215-1217
    [127]Li W, Nie Z, He K Y, et al. Simple, rapid and label-free colorimetric assay for Zn(2+) based on unmodified gold nanoparticles and specific Zn(2+) binding peptide, Chem Commun, 2011,47:4412-4414
    [128]Lee J H, Wang Z D, Liu J W, et al. Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO22+):Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems, J Am Chem Soc,2008,130:14217-14226
    [129]Ding N, Cao Q A, Zhao H, et al. Colorimetric Assay for Determination of Lead (II) Based on Its Incorporation into Gold Nanoparticles during Their Synthesis, Sensors,2010,10: 11144-11155
    [130]Leng B, Zou L, Jiang J B, et al. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles, Sensor Actuat B-chem,2009, 140:162-169
    [131]Xu X Y, Daniel W L, Wei W, et al. Colorimetric Cu2+Detection Using DNA-Modified Gold-Nanoparticle Aggregates as Probes and Click Chemistry, Small,2010,6:623-626
    [132]Wang J, Wang L H, Liu X F, et al. A gold nanoparticle-based aptamer target binding readout for ATP assay, Adv Mater,2007,19:3943-3944
    [133]Chen Z, Wang Z, Chen J, et al. Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes, Analyst, 2012,137:3132-3137
    [134]Fu X, Chen L, Li J. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide, Analyst,2012,137:3653-3658
    [135]Li L, Li B X. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes, Analyst,2009,134:1361-1365
    [136]Liang X S, Wei H P, Cui Z Q, et al. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles, Analyst,2011,136:179-183
    [137]Liu J W, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor, Anal Chem,2004,76: 1627-1632
    [138]Radhakumary C, Sreenivasan K. Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold Nanoparticles, Anal Chem,2011,83:2829-2833
    [139]Jiang Y, Zhao H, Lin Y Q, et al. Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles, Angew Chem Int Ed,2010,49:4800-4804
    [140]Chen S J, Huang Y F, Huang C C, et al. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles, Biosens Bioelectron,2008,23:1749-1753
    [141]Wu Z J, Zhao H, Xue Y, et al. Colorimetric detection of melamine during the formation of gold nanoparticles, Biosens Bioelectron,2011,26:2574-2578
    [142]Cao R, Li B X. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes, Chem Commun,2011,47: 2865-2867
    [143]Zheng Y, Wang Y, Yang X R. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles, Sensor Actuat B-chem,2011,156:95-99
    [144]Lee J S, Ulmann P A, Han M S, et al. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine, Nano Lett,2008,8:529-533
    [145]Huang C-C, Huang Y-F, Cao Z H, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors, Anal Chem, 2005,77:5735-5741
    [146]Kong H, Lu Y, Wang H, et al. Protein Discrimination Using Fluorescent Gold Nanoparticles on Plasmonic Substrates, Anal Chem,2012,84:4258-4261
    [147]Thanh N T K, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles, Anal Chem,2002,74:1624-1628
    [148]Zhu K, Zhang Y, He S, et al. Quantification of Proteins by Functionalized Gold Nanoparticles Using Click Chemistry, Anal Chem,2012,84:4267-4270
    [149]Xu X Y, Han M S, Mirkin C A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition, Angew Chem Int Ed,2007,46: 3468-3470
    [150]Zhu Z, Wu C, Liu H, et al. An Aptamer Cross-Linked Hydrogel as a Colorimetric Platform for Visual Detection, Angew Chem Int Ed,2010,49:1052-1056
    [151]Chen C K, Huang C C, Chang H T. Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay, Biosens Bioelectron,2010, 25:1922-1927
    [152]Jiang T T, Liu R R, Huang X F, et al. Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles, Chem Commun,2009, 1972-1974
    [153]Pan Y, Guo M, Nie Z, et al. Colorimetric detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles, Chem Commun,2012,48:997-999
    [154]Tsai C S, Yu T B, Chen C T. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions, Chem Commun,2005,4273-4275
    [155]Wang Y L, Li D, Ren W, et al. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay, Chem Commun,2008,2520-2522
    [156]Wei H, Li B L, Li J, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes, Chem Commun,2007,3735-3737
    [157]Wang Z X, Levy R, Fernig D G, et al. Kinase-catalyzed modification of gold nanoparticles: A new approach to colorimetric kinase activity screening, J Am Chem Soc,2006,128: 2214-2215
    [158]Xie C, Xu F G, Huang X Y, et al. Single Gold Nanoparticles Counter:An Ultrasensitive Detection Platform for One-Step Homogeneous Immunoassays and DNA Hybridization Assays, J Am Chem Soc,2009,131:12763-12770
    [159]Xie X J, Xu W, Li T H, et al. Colorimetric Detection of HIV-1 Ribonuclease H Activity by Gold Nanoparticles, Small,2011,7:1393-1396
    [160]Deng H, Xu Y, Liu Y, et al. Gold Nanoparticles with Asymmetric Polymerase Chain Reaction for Colorimetric Detection of DNA Sequence, Anal Chem,2012,84:1253-1258
    [161]He Y, Zeng K, Gurung A S, et al. Visual Detection of Single-Nucleotide Polymorphism with Hairpin Oligonucleotide-Functionalized Gold Nanoparticles, Anal Chem,2010,82: 7169-7177
    [162]Ou L-J, Jin P-Y, Chu X, et al. Sensitive and Visual Detection of Sequence-Specific DNA-Binding Protein via a Gold Nanoparticle-Based Colorimetric Biosensor, Anal Chem, 2010,82:6015-6024
    [163]Liu Y, Wu Z, Zhou G, et al. Simple, rapid, homogeneous oligonucleotides colorimetric detection based on non-aggregated gold nanoparticles, Chem Commun,2012,48:3164-3166
    [164]Wang L H, Liu X F, Hu X F, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers, Chem Commun,2006,3780-3782
    [165]Jian J W, Huang C C. Colorimetric Detection of DNA by Modulation of Thrombin Activity on Gold Nanoparticles, Chem Eur J,2011,17:2374-2380
    [166]Li H X, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, P Natl Acad Sci USA,2004,101: 14036-14039
    [167]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science,1997,277:1078-1081
    [168]Medley C D, Smith J E, Tang Z, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells, Anal Chem,2008,80:1067-1072
    [169]Wang L, Zhu Y, Xu L, et al. Side-by-Side and End-to-End Gold Nanorod Assemblies for Environmental Toxin Sensing, Angew Chem Int Ed,2010,49:5472-5475
    [170]Jiang Y, Zhao H, Zhu N N, et al. A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles, Angew Chem Int Ed,2008, 47:8601-8604
    [171]Lacerda S H D P, Park J J, Meuse C, et al. Interaction of Gold Nanoparticles with Common Human Blood Proteins, Acs Nano,2009,4:365-379
    [172]Bettmer J, Jakubowski N, Prange A. Elemental tagging in inorganic mass spectrometric bioanalysis, Anal Bioanal Chem,2006,386:7-11
    [173]Sanz-Medel A, Montes-Bayon M, Fernandez de la Campa M R, et al. Elemental mass spectrometry for quantitative proteomics, Anal Bioanal Chem,2008,390:3-16
    [174]Prange A, Profrock D. Chemical labels and natural element tags for the quantitative analysis of bio-molecules, J Anal At Spectrom,2008,23:432-459
    [175]Zhao Q, Lu X F, Yuan C-G, et al. Aptamer-Linked Assay for Thrombin Using Gold Nanoparticle Amplification and Inductively Coupled Plasma-Mass Spectrometry Detection, Anal Chem,2009,81:7484-7489
    [176]Li F, Zhao Q, Wang C A, et al. Detection of Escherichia coli O157:H7 Using Gold Nanoparticle Labeling and Inductively Coupled Plasma Mass Spectrometry, Anal Chem, 2010,82:3399-3403
    [177]Hu S H, Liu R, Zhang S C, et al. A New Strategy for Highly Sensitive Immunoassay Based on Single-Particle Mode Detection by Inductively Coupled Plasma Mass Spectrometry, J Am Soc Mass Spectr,2009,20:1096-1103
    [178]Han G, Xing Z, Dong Y, et al. One-Step Homogeneous DNA Assay with Single-Nanoparticle Detection, Angew Chem Int Ed,2011,50:3462-3465
    [179]Zhang S C, Zhang C, Xing Z, et al. Simultaneous determination of alpha-fetoprotein and free beta-human chorionic gonadotropin by element-tagged immunoassay with detection by inductively coupled plasma mass Spectrometry, Clin Chem,2004,50:1214-1221
    [180]Hu S H, Zhang S C, Hu Z C, et al. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies, Anal Chem,2007,79:923-929
    [181]Ornatsky O I, Kinach R, Bandura D R, et al. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry, J Anal At Spectrom, 2008,23:463-469
    [182]Terenghi M, Elviri L, Careri M, et al. Multiplexed Determination of Protein Biomarkers Using Metal-Tagged Antibodies and Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry, Anal Chem,2009,81:9440-9448
    [183]Yang M W, Wang Z W, Fang L, et al. Simultaneous and ultra-sensitive quantification of multiple peptides by using europium chelate labeling and capillary electrophoresis-inductively coupled plasma mass spectrometry, J Anal At Spectrom,2012,27: 946-951
    [184]Liu Y L, Ai K L, Cheng X L, et al. Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water, Adv Funct Mater,2010,20:951-956
    [185]Hu D H, Sheng Z H, Gong P, et al. Highly selective fluorescent sensors for Hg2+based on bovine serum albumin-capped gold nanoclusters, Analyst,2010,135:1411-1416
    [186]Xie J P, Zheng Y G, Ying J Y. Highly selective and ultrasensitive detection of Hg2+based on fluorescence quenching of Au nanoclusters by Hg2+-Au+interactions, Chem Commun, 2010,46:961-963
    [187]Yuan Z, Peng M, He Y, et al. Functionalized fluorescent gold nanodots:synthesis and application for Pb2+sensing, Chem Commun,2011,47:11981-11983
    [188]Tu X J, Chen W B, Guo X Q. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (Ⅱ), Nanotechnology,2011,22:095701
    [189]He Y, Wang X, Zhu J, et al. Ni2+-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids, Analyst,2012,137:4005-4009
    [190]Li L L, Liu H Y, Shen Y Y, et al. Electro generated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine, Anal Chem,2011,83:661-665
    [191]Hu L, Han S, Parveen S, et al. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters, Biosens Bioelectron,2012,32:297-299
    [192]Shang L, Dorlich R M, Brandholt S, et al. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications, Nanoscale,2011,3:2009-2014
    [193]Huang C C, Chiang C K, Lin Z H, et al. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching, Anal Chem,2008,80:1497-1504
    [1]Prange A, Profrock D. Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics: challenges, developments, and limitations, Anal Bioanal Chem,2005,383:372-389
    [2]Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics, Analyst,2005,130:442-465
    [3]Zhang H Q, Wang Z W, Li X-F, et al. Ultrasensitive detection of proteins by amplification of affinity aptamers, Angew Chem Int Ed,2006,45:1576-1580
    [4]Zhang H Q, Zhao Q, Li X-F, et al. Ultrasensitive assays for proteins, Analyst,2007,132: 724-737
    [5]Thomson D M P, Krupey J, Freedman S O, et al. RADIOIMMUNOASSAY OF CIRCULATING CARCINOEMBRYONIC ANTIGEN OF HUMAN DIGESTIVE SYSTEM, P Natl Acad Sci USA,1969,64:161-167
    [6]Pradelles P, Grassi J, Maclouf J. ENZYME IMMUNOASSAYS OF EICOSANDOIDS USING ACETYLCHOLINE ESTERASE AS LABEL-AN ALTERNATIVE TO RADIOIMMUNOASSAY, Anal Chem,1985,57:1170-1173
    [7]Potyrailo R A, Conrad R C, Ellington A D, et al. Adapting selected nucleic acid ligands (aptamers) to biosensors, Anal Chem,1998,70:3419-3425
    [8]Furtado L M, Su H B, Thompson M, et al. Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector, Anal Chem,1999,71:1167-1175
    [9]Bizzarri A R, Cannistraro S. SERS detection of thrombin by protein recognition using functionalized gold nanoparticles, Nanomed-Nanotech Biol Med,2007,3:306-310
    [10]Baranov V I, Quinn Z, Bandura D R, et al. A Sensitive and Quantitative Element-Tagged Immunoassay with ICPMS Detection, Anal Chem,2002,74:1629-1636
    [11]Bettmer J, Jakubowski N, Prange A. Elemental tagging in inorganic mass spectrometric bioanalysis, Anal Bioanal Chem,2006,386:7-11
    [12]Iwahata D, Hirayama K, Miyano H. A highly sensitive analytical method for metal-labelled amino acids by HPLC/ICP-MS, J Anal At Spectrom,2008,23:1063-1067
    [13]Jakubowski N, Waentig L, Hayen H, et al. Labelling of proteins with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra acetic acid and lanthanides and detection by ICP-MS, J Anal At Spectrom,2008,23:1497-1507
    [14]Lou X D, Zhang G H, Herrera I, et al. Polymer-based elemental tags for sensitive Bioassays, Angew Chem Int Ed,2007,46:6111-6114
    [15]Prange A, Profrock D. Chemical labels and natural element tags for the quantitative analysis of bio-molecules, J Anal At Spectrom,2008,23:432-459
    [16]Sanz-Medel A, Montes-Bayon M, Fernandez de la Campa M R, et al. Elemental mass spectrometry for quantitative proteomics, Anal Bioanal Chem,2008,390:3-16
    [17]Terenghi M, Elviri L, Careri M, et al. Multiplexed Determination of Protein Biomarkers Using Metal-Tagged Antibodies and Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry, Anal Chem,2009,81:9440-9448
    [18]Zhang C, Zhang Z Y, Yu B B, et al. Application of the Biological Conjugate between Antibody and Colloid Au Nanoparticles as Analyte to Inductively Coupled Plasma Mass Spectrometry, Anal Chem,2002,74:96-99
    [19]Zhao Q, Lu X F, Yuan C-G, et al. Aptamer-Linked Assay for Thrombin Using Gold Nanoparticle Amplification and Inductively Coupled Plasma-Mass Spectrometry Detection, Anal Chem,2009,81:7484-7489
    [20]Zhang C, Wu F B, Zhang X R. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum, J Anal At Spectrom,2002,17:1304-1307
    [21]Merkoci A, Aldavert M, Tarrason G, et al. Toward an ICPMS-Linked DNA Assay Based on Gold Nanoparticles Immunoconnected through Peptide Sequences, Anal Chem,2005,77: 6500-6503
    [22]Lu Y Y, Wang W J, Xing Z, et al. Development of an ICP-MS immunoassay for the detection of anti-erythropoietin antibodies, Talanta,2009,78:869-873
    [23]Li F, Zhao Q, Wang C A, et al. Detection of Escherichia coli O157:H7 Using Gold Nanoparticle Labeling and Inductively Coupled Plasma Mass Spectrometry, Anal Chem, 2010,82:3399-3403
    [24]Xu M, Yan X, Xie Q, et al. Dynamic Labeling Strategy with 204Hg-Isotopic Methylmercurithiosalicylate for Absolute Peptide and Protein Quantification, Anal Chem, 2010,82:1616-1620
    [25]Quinn Z A, Baranov V I, Tanner S D, et al. Simultaneous determination of proteins using an element-tagged immunoassay coupled with ICP-MS detection, J Anal At Spectrom,2002,17: 892-896
    [26]Zhang S C, Zhang C, Xing Z, et al. Simultaneous determination of alpha-fetoprotein and free beta-human chorionic gonadotropin by element-tagged immunoassay with detection by inductively coupled plasma mass Spectrometry, Clin Chem,2004,50:1214-1221
    [27]Miiller S D, Diaz-Bone R A, Felix J, et al. Detection of specific proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using gold cluster labelled antibodies, J Anal At Spectrom,2005,20:907-911
    [28]Omatsky O, Baranov V I, Bandura D R, et al. Multiple cellular antigen detection by ICP-MS, J Immunol Methods,2006,308:68-76
    [29]Hu S H, Zhang S C, Hu Z C, et al. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies, Anal Chem,2007,79:923-929
    [30]Tanner S D, Ornatsky O, Bandura D R, et al. Multiplex bio-assay with inductively coupled plasma mass spectrometry:Towards a massively multivariate single-cell technology, Spectrochim Acta B,2007,62:188-195
    [31]Ornatsky O I, Kinach R, Bandura D R, et al. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry, J Anal At Spectrom, 2008,23:463-469
    [32]Hu S H, Liu R, Zhang S C, et al. A New Strategy for Highly Sensitive Immunoassay Based on Single-Particle Mode Detection by Inductively Coupled Plasma Mass Spectrometry, J Am Soc Mass Spectr,2009,20:1096-1103
    [33]Ammann A A. Inductively coupled plasma mass spectrometry (ICP MS):a versatile tool, J Mass Spectrom,2007,42:419-427
    [34]Careri M, Elviri L, Mangia A, et al. ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods, Anal Bioanal Chem,2007, 387:1851-1854
    [35]Mogensen C E, Steffes M W, Myers B D, et al. MICROALBUMINURIA AS A PREDICTOR OF CLINICAL DIABETIC NEPHROPATHY, Kidney Int,1987,31:673-689
    [36]Vigstrup J, Mogensen C E. PROLIFERATIVE DIABETIC-RETINOPATHY-AT RISK PATIENTS IDENTIFIED BY EARLY DETECTION OF MICROALBUMINURIA, Acta Ophthalmol,1985,63:530-534
    [37]Li Y, Liu J-M, Xia Y-L, et al. CE with on-line detection by ICP-MS for studying the competitive binding of zinc against cadmium for glutathione, Electrophoresis,2008,29: 4568-4574
    [38]Grabar K C, Freeman R G, Hommer M B, et al. Preparation and Characterization of Au Colloid Monolayers, Anal Chem,1995,67:735-743
    [39]Musick M D, Keating C D, Lyon L A, et al. Metal Films Prepared by Stepwise Assembly.2. Construction and Characterization of Colloidal Au and Ag Multilayers, Chem Mater,2000, 12:2869-2881
    [40]Nath N, Chilkoti A. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface, Anal Chem,2002,74:504-509
    [41]Haiss W, Thanh N T K, Aveyard J, et al. Determination of size and concentration of gold nanoparticles from UV-Vis spectra, Anal Chem,2007,79:4215-4221
    [42]Pihlasalo S, Kirjavainen J, Hanninen P, et al. Ultrasensitive Protein Concentration Measurement Based on Particle Adsorption and Fluorescence Quenching, Anal Chem,2009, 81:4995-5000
    [43]Pramanik S, Banerjee P, Sarkar A, et al. Size-dependent interaction of gold nanoparticles with transport protein:A spectroscopic study, J Lumin,2008,128:1969-1974
    [1]Sanz-Medel A. Heteroatom(isotope)-tagged genomics and proteomics, Anal Bioanal Chem, 2008,390:1-2
    [2]Sanz-Medel A, Montes-Bayon M, Fernandez de la Campa M R, et al. Elemental mass spectrometry for quantitative proteomics, Anal Bioanal Chem,2008,390:3-16
    [3]Hanash S. Disease proteomics, Nature,2003,422:226-232
    [4]Bettmer J, Jakubowski N, Prange A. Elemental tagging in inorganic mass spectrometric bioanalysis, Anal Bioanal Chem,2006,386:7-11
    [5]Brecht A, Abuknesha R. Multi-analyte immunoassays application to environmental analysis, Trac-Trends Anal Chem,1995,14:361-371
    [6]Delehanty J B, Ligler F S. A microarray immunoassay for simultaneous detection of proteins and bacteria, Anal Chem,2002,74:5681-5687
    [7]Moreno-Bondi M C, Alarie J P, Vo-Dinh T. Multi-analyte analysis system using an antibody-based biochip, Anal Bioanal Chem,2003,375:120-124
    [8]Rowe C A, Scruggs S B, Feldstein M J, et al. An array immunosensor for simultaneous detection of clinical analytes, Anal Chem,1999,71:433-439
    [9]Caulum M M, Henry C S. Multi-analyte immunoassay using cleavable tags and microchip micellular electrokinetic chromatography, Analyst,2006,131:1091-1093
    [10]Ekins R P. MULTI-ANALYTE IMMUNOASSAY, J Pharmaceut Biomed,1989,7:155-168
    [11]Koets M, van der Wijk T, van Eemeren J T W M, et al. Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor, Biosens Bioelectron,2009,24:1893-1898
    [12]Zhang B, Zhang X, Yan H H, et al. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor, Biosens Bioelectron, 2007,23:19-25
    [13]Perfetto S P, Chattopadhyay P K, Roederer M. Innovation-Seventeen-colour flow cytometry:unravelling the immune system, Nat Rev Immunol,2004,4:648-655
    [14]Hempen C, Karst U. Labeling strategies for bioassays, Anal Bioanal Chem,2006,384: 572-583
    [15]Prange A, Profrock D. Chemical labels and natural element tags for the quantitative analysis of bio-molecules, J Anal At Spectrom,2008,23:432-459
    [16]Prange A, Profrock D. Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics: challenges, developments, and limitations, Anal Bioanal Chem,2005,383:372-389
    [17]Razumienko E, Ornatsky O, Kinach R, et al. Element-tagged immunoassay with ICP-MS detection:Evaluation and comparison to conventional immunoassays, J Immunol Methods, 2008,336:56-63
    [18]Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing:aptamers for ligand binding, Trac-Trends Anal Chem,2003,22:810-818
    [19]Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers, Biosens Bioelectron,2005,20:2424-2434
    [20]Hamula C L A, Guthrie J W, Zhang H Q, et al. Selection and analytical applications of aptamers, Trac-Trends Anal Chem,2008,25:681-691
    [21]Song S P, Wang L H, Li J, et al. Aptamer-based biosensors, Trac-Trends Anal Chem,2008, 27:108-117
    [22]Liu J W, Cao Z H, Lu Y. Functional Nucleic Acid Sensors, Chem Rev,2009,109: 1948-1998
    [23]Pierluissi J, Campbell J. METASOMATOTROPHIC DIABETES AND ITS INDUCTION-BASAL INSULIN-SECRETION AND INSULIN RELEASE RESPONSES TO GLUCOSE, GLUCAGON, ARGININE AND MEALS, Diabetologia,1980,18:223-228
    [24]Dincer Y, Himmetoglu S, Yalin S, et al. Serum levels of p53 and cytochrome c in subjects with type 2 diabetes and impaired glucose tolerance, Clin Invest Med,2009,32:E266-E270
    [25]Osaka A, Hasegawa H, Yamada Y, et al. A novel role of serum cytochrome c as a tumor marker in patients with operable cancer, J Cancer Res Clin,2009,135:371-377
    [26]Zhao Q, Li X-F, Le X C. Aptamer-modified monolithic capillary chromatography for protein separation and detection, Anal Chem,2008,80:3915-3920
    [27]Chinnapen D J F, Sen D. Hemin-stimulated docking of cytochrome c to a hemin-DNA aptamer complex, Biochemistry,2002,41:5202-5212
    [28]Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres, Angew Chem Int Ed,2005,44:2782-2785
    [29]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interf Sci,1968,26:62-69
    [30]He Y P, Wang S Q, Li C R, et al. Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications, J Phys D Appl Phys,2005,38:1342-1350
    [31]Grabar K C, Freeman R G, Hommer M B, et al. Preparation and Characterization of Au Colloid Monolayers, Anal Chem,1995,67:735-743
    [32]Musick M D, Keating C D, Lyon L A, et al. Metal Films Prepared by Stepwise Assembly.2. Construction and Characterization of Colloidal Au and Ag Multilayers, Chem Mater,2000, 12:2869-2881
    [33]Lee P C, Meisel D. ADSORPTION AND SURFACE-ENHANCED RAMAN OF DYES ON SILVER AND GOLD SOLS, J Phys Chem,1982,86:3391-3395
    [34]Zhao Q, Lu X F, Yuan C-G, et al. Aptamer-Linked Assay for Thrombin Using Gold Nanoparticle Amplification and Inductively Coupled Plasma-Mass Spectrometry Detection, Anal Chem,2009,81:7484-7489
    [35]Huang C-C, Chiu S-H, Huang Y-F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor, Anal Chem,2007,79: 4798-4804
    [36]Huang Y-F, Lin Y-W, Lin Z-H, et al. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering, J Nanopart Res,2009,11:775-783
    [37]Ling J, Li Y F, Huang C Z. Visual Sandwich Immunoassay System on the Basis of Plasmon Resonance Scattering Signals of Silver Nanoparticles, Anal Chem,2009,81: 1707-1714
    [38]El-Boubbou K, Gruden C, Huang X F. Magnetic glyco-nanoparticles:A unique tool for rapid pathogen detection, decontamination, and strain differentiation, J Am Chem Soc,2007, 129:13392-13393
    [39]Cheng Y X, Liu Y J, Huang J J, et al. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli, Talanta,2009,77:1332-1336
    [40]Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-Ⅰ. Theory, Anal Biochem,1998,262:137-156
    [41]Sakaida I, Kimura T, Yamasaki T, et al. Cytochrome c is a possible new marker for fulminant hepatitis in humans, J Gastroenterol,2005,40:179-185
    [42]Ho J A A, Zeng S C, Huang M R, et al. Development of liposomal immunosensor for the measurement of insulin with femtomole detection, Anal Chim Acta,2006,556:127-132
    [1]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature,1996,382:607-609
    [2]Haes A J, Van Duyne R P. A nanoscale optical blosensor:Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J Am Chem Soc,2002,124:10596-10604
    [3]Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors, Nat Mater, 2008,7:442-453
    [4]Alivisatos P. The use of nanocrystals in biological detection, Nat Biotechnol,2004,22:47-52
    [5]El-Sayed I H, Huang X H, El-Sayed M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer, Nano Lett,2005,5:829-834
    [6]Reinhard B M, Sheikholeslami S, Mastroianni A, et al. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes, P Natl Acad Sci USA,2007,104:2667-2672
    [7]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics, Chem Rev,2005,105:1547-1562
    [8]Azzazy H M E, Mansour M M H, Kazmierczak S C. Nanodiagnostics:A New Frontier for Clinical Laboratory Medicine, Clin Chem,2006,52:1238-1246
    [9]Huang X H, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J Am Chem Soc,2006,128:2115-2120
    [10]Jain P K, El-Sayed IH, El-Sayed M A. Au nanoparticles target cancer, Nano Today,2007,2: 18-29
    [11]Link S, EI-Sayed M A. Optical properties and ultrafast dynamics of metallic nanocrystals, Annu Rev Phys Chem,2003,54:331-366
    [12]Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:Applications in biological imaging and biomedicine, J Phys Chem B,2006,110:7238-7248
    [13]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment, J Phys Chem B,2003,107:668-677
    [14]El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes, Acc Chem Res,2001,34:257-264
    [15]Huang X H, Neretina S, El-Sayed M A. Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications, Adv Mater,2009,21:4880-4910
    [16]Uechi I, Yamada S. Photochemical and analytical applications of gold nanoparticles and nanorods utilizing surface plasmon resonance, Anal Bioanal Chem,2008,391:2411-2421
    [17]Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, et al. Gold nanorods:Synthesis, characterization and applications, Coordin Chem Rev,2005,249:1870-1901
    [18]Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications, J Phys Chem B,2005,109:13857-13870
    [19]Jain P K, Huang X H, El-Sayed I H, et al. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, Acc Chem Res,2008,41:1578-1586
    [20]Castellana E T, Gamez R C, Russell D H. Label-Free Biosensing with Lipid-Functionalized Gold Nanorods, J Am Chem Soc,2011,133:4182-4185
    [21]Liu A-C, Chen D-C, Lin C-C, et al. Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II), Anal Chem,1999,71:1549-1552
    [22]Yang W R, Jaramillo D, Gooding J J, et al. Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes, Chem Commun,2001,1982-1983
    [23]Salaun P, van den Berg C M G. Voltammetric detection of mercury and copper in seawater using a gold microwire electrode, Anal Chem,2006,78:5052-5060
    [24]Jena B K, Raj C R. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper, Anal Chem,2008,80:4836-4844
    [25]Orozco J, Fernandez-Sanchez C, Jimenez-Jorquera C. Underpotential deposition-anodic stripping voltammetric detection of copper at gold nanoparticle-modified ultramicroelectrode arrays, Environ Sci Technol,2008,42:4877-4882
    [26]Zheng Y J, Cao X H, Orbulescu J, et al. Peptidyl fluorescent chemosensors for the detection of divalent copper, Anal Chem,2003,75:1706-1712
    [27]Zheng Y J, Orbulescu J, Ji X J, et al. Development of fluorescent film sensors for the detection of divalent copper, J Am Chem Soc,2003,125:2680-2686
    [28]Chan Y-H, Chen J X, Liu Q S, et al. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-Brightened Luminescence of CdSe Quantum Dots, Anal Chem,2010,82:3671-3678
    [29]Lan G Y, Huang C C, Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions, Chem Commun,2010,46:1257-1259
    [30]Lin W Y, Long L L, Chen B B, et al. Fluorescence turn-on detection of Cu2+in water samples and living cells based on the unprecedented copper-mediated dihydrorosamine oxidation reaction, Chem Commun,2010,46:1311-1313
    [31]Su Y-T, Lan G-Y, Chen W-Y, et al. Detection of Copper Ions Through Recovery of the Fluorescence of DNA-Templated Copper/Silver Nanoclusters in the Presence of Mercaptopropionic Acid, Anal Chem,2010,82:8566-8572
    [32]Zhou Y, Wang S X, Zhang K, et al. Visual detection of copper(II) by azide-and alkyne-functionalized gold nanoparticles using click chemistry, Angew Chem Int Ed,2008, 47:7454.7456
    [33]Yin B-C, Ye B-C, Tan W H, et al. An Allosteric Dual-DNAzyme Unimolecular Probe for Colorimetric Detection of Copper(II), J Am Chem Soc,2009,131:14624-14625
    [34]Zhao Y, Zhang X-B, Han Z-X, et al. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Chemosensor for Cu2+in Aqueous Solution and Living Cells, Anal Chem,2009, 81:7022-7030
    [35]Song Y J, Qu K G, Xu C, et al. Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes, Chem Commun, 2010,46:6572-6574
    [36]Pourreza N, Hoveizavi R. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption determination, Anal Chim Acta,2005,549:124-128
    [37]Wu J F, Boyle E A. Low Blank Preconcentration Technique for the Determination of Lead, Copper, and Cadmium in Small-Volume Seawater Samples by Isotope Dilution ICPMS, Anal Chem,1997,69:2464-2470
    [38]Kriegeskotte C, Cantz T, Haberland J, et al. Laser secondary neutral mass spectrometry for copper detection in micro-scale biopsies, J Mass Spectrom,2009,44:1417-1422
    [39]Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem Mater,2003,15:1957-1962
    [40]Sudeep P K, Joseph S T S, Thomas K G. Selective detection of cysteine and glutathione using gold nanorods, J Am Chem Soc,2005,127:6516-6517
    [41]Yu C X, Irudayaraj J. Multiplex biosensor using gold nanorods, Anal Chem,2007,79: 572-579
    [42]Caswell K K, Wilson J N, Bunz U H F, et al. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors, J Am Chem Soc,2003,125:13914-13915
    [43]Huang H W, Liu X Y, Hu T, et al. Ultra-sensitive detection of cysteine by gold nanorod assembly, Biosens Bioelectron,2010,2078-83
    [44]Wang L, Zhu Y, Xu L, et al. Side-by-Side and End-to-End Gold Nanorod Assemblies for Environmental Toxin Sensing, Angew Chem Int Ed,2010,49:5472-5475
    [45]Li L, Li B X. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes, Analyst,2009,134:1361-1365
    [46]Uvdal K, Bodo P, Liedberg B.1-cysteine adsorbed on gold and copper:An X-ray photoelectron spectroscopy study, J Colloid Interf Sci,1992,149:162-173
    [47]Yang W R, Gooding J J, Hibbert D B. Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper, J Electroanal Chem,2001,516:10-16
    [1]Wang K M, Tang Z W, Yang C Y J, et al. Molecular Engineering of DNA:Molecular Beacons, Angew Chem Int Ed,2009,48:856-870
    [2]Kostrikis L G, Tyagi S, Mhlanga M M, et al. Molecular beacons-Spectral genotyping of human alleles, Science,1998,279:1228-1229
    [3]Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes, P Natl Acad Sci USA,1999,96:6171-6176
    [4]Tan L, Li Y, Drake T J, et al. Molecular beacons for bioanalytical applications, Analyst,2005, 130:1002-1005
    [5]Fang X H, Li J W J, Perlette J, et al. Molecular beacons-Novel fluorescent probes, Anal Chem,2000,72:747A-753A
    [6]Luzi E, Minunni M, Tombelli S, et al. New trends in affinity sensing:aptamers for ligand binding, Trac-Trends Anal Chem,2003,22:810-818
    [7]Hamula C L A, Guthrie J W, Zhang H Q, et al. Selection and analytical applications of aptamers, Trac-Trends Anal Chem,2008,25:681-691
    [8]Song S P, Wang L H, Li J, et al. Aptamer-based biosensors, Trac-Trends Anal Chem,2008,27: 108-117
    [9]Liu J W, Cao Z H, Lu Y. Functional Nucleic Acid Sensors, Chem Rev,2009,109:1948-1998
    [10]Iliuk A B, Hu L, Tao W A. Aptamer in Bioanalytical Applications, Anal Chem,2011,83: 4440-4452
    [11]Roh Y H, Ruiz R C H, Peng S, et al. Engineering DNA-based functional materials, Chem Soc Rev,2011,40:5730-5744
    [12]Mascini M, Palchetti I, Tombelli S. Nucleic Acid and Peptide Aptamers:Fundamentals and Bioanalytical Aspects, Angew Chem Int Ed,2012,51:1316-1332
    [13]Su S, Wei X, Zhong Y, et al. Silicon Nanowire-Based Molecular Beacons for High-Sensitivity and Sequence-Specific DNA Multiplexed Analysis, Acs Nano,2012,6: 2582-2590
    [14]Huang P-J J, Liu J. Molecular Beacon Lighting up on Graphene Oxide, Anal Chem,2012, 84:4192-4198
    [15]Meng H-M, Fu T, Zhang X-B, et al. Efficient Fluorescence Turn-On Probe for Zirconium via a Target-Triggered DNA Molecular Beacon Strategy, Anal Chem,2012,84:2124-2128
    [16]Lovell J F, Jin H, Ng K K, et al. Programmed Nanoparticle Aggregation Using Molecular Beacons, Angew Chem Int Ed,2010,49:7917-7919
    [17]Giesendorf B A J, Vet J A M, Tyagi S, et al. Molecular beacons:a new approach for semiautomated mutation analysis, Clin Chem,1998,44:482-486
    [18]Fang X H, Liu X J, Schuster S, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies, J Am Chem Soc,1999,121:2921-2922
    [19]Wu J, Zou Y, Li C, et al. A Molecular Peptide Beacon for the Ratiometric Sensing of Nucleic Acids, J Am Chem Soc,2012,134:1958-1961
    [20]Piatek A S, Tyagi S, Pol A C,et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis, Nat Biotechnol,1998,16:359-363
    [21]Grossmann T N, Roglin L, Seitz O. Triplex molecular beacons as modular probes for DNA detection, Angew Chem Int Ed,2007,46:5223-5225
    [22]Zhang P, Beck T, Tan W H. Design of a molecular beacon DNA probe with two fluorophores, Angew Chem Int Ed,2001,40:402-405
    [23]Bourdoncle A, Torres A E, Gosse C, et al. Quadruplex-based molecular beacons as tunable DNA probes, J Am Chem Soc,2006,128:11094-11105
    [24]Stoermer R L, Cederquist K B, McFarland S K, et al. Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays, J Am Chem Soc, 2006,128:16892-16903
    [25]Heyduk T, Heyduk E. Molecular beacons for detecting DNA binding proteins, Nat Biotechnol,2002,20:171-176
    [26]Tyagi S, Bratu D P, Kramer F R. Multicolor molecular beacons for allele discrimination, Nat Biotechnol,1998,16:49-53
    [27]Tyagi S, Kramer F R. Molecular beacons:Probes that fluoresce upon hybridization, Nat Biotechnol,1996,14:303-308
    [28]Tyagi S, Marras S A E, Kramer F R. Wavelength-shifting molecular beacons, Nat Biotechnol,2000,18:1191-1196
    [29]Sokol D L, Zhang X L, Lu P Z, et al. Real time detection of DNA RNA hybridization in living cells, P Natl Acad Sci USA,1998,95:11538-11543
    [30]Medley C D, Drake T J, Tomasini J M, et al. Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells, Anal Chem,2005,77:4713-4718
    [31]Perlette J, Tan W H. Real-time monitoring of intracellular mRNA hybridization inside single living cells, Anal Chem,2001,73:5544-5550
    [32]Santangelo P J, Nix B, Tsourkas A, et al. Dual FRET molecular beacons for mRNA detection in living cells, Nucleic Acids Res,2004,32:E57
    [33]Bratu D P, Cha B J, Mhlanga M M, et al. Visualizing the distribution and transport of mRNAs in living cells, P Natl Acad Sci USA,2003,100:13308-13313
    [34]Li J J, Geyer R, Tan W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA, Nucleic Acids Res,2000,28:E52
    [35]Tang Z W, Wang K M, Tan W H, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons, Nucleic Acids Res,2003,31:E148
    [36]Tang Z W, Wang K M, Tan W H, et al. Real-time investigation of nucleic acids phosphorylation process using molecular beacons, Nucleic Acids Res,2005,33:E97
    [37]Fang X H, Li J J, Tan W H. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA, Anal Chem,2000,72:3280-3285
    [38]Li J W J, Fang X H, Schuster S M, et al. Molecular beacons:A novel approach to detect protein-DNA interactions, Angew Chem Int Ed,2000,39:1049-1050
    [39]Tan W H, Fang X H, Li J, et al. Molecular beacons:A novel DNA probe for nucleic acid and protein studies, Chem Eur J,2000,6:1107-1111
    [40]Yao G, Tan W H. Molecular-beacon-based array for sensitive DNA analysis, Anal Biochem, 2004,331:216-223
    [41]Wang H, Li J, Liu H P, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film, Nucleic Acids Res, 2002,30:E61
    [42]Fang X H, Cao Z H, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy, Anal Chem,2001,73: 5752-5757
    [43]Tuleuova N, Jones C N, Yan J, et al. Development of an Aptamer Beacon for Detection of Interferon-Gamma, Anal Chem,2010,82:1851-1857
    [44]Cao Z H, Tan W H. Molecular aptamers for real-time protein-protein interaction study, Chem Eur J,2005,11:4502-4508
    [45]Yang C J, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids, P Natl Acad Sci USA,2005,102:17278-17283
    [46]Wang Y, Li J, Wang H, et al. Silver Ions-Mediated Conformational Switch:Facile Design of Structure-Controllable Nucleic Acid Probes, Anal Chem,2010,82:6607-6612
    [47]Wang Y X, Li J S, Jin J Y, et al. Strategy for Molecular Beacon Binding Readout:Separating Molecular Recognition Element and Signal Reporter, Anal Chem,2009,81:9703-9709
    [48]Yang R H, Jin J Y, Long L P, et al. Reversible molecular switching of molecular beacon: controlling DNA hybridization kinetics and thermodynamics using mercury(II) ions, Chem Commun,2009,322-324
    [49]Vallon V, Muhlbauer B, Osswald H. Adenosine and kidney function, Physiol Rev,2006,86: 901-940
    [50]Wang J, Jiang Y X, Zhou C S, et al. Aptamer-based ATP assay using a luminescent light switching complex, Anal Chem,2005,77:3542-3546
    [51]Wang Y Y, Wang Y S, Liu B. Fluorescent detection of ATP based on signaling DNA aptamer attached silica nanoparticles, Nanotechnology,2008,19:415605
    [52]He H-Z, Pui-Yan Ma V, Leung K-H, et al. A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP, Analyst,2012,137:1538-1540
    [53]Kim J H, Ahn J H, Barone P W, et al. A Luciferase/Single-Walled Carbon Nanotube Conjugate for Near-Infrared Fluorescent Detection of Cellular ATP, Angew Chem Int Ed, 2010,49:1456-1459
    [54]Chen Z, Li G, Zhang L, et al. A new method for the detection of ATP using a quantum-dot-tagged aptamer, Anal Bioanal Chem,2008,392:1185-1188
    [55]Moro A J, Schmidt J, Doussineau T, et al. Surface-functionalized fluorescent silica nanoparticles for the detection of ATP, Chem Commun,2011,47:6066-6068
    [56]Chen S J, Huang Y F, Huang C C, et al. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles, Biosens Bioelectron,2008,23:1749-1753
    [57]Yao W, Wang L, Wang H Y, et al. An aptamer-based electrochemiluminescent biosensor for ATP detection, Biosens Bioelectron,2009,24:3269-3274
    [58]Huang H P, Tan Y L, Shi J J, et al. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence, Nanoscale,2010,2:606-612
    [59]Li W, Nie Z, Xu X H, et al. A sensitive, label free electrochemical aptasensor for ATP detection, Talanta,2009,78:954-958
    [60]Zuo X L, Song S P, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J Am Chem Soc,2007,129: 1042-1043
    [61]Huang C C, Yang Z, Lee K H, et al. Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II), Angew Chem Int Ed,2007,46:6824-6828
    [62]Xie J, Zheng Y, Ying J Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters, J Am Chem Soc,2009,131:888-889
    [63]Wei H, Wang Z D, Yang L M, et al. Lysozyme-stabilized gold fluorescent cluster:Synthesis and application as Hg2+sensor, Analyst,2010,135:1406-1410
    [64]Guo W W, Yuan J P, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ion, Chem Commun,2009,3395-3397
    [65]Zhang S S, Xia J P, Li X M. Electrochemical Biosensor for Detection of Adenosine Based on Structure-Switching Aptamer and Amplification with Reporter Probe DNA Modified Au Nanoparticles, Anal Chem,2008,80:8382-8388
    [66]Taniai H, Sumi S, Ito T, et al. A simple quantitative assay for urinary adenosine using column-switching high-performance liquid chromatography, Tohoku J Exp Med,2006,208: 57-63
    [67]Lee J S, Ulmann P A, Han M S, et al. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine, Nano Lett,2008,8:529-533
    [1]Feng G, Ding D, Liu B. Fluorescence bioimaging with conjugated polyelectrolytes, Nanoscale,2012,4:6150-6165
    [2]Lee D-E, Koo H, Sun I-C, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis, Chem Soc Rev,2012,41:2656-2672
    [3]Yang Y, Zhao Q, Feng W, et al. Luminescent Chemodosimeters for Bioimaging, Chem Rev, 2012,113:192-270
    [4]Rao J H, Dragulescu-Andrasi A, Yao H Q. Fluorescence imaging in vivo:recent advances, Curr Opin Biotech,2007,18:17-25
    [5]Dong H, Lei J, Ju H, et al. Target-Cell-Specific Delivery, Imaging, and Detection of Intracellular MicroRNA with a Multifunctional SnO2 Nanoprobe, Angew Chem Int Ed,2012, 51:4607-4612
    [6]Hong G, Robinson J T, Zhang Y, et al. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region, Angew Chem Int Ed,2012,51:9818-9821
    [7]Li J-L, Bao H-C, Hou X-L, et al. Graphene Oxide Nanoparticles as a Nonbleaching Optical Probe for Two-Photon Luminescence Imaging and Cell Therapy, Angew Chem Int Ed,2012, 51:1830-1834
    [8]Yang Y, Shao Q, Deng R, et al. In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles, Angew Chem Int Ed,2012,51: 3125-3129
    [9]Gu Y-P, Cui R, Zhang Z-L, et al. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging, J Am Chem Soc,2011,134:79-82
    [10]Ju Q, Tu D, Liu Y, et al. Amine-Functionalized Lanthanide-Doped KGdF4 Nanocrystals as Potential Optical/Magnetic Multimodal Bioprobes, J Am Chem Soc,2011,134:1323-1330
    [11]Robinson J T, Hong G, Liang Y, et al. In Vivo Fluorescence Imaging in the Second Near-Infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake, J Am Chem Soc,2012,134:10664-10669
    [12]Pinaud F, Michalet X, Bentolila L A, et al. Advances in fluorescence imaging with quantum dot bio-probes, Biomaterials,2006,27:1679-1687
    [13]Shang L, Dong S, Nienhaus G U. Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications, Nano Today,2011,6:401-418
    [14]Lourdu Xavier P, Chaudhari K, Baksi A, et al. Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience, Nano Reviews,2012,3: 14767
    [15]Annie Ho J-a, Chang H-C, Su W-T. DOPA-Mediated Reduction Allows the Facile Synthesis of Fluorescent Gold Nanoclusters for Use as Sensing Probes for Ferric Ions, Anal Chem,2012,84:3246-3253
    [16]Li P-H, Lin J-Y, Chen C-T, et al. Using Gold Nanoclusters As Selective Luminescent Probes for Phosphate-Containing Metabolites, Anal Chem,2012,84:5484-5488
    [17]Peng J, Feng L-N, Zhang K, et al. Calcium Carbonate-Gold Nanocluster Hybrid Spheres: Synthesis and Versatile Application in Immunoassays, Chem Eur J,2012,18:5261-5268
    [18]Shang L, Yang L X, Stockmar F, et al. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+in living cells using fluorescence imaging, Nanoscale, 2012,4:4155-4160
    [19]Wang H-H, Lin C-A J, Lee C-H, et al. Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells, Acs Nano,2011,5: 4337-4344
    [20]Wang Y, Chen J, Irudayaraj J. Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+Breast Cancer, Acs Nano,2011,5:9718-9725
    [21]Chen H, Li S, Li B, et al. Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy, Nanoscale,2012,4:6050-6064
    [22]Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem Soc Rev,2006,35:209-217
    [23]Yun C S, Javier A, Jennings T, et al. Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J Am Chem Soc,2005,127:3115-3119
    [24]Chen C-W, Wang C-H, Wei C-M, et al. Highly Sensitive Emission Sensor Based on Surface Plasmon Enhanced Energy Transfer between Gold Nanoclusters and Silver Nanoparticles, J Phys Chem C,2009,114:799-802
    [25]Jagt R B C, Gomez-Biagi R F, Nitz M. Pattern-Based Recognition of Heparin Contaminants by an Array of Self-Assembling Fluorescent Receptors, Angew Chem Int Ed, 2009,48:1995-1997
    [26]Wright A T, Zhong Z, Anslyn E V. A Functional Assay for Heparin in Serum Using a Designed Synthetic Receptor, Angew Chem Int Ed,2005,44:5679-5682
    [27]Pu K-Y, Liu B. A Multicolor Cationic Conjugated Polymer for Naked-Eye Detection and Quantification of Heparin, Macromolecules,2008,41:6636-6640
    [28]Mecca T, Consoli G M L, Geraci C, et al. Polycationic calix[8]arenes able to recognize and neutralize heparin, Org Biomol Chem,2006,4:3763-3768
    [29]Gu X G, Zhang G X, Zhang D Q. A new ratiometric fluorescence detection of heparin based on the combination of the aggregation-induced fluorescence quenching and enhancement phenomena, Analyst,2012,137:365-369
    [30]Wang M, Zhang D, Zhang G, et al. The convenient fluorescence tum-on detection of heparin with a silole derivative featuring an ammonium group, Chem Commun,2008,4469-4471
    [31]Sun W, Bandmann H, Schrader T. A Fluorescent Polymeric Heparin Sensor, Chem Eur J, 2007,13:7701-7707
    [32]Dai Q, Liu W M, Zhuang X Q, et al. Ratiometric Fluorescence Sensor Based on a Pyrene Derivative and Quantification Detection of Heparin in Aqueous Solution and Serum, Anal Chem,2011,83:6559-6564
    [33]Zhan R Y, Fang Z, Liu B. Naked-Eye Detection and Quantification of Heparin in Serum with a Cationic Polythiophene, Anal Chem,2010,82:1326-1333
    [34]Fu X L, Chen L X, Li J H, et al. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide, Biosens Bioelectron, 2012,34:227-231
    [35]Cao R, Li B X. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes, Chem Commun,2011,47: 2865-2867
    [36]Gemene K L, Meyerhoff M E. Reversible Detection of Heparin and Other Polyanions by Pulsed Chronopotentiometric Polymer Membrane Electrode, Anal Chem,2010,82: 1612-1615
    [37]Xie J, Zheng Y, Ying J Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters, J Am Chem Soc,2009,131:888-889
    [38]Retnakumari A, Setua S, Menon D, et al. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging, Nanotechnology,2010,21:055103
    [39]Kawasaki H, Yoshimura K, Hamaguchi K, et al. Trypsin-Stabilized Fluorescent Gold Nanocluster for Sensitive and Selective Hg(2+) Detection, Anal Sci,2011,27:591-596
    [40]Liu C-L, Wu H-T, Hsiao Y-H, et al. Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters:Preservation of Insulin Bioactivity and Versatility in Cell Imaging, Angew Chem Int Ed,2011,50:7056-7060
    [41]Pu K-Y, Liu B. Conjugated Polyelectrolytes as Light-Up Macromolecular Probes for Heparin Sensing, Adv Funct Mater,2009,19:277-284
    [42]Wang S, Chang Y-T. Discovery of heparin chemosensors through diversity oriented fluorescence library approach, Chem Commun,2008,1173-1175
    [43]Yan H, Wang H-F. Turn-on Room Temperature Phosphorescence Assay of Heparin with Tunable Sensitivity and Detection Window Based on Target-Induced Self-Assembly of Polyethyleneimine Capped Mn-Doped ZnS Quantum Dots, Anal Chem,2011,83:8589-8595
    [1]Hochella M F. Nanoscience and technology the next revolution in the Earth sciences, Earth Planet Sc Lett,2002,203:593-605
    [2]Lieber C M. Nanoscale science and technology:Building a big future from small things, Mrs Bull,2003,28:486-491
    [3]Roco M C. Converging science and technology at the nanoscale:opportunities for education and training, Nat Biotechnol,2003,21:1247-1249
    [4]Vaia R A, et al. Nanoscience and nanotechnology:Materials revolution for the 21(st) century, Sampe J,2001,37:24-31
    [5]Whitesides G M. Nanoscience, nanotechnology, and chemistry, Small,2005,1:172-179
    [6]Bruce P G, et al. Nanomaterials for rechargeable lithium batteries, Angew Chem Int Ed,2008, 47:2930-2946
    [7]Ferrari M. Cancer nanotechnology:Opportunities and challenges, Nat Rev Cancer,2005,5: 161-171
    [8]Love J C, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem Rev,2005,105:1103-1169
    [9]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics, Chem Rev,2005,105:1547-1562
    [10]Barth J V, et al. Engineering atomic and molecular nanostructures at surfaces, Nature,2005, 437:671-679
    [11]Maynard A D, et al. Safe handling of nanotechnology, Nature,2006,444:267-269
    [12]Huang Y, et al. Directed assembly of one-dimensional nanostructures into functional networks, Science,2001,291:630-633
    [13]Sun Y G, et al. Metal nanostructures with hollow interiors, Adv Mater,2003,15:641-646
    [14]Xia Y N, et al. One-dimensional nanostructures:Synthesis, characterization, and applications, Adv Mater,2003,15:353-389
    [15]Hamley I W. Nanotechnology with soft materials, Angew Chem Int Ed,2003,42:1692-1712
    [16]Chen X, Mao S S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications, Chem Rev,2007,107:2891-2959
    [17]Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem Rev,2004,104:293-346
    [18]Leininger S, et al. Self-assembly of discrete cyclic nanostructures mediated by transition metals, Chem Rev,2000,100:853-907
    [19]Paul D R, Robeson L M. Polymer nanotechnology:Nanocomposites, Polymer,2008,49: 3187-3204
    [20]Jain P K, et al. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine, Acc Chem Res,2008,41: 1578-1586
    [21]Guo S, Wang E. Noble metal nanomaterials:Controllable synthesis and application in fuel cells and analytical sensors, Nano Today,2011,6:240-264
    [22]Shang L, et al. Ultra-small fluorescent metal nanoclusters:Synthesis and biological applications, Nano Today,2011,6:401-418
    [23]Burda C, et al. Chemistry and properties of nanocrystals of different shapes, Chem Rev,2005, 105:1025-1102
    [24]Giljohann D A, et al. Gold Nanoparticles for Biology and Medicine, Angew Chem Int Ed, 2010,49:3280-3294
    [25]Daniel M-C, Astruc D. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem Rev,2004,104:293-346
    [26]Boisselier E, Astruc D. Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity, Chem Soc Rev,2009,38:1759-1782
    [27]Cobley C M, et al. Gold nanostructures:a class of multifunctional materials for biomedical applications, Chem Soc Rev,2011,40:44-56
    [28]Chou L Y T, et al. Strategies for the intracellular delivery of nanoparticles, Chem Soc Rev, 2011,40:233-245
    [29]Kelly K L, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment, J Phys Chem B,2003,107:668-677
    [30]Uechi I, Yamada S. Photochemical and analytical applications of gold nanoparticles and nanorods utilizing surface plasmon resonance, Anal Bioanal Chem,2008,391:2411-2421
    [31]Murphy C J, et al. Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications, J Phys Chem B,2005,109:13857-13870
    [32]Huang X J, Choi Y K. Chemical sensors based on nanostructured materials, Sensor Actuat B-chem,2007,122:659-671
    [33]Qian X M, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nat Biotechnol,2008,26:83-90
    [34]Fan C H, et al. Beyond superquenching:Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles, P Natl Acad Sci USA,2003,100:6297-6301
    [35]Georganopoulou D Q et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease, P Natl Acad Sci USA,2005,102:2273-2276
    [36]Thaxton C S, et al. Nanoparticle-based bio-barcode assay redefines "undetectable" PSA and biochemical recurrence after radical prostatectomy, P Natl Acad Sci USA,2009,106: 18437-18442
    [37]Cao Y W C, et al. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science,2002,297:1536-1540
    [38]Nam J M, et al. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins, Science,2003,301:1884-1886
    [39]Zhang J, et al. Aptamer-Based Multicolor Fluorescent Gold Nanoprobes for Multiplex Detection in Homogeneous Solution, Small,2010,6:201-204
    [40]Sanchez-Iglesias A, et al. Synthesis and Optical Properties of Gold Nanodecahedra with Size Control, Adv Mater,2006,18:2529-2534
    [41]Dreaden E C, et al. The golden age:gold nanoparticles for biomedicine, Chem Soc Rev, 2012,41:2740-2779
    [42]Jain P K, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems, Plasmonics,2007,2: 107-118
    [43]Link S, EI-Sayed M A. Optical properties and ultrafast dynamics of metallic nanocrystals, Annu Rev Phys Chem,2003,54:331-366
    [44]Kreibig U, Vollmer M. Optical Properties of Metal Clusters, Berlin:Springer-Verlag,1995, 25:
    [45]Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem Soc Rev,2006,35:209-217
    [46]Jain P K, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:Applications in biological imaging and biomedicine, J Phys Chem B,2006,110:7238-7248
    [47]El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes, Acc Chem Res,2001,34:257-264
    [48]Perez-Juste J, et al. Gold nanorods:Synthesis, characterization and applications, Coordin Chem Rev,2005,249:1870-1901
    [49]Huang X H, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J Am Chem Soc,2006,128:2115-2120
    [50]Jain P K, El-Sayed M A. Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells, Nano Lett,2007,7:2854-2858
    [51]Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications:recent advances and perspectives, Chem Soc Rev,2012,41:2256-2282
    [52]Hu M, et al. Gold nanostructures:engineering their plasmonic properties for biomedical applications, Chem Soc Rev,2006,35:1084-1094
    [53]Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis, Chem Soc Rev,2012,41:2849-2866
    [54]Sperling R A, et al. Biological applications of gold nanoparticles, Chem Soc Rev,2008,37: 1896-1908
    [55]Grabar K C, et al. Preparation and Characterization of Au Colloid Monolayers, Anal Chem, 1995,67:735-743
    [56]Musick M D, et al. Metal Films Prepared by Stepwise Assembly.2. Construction and Characterization of Colloidal Au and Ag Multilayers, Chem Mater,2000,12:2869-2881
    [57]Jana N R, et al. Seeding growth for size control of 5-40 nm diameter gold nanoparticles, Langmuir,2001,17:6782-6786
    [58]Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution, J Am Chem Soc,2004,126:8648-8649
    [59]Frens G Contralled nucleation for regulation of particle-size in monodisperse gold suspensions, Nat Phys Sci,1973,241:20-22
    [60]Grzelczak M, et al. Shape control in gold nanoparticle synthesis, Chem Soc Rev,2008,37: 1783-1791
    [61]Zhou J F, et al. Functionalized gold nanoparticles:Synthesis, structure and colloid stability, J Colloid Interf Sci,2009,331:251-262
    [62]Murphy C J, et al. Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging, Acc Chem Res,2008,41:1721-1730
    [63]Huang X H, et al. Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications, Adv Mater,2009,21:4880-4910
    [64]Vigderman L, et al. Functional Gold Nanorods:Synthesis, Self-Assembly, and Sensing Applications, Adv Mater,2012,24:4811-4841
    [65]Busbee B D, et al. An improved synthesis of high-aspect-ratio gold nanorods, Adv Mater, 2003,15:414-+
    [66]Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem Mater,2003,15:1957-1962
    [67]Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods:Role of the size and nature of the seed, Chem Mater,2004,16:3633-3640
    [68]Yu, et al. Gold Nanorods:Electrochemical Synthesis and Optical Properties, J Phys Chem B,1997,101:6661-6664
    [69]Kim F, et al. Photochemical synthesis of gold nanorods, J Am Chem Soc,2002,124: 14316-14317
    [70]Gao C B, et al. Templated Synthesis of Metal Nanorods in Silica Nanotubes, J Am Chem Soc, 2011,133:19706-19709
    [71]Gou L F, Murphy C J. Fine-tuning the shape of gold nanorods, Chem Mater,2005,17: 3668-3672
    [72]Orendorff C J, et al. pH-triggered assembly of gold nanorods, Langmuir,2005,21: 2022-2026
    [73]Ali M R K, et al. Synthesis and Optical Properties of Small Au Nanorods Using a Seedless Growth Technique, Langmuir,2012,28:9807-9815
    [74]Ye X, et al. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives, Acs Nano,2012,6:2804-2817
    [75]Lourdu Xavier P, et al. Protein-protected luminescent noble metal quantum clusters:an emerging trend in atomic cluster nanoscience, Nano Reviews,2012,3:14767
    [76]Huang C C, et al. Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II), Angew Chem Int Ed,2007,46:6824-6828
    [77]Yan L, et al. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission, J Mater Chem,2012,22:1000-1005
    [78]Heinecke C L, et al. Structural and Theoretical Basis for Ligand Exchange on Thiolate Monolayer Protected Gold Nanoclusters, J Am Chem Soc,2012,134:13316-13322
    [79]Wu Z W, et al. Probing the Structure and Charge State of Glutathione-Capped Au25(SG)18 Clusters by NMR and Mass Spectrometry, J Am Chem Soc,2009,131:6535-6542
    [80]Xie J, et al. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters, J Am Chem Soc,2009,131:888-889
    [81]Jin R. Quantum sized, thiolate-protected gold nanoclusters, Nanoscale,2010,2:343-362
    [82]Zheng J, et al. Different sized luminescent gold nanoparticles, Nanoscale,2012,4: 4073-4083
    [83]Annie Ho J-a, et al. DOPA-Mediated Reduction Allows the Facile Synthesis of Fluorescent Gold Nanoclusters for Use as Sensing Probes for Ferric Ions, Anal Chem,2012,84: 3246-3253
    [84]Lin Y H, Tseng W L. Ultrasensitive Sensing of Hg2+and CH3Hg+Based on the Fluorescence Quenching of Lysozyme Type Ⅵ-Stabilized Gold Nanoclusters, Anal Chem,2010,82: 9194-9200
    [85]Wen F, et al. Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing, Anal Chem,2011,83:1193-1196
    [86]Peng J, et al. Calcium Carbonate-Gold Nanocluster Hybrid Spheres:Synthesis and Versatile Application in Immunoassays, Chem Eur J,2012,18:5261-5268
    [87]Tian D, et al. Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells, Langmuir,2012,28:3945-3951
    [88]Wang H-H, et al. Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells, Acs Nano,2011:
    [89]Liu C-L, et al. Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters:Preservation of Insulin Bioactivity and Versatility in Cell Imaging, Angew Chem Int Ed,2011,50: 7056-7060
    [90]Wang C, et al. Gold Nanoclusters and Graphene Nanocomposites for Drug Delivery and Imaging of Cancer Cells, Angew Chem Int Ed,2011,50:11644-11648
    [91]Sun C, et al. Controlling Assembly of Paired Gold Clusters within Apoferritin Nanoreactor for in Vivo Kidney Targeting and Biomedical Imaging, J Am Chem Soc,2011,133: 8617-8624
    [92]Chen H, et al. Folate-modified gold nanoclusters as near-infrared fluorescent probes for tumor imaging and therapy, Nanoscale,2012,4:6050-6064
    [93]Wu X, et al. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo, Nanoscale,2010,2:2244-2249
    [94]Shang L, et al. One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging, Small,2011,7:2614-2620
    [95]Zheng J, et al. Highly fluorescent, water-soluble, size-tunable gold quantum dots, Phys Rev Lett,2004,93:077402
    [96]Das T, et al. Protein-templated gold nanoclusters:size dependent inversion of fluorescence emission in the presence of molecular oxygen, Nanoscale,2012,4:6018-6024
    [97]Chen C-T, et al. Glutathione-bound gold nanoclusters for selective-binding and detection of glutathione S-transferase-fusion proteins from cell lysates, Chem Commun,2009:7515
    [98]Shang L, et al. Microwave-assisted rapid synthesis of luminescent gold nanoclusters for sensing Hg2+in living cells using fluorescence imaging, Nanoscale,2012,4:4155-4160
    [99]Triulzi R C, et al. Immunoasssay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex, Chem Commun,2006:5068-5070
    [100]Gonzalez B S, et al. One Step Synthesis of the Smallest Photo luminescent and Paramagnetic PVP-Protected Gold Atomic Clusters, Nano Lett,2010,10:4217-4221
    [101]Chen W-Y, et al. Use of Fluorescent DNA-Templated Gold/Silver Nanoclusters for the Detection of Sulfide Ions, Anal Chem,2011,83:9450-9455
    [102]Wei H, et al. Lysozyme-stabilized gold fluorescent cluster:Synthesis and application as Hg2+sensor, Analyst,2010,135:1406-1410
    [103]Lin C A J, et al. Synthesis of Fluorescent Metallic Nanoclusters toward Biomedical Application:Recent Progress and Present Challenges, J Med Biol Eng,2009,29:276-283
    [104]Chen S J, Chang H T. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation, Anal Chem,2004,76:3727-3734
    [105]Lee S, et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination, Angew Chem Int Ed,2008,47: 2804-2807
    [106]Lin Z, et al. CEA fluorescence biosensor based on the FRET between polymer dots and Au nanoparticles, Chem Commun,2012,48:9918-9920
    [107]Maxwell D J, et al. Self-assembled nanoparticle probes for recognition and detection of biomolecules, J Am Chem Soc,2002,124:9606-9612
    [108]Oh E, et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles, J Am Chem Soc,2005,127: 3270-3271
    [109]Dulkeith E, et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects, Phys Rev Lett,2002,89:203002
    [110]Huang C-C, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor, Anal Chem,2007,79:4798-4804
    [111]Liu D B, et al. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules, Nanoscale,2011,3:1421-1433
    [112]Wang Z D, et al. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme, Adv Mater,2008,20:3263-+
    [113]Chen S, et al. Rapid visual detection of aluminium ion using citrate capped gold nanoparticles, Analyst,2012,137:2021-2023
    [114]Huy G D, et al. Multiplexed analysis of silver(i) and mercury(ii) ions using oligonucletide-metal nanoparticle conjugates, Analyst,2011,136:3289-3294
    [115]Wu S P, et al. Colorimetric detection of Fe(3+) ions using pyrophosphate functionalized gold nanoparticles, Analyst,2011,136:1887-1891
    [116]Wu Y, et al. Ultrasensitive aptamer biosensor for arsenic(iii) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles, Analyst,2012,137: 4171-4178
    [117]Xue Y, et al. Colorimetric detection of Cd2+using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and 1-Cysteine, Analyst,2011,136:3725-3730
    [118]Zhang M, et al. Colorimetric assay for parallel detection of Cd2+, Ni2+and Co2+using peptide-modified gold nanoparticles, Analyst,2012,137:601-607
    [119]Zhang Z, et al. Label-free colorimetric sensing of cobalt(ii) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine, Analyst,2012,137:400-405
    [120]Lin C Y, et al. Colorimetric Sensing of Silver(I) and Mercury(II) Ions Based on an Assembly of Tween 20-Stabilized Gold Nanoparticles, Anal Chem,2010,82:6830-6837
    [121]Liu D B, et al. Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature, Anal Chem,2010,82:9606-9610
    [122]Wang H, et al. Gold Nanoparticle-Based Colorimetric and "Turn-On" Fluorescent Probe for Mercury(II) Ions in Aqueous Solution, Anal Chem,2008,80:9021-9028
    [123]Kim S, et al. Bioinspired Colorimetric Detection of Calcium(II) Ions in Serum Using Calsequestrin-Functionalized Gold Nanoparticles, Angew Chem Int Ed,2009,48:4138-4141
    [124]Lee J S, et al. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles, Angew Chem Int Ed,2007,46:4093-4096
    [125]Xu X W, et al. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range, Biosens Bioelectron,2009,24:3153-3158
    [126]Huang C C, Chang H T. Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles, Chem Commun,2007:1215-1217
    [127]Li W, et al. Simple, rapid and label-free colorimetric assay for Zn(2+) based on unmodified gold nanoparticles and specific Zn(2+) binding peptide, Chem Commun,2011, 47:4412-4414
    [128]Lee J H, et al. Highly Sensitive and Selective Colorimetric Sensors for Uranyl (UO22+): Development and Comparison of Labeled and Label-Free DNAzyme-Gold Nanoparticle Systems, J Am Chem Soc,2008,130:14217-14226
    [129]Ding N, et al. Colorimetric Assay for Determination of Lead (II) Based on Its Incorporation into Gold Nanoparticles during Their Synthesis, Sensors,2010,10: 11144-11155
    [130]Leng B, et al. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles, Sensor Actuat B-chem,2009,140: 162-169
    [131]Xu X Y, et al. Colorimetric Cu2+Detection Using DNA-Modified Gold-Nanoparticle Aggregates as Probes and Click Chemistry, Small,2010,6:623-626
    [132]Wang J, et al. A gold nanoparticle-based aptamer target binding readout for ATP assay, Adv Mater,2007,19:3943-3944
    [133]Chen Z, et al. Sensitive and selective detection of glutathione based on resonance light scattering using sensitive gold nanoparticles as colorimetric probes, Analyst,2012,137: 3132-3137
    [134]Fu X, et al. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide, Analyst,2012,137:3653-3658
    [135]Li L, Li B X. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes, Analyst,2009,134:1361-1365
    [136]Liang X S, et al. Colorimetric detection of melamine in complex matrices based on cysteamine-modified gold nanoparticles, Analyst,2011,136:179-183
    [137]Liu J W, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor, Anal Chem,2004,76: 1627-1632
    [138]Radhakumary C, Sreenivasan K. Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold Nanoparticles, Anal Chem,2011,83:2829-2833
    [139]Jiang Y, et al. Colorimetric Detection of Glucose in Rat Brain Using Gold Nanoparticles, Angew Chem Int Ed,2010,49:4800-4804
    [140]Chen S J, et al. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles, Biosens Bioelectron,2008,23:1749-1753
    [141]Wu Z J, et al. Colorimetric detection of melamine during the formation of gold nanoparticles, Biosens Bioelectron,2011,26:2574-2578
    [142]Cao R, Li B X. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes, Chem Commun,2011,47: 2865-2867
    [143]Zheng Y, et al. Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles, Sensor Actuat B-chem,2011,156:95-99
    [144]Lee J S, et al. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine, Nano Lett,2008,8:529-533
    [145]Huang C-C, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors, Anal Chem,2005,77:5735-5741
    [146]Kong H, et al. Protein Discrimination Using Fluorescent Gold Nanoparticles on Plasmonic Substrates, Anal Chem,2012,84:4258-4261
    [147]Thanh N T K, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles, Anal Chem,2002,74:1624-1628
    [148]Zhu K, et al. Quantification of Proteins by Functionalized Gold Nanoparticles Using Click Chemistry, Anal Chem,2012,84:4267-4270
    [149]Xu X Y, et al. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition, Angew Chem Int Ed,2007,46:3468-3470
    [150]Zhu Z, et al. An Aptamer Cross-Linked Hydrogel as a Colorimetric Platform for Visual Detection, Angew Chem Int Ed,2010,49:1052-1056
    [151]Chen C K, et al. Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay, Biosens Bioelectron,2010,25:1922-1927
    [152]Jiang T T, et al. Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles, Chem Commun,2009:1972-1974
    [153]Pan Y, et al. Colorimetric detection of apoptosis based on caspase-3 activity assay using unmodified gold nanoparticles, Chem Commun,2012,48:997-999
    [154]Tsai C S, et al. Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions, Chem Commun,2005:4273-4275
    [155]Wang Y L, et al. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay, Chem Commun,2008:2520-2522
    [156]Wei H, et al. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes, Chem Commun,2007:3735-3737
    [157]Wang Z X, et al. Kinase-catalyzed modification of gold nanoparticles:A new approach to colorimetric kinase activity screening, J Am Chem Soc,2006,128:2214-2215
    [158]Xie C, et al. Single Gold Nanoparticles Counter:An Ultrasensitive Detection Platform for One-Step Homogeneous Immunoassays and DNA Hybridization Assays, J Am Chem Soc, 2009,131:12763-12770
    [159]Xie X J, et al. Colorimetric Detection of HIV-1 Ribonuclease H Activity by Gold Nanoparticles, Small,2011,7:1393-1396
    [160]Deng H, et al. Gold Nanoparticles with Asymmetric Polymerase Chain Reaction for Colorimetric Detection of DNA Sequence, Anal Chem,2012,84:1253-1258
    [161]He Y, et al. Visual Detection of Single-Nucleotide Polymorphism with Hairpin Oligonucleotide-Functionalized Gold Nanoparticles, Anal Chem,2010,82:7169-7177
    [162]Ou L-J, et al. Sensitive and Visual Detection of Sequence-Specific DNA-Binding Protein via a Gold Nanoparticle-Based Colorimetric Biosensor, Anal Chem,2010,82: 6015-6024
    [163]Liu Y, et al. Simple, rapid, homogeneous oligonucleotides colorimetric detection based on non-aggregated gold nanoparticles, Chem Commun,2012,48:3164-3166
    [164]Wang L H, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers, Chem Commun,2006:3780-3782
    [165]Jian J W, Huang C C. Colorimetric Detection of DNA by Modulation of Thrombin Activity on Gold Nanoparticles, Chem Eur J,2011,17:2374-2380
    [166]Li H X, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles, P Natl Acad Sci USA,2004,101: 14036-14039
    [167]Elghanian R, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science,1997,277:1078-1081
    [168]Medley C D, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells, Anal Chem,2008,80:1067-1072
    [169]Wang L, et al. Side-by-Side and End-to-End Gold Nanorod Assemblies for Environmental Toxin Sensing, Angew Chem Int Ed,2010,49:5472-5475
    [170]Jiang Y, et al. A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles, Angew Chem Int Ed,2008,47:8601-8604
    [171]Lacerda S H D P, et al. Interaction of Gold Nanoparticles with Common Human Blood Proteins, Acs Nano,2009,4:365-379
    [172]Bettmer J, et al. Elemental tagging in inorganic mass spectrometric bioanalysis, Anal Bioanal Chem,2006,386:7-11
    [173]Sanz-Medel A, et al. Elemental mass spectrometry for quantitative proteomics, Anal Bioanal Chem,2008,390:3-16
    [174]Prange A, Profrock D. Chemical labels and natural element tags for the quantitative analysis of bio-molecules, J Anal At Spectrom,2008,23:432-459
    [175]Zhao Q, et al. Aptamer-Linked Assay for Thrombin Using Gold Nanoparticle Amplification and Inductively Coupled Plasma-Mass Spectrometry Detection, Anal Chem, 2009,81:7484-7489
    [176]Li F, et al. Detection of Escherichia coli O157:H7 Using Gold Nanoparticle Labeling and Inductively Coupled Plasma Mass Spectrometry, Anal Chem,2010,82:3399-3403
    [177]Hu S H, et al. A New Strategy for Highly Sensitive Immunoassay Based on Single-Particle Mode Detection by Inductively Coupled Plasma Mass Spectrometry, J Am Soc Mass Spectr,2009,20:1096-1103
    [178]Han G, et al. One-Step Homogeneous DNA Assay with Single-Nanoparticle Detection, Angew Chem Int Ed,2011,50:3462-3465
    [179]Zhang S C, et al. Simultaneous determination of alpha-fetoprotein and free beta-human chorionic gonadotropin by element-tagged immunoassay with detection by inductively coupled plasma mass Spectrometry, Clin Chem,2004,50:1214-1221
    [180]Hu S H, et al. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies, Anal Chem,2007,79:923-929
    [181]Ornatsky O I, et al. Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry, J Anal At Spectrom,2008,23:463-469
    [182]Terenghi M, et al. Multiplexed Determination of Protein Biomarkers Using Metal-Tagged Antibodies and Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry, Anal Chem,2009,81:9440-9448
    [183]Yang M W, et al. Simultaneous and ultra-sensitive quantification of multiple peptides by using europium chelate labeling and capillary electrophoresis-inductively coupled plasma mass spectrometry, J Anal At Spectrom,2012,27:946-951
    [184]Liu Y L, et al. Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water, Adv Funct Mater,2010,20:951-956
    [185]Hu D H, et al. Highly selective fluorescent sensors for Hg2+based on bovine serum albumin-capped gold nanoclusters, Analyst,2010,135:1411-1416
    [186]Xie J P, et al. Highly selective and ultrasensitive detection of Hg2+based on fluorescence quenching of Au nanoclusters by Hg2+-Au+interactions, Chem Commun,2010, 46:961-963
    [187]Yuan Z, et al. Functionalized fluorescent gold nanodots:synthesis and application for Pb2+sensing, Chem Commun,2011,47:11981-11983
    [188]Tu X J, et al. Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II), Nanotechnology,2011,22:
    [189]He Y, et al. Ni2+-modified gold nanoclusters for fluorescence turn-on detection of histidine in biological fluids, Analyst,2012,137:4005-4009
    [190]Li L L, et al. Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine, Anal Chem,2011,83:661-665
    [191]Hu L, et al. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters, Biosens Bioelectron,2012,32:297-299
    [192]Shang L, et al. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications, Nanoscale,2011,3:2009-2014
    [193]Huang C C, et al. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching, Anal Chem,2008,80:1497-1504
    [194]Prange A, Profrock D. Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics:challenges, developments, and limitations, Anal Bioanal Chem,2005, 383:372-389
    [195]Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics, Analyst,2005,130:442-465
    [196]Zhang H Q, et al. Ultrasensitive detection of proteins by amplification of affinity aptamers, Angew Chem Int Ed,2006,45:1576-1580
    [197]Zhang H Q, et al. Ultrasensitive assays for proteins, Analyst,2007,132:724-737
    [198]Thomson D M P, et al. RADIOIMMUNOASSAY OF CIRCULATING CARCINOEMBRYONIC ANTIGEN OF HUMAN DIGESTIVE SYSTEM, P Natl Acad Sci USA,1969,64:161-&
    [199]Pradelles P, et al. ENZYME IMMUNOASSAYS OF EICOSANDOIDS USING ACETYLCHOLINE ESTERASE AS LABEL-AN ALTERNATIVE TO RADIOIMMUNOASSAY, Anal Chem,1985,57:1170-1173
    [200]Potyrailo R A, et al. Adapting selected nucleic acid ligands (aptamers) to biosensors, Anal Chem,1998,70:3419-3425
    [201]Furtado L M, et al. Interactions of HIV-1 TAR RNA with Tat-derived peptides discriminated by on-line acoustic wave detector, Anal Chem,1999,71:1167-1175
    [202]Bizzarri A R, Cannistraro S. SERS detection of thrombin by protein recognition using functionalized gold nanoparticles, Nanomed-Nanotech Biol Med,2007,3:306-310
    [203]Baranov V I, et al. A Sensitive and Quantitative Element-Tagged Immunoassay with ICPMS Detection, Anal Chem,2002,74:1629-1636
    [204]Iwahata D, et al. A highly sensitive analytical method for metal-labelled amino acids by HPLC/ICP-MS, J Anal At Spectrom,2008,23:1063-1067
    [205]Jakubowski N, et al. Labelling of proteins with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra acetic acid and lanthanides and detection by ICP-MS, J Anal At Spectrom,2008,23:1497-1507
    [206]Lou X D, et al. Polymer-based elemental tags for sensitive Bioassays, Angew Chem Int Ed,2007,46:6111-6114
    [207]Zhang C, et al. Application of the Biological Conjugate between Antibody and Colloid Au Nanoparticles as Analyte to Inductively Coupled Plasma Mass Spectrometry, Anal Chem, 2002,74:96-99
    [208]Zhang C, et al. ICP-MS-based competitive immunoassay for the determination of total thyroxin in human serum, J Anal At Spectrom,2002,17:1304-1307
    [209]Merkoci A, et al. Toward an ICPMS-Linked DNA Assay Based on Gold Nanoparticles Immunoconnected through Peptide Sequences, Anal Chem,2005,77:6500-6503
    [210]Lu Y Y, et al. Development of an ICP-MS immunoassay for the detection of anti-erythropoietin antibodies, Talanta,2009,78:869-873
    [211]Xu M, et al. Dynamic Labeling Strategy with 204Hg-Isotopic Methylmercurithiosalicylate for Absolute Peptide and Protein Quantification, Anal Chem, 2010,82:1616-1620
    [212]Quinn Z A, et al. Simultaneous determination of proteins using an element-tagged immunoassay coupled with ICP-MS detection, J Anal At Spectrom,2002,17:892-896
    [213]Miiller S D, et al. Detection of specific proteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using gold cluster labelled antibodies, J Anal At Spectrom,2005,20:907-911
    [214]Ornatsky O, et al. Multiple cellular antigen detection by ICP-MS, J Immunol Methods, 2006,308:68-76
    [215]Tanner S D, et al. Multiplex bio-assay with inductively coupled plasma mass spectrometry:Towards a massively multivariate single-cell technology, Spectrochim Acta B, 2007,62:188-195
    [216]Ammann A A. Inductively coupled plasma mass spectrometry (ICP MS):a versatile tool, J Mass Spectrom,2007,42:419-427
    [217]Careri M, et al. ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods, Anal Bioanal Chem,2007,387: 1851-1854
    [218]Mogensen C E, et al. MICROALBUMINURIA AS A PREDICTOR OF CLINICAL DIABETIC NEPHROPATHY, Kidney Int,1987,31:673-689
    [219]Vigstrup J, Mogensen C E. PROLIFERATIVE DIABETIC-RETINOPATHY-AT RISK PATIENTS IDENTIFIED BY EARLY DETECTION OF MICROALBUMINURIA, Acta Ophthalmol,1985,63:530-534
    [220]Li Y, et al. CE with on-line detection by ICP-MS for studying the competitive binding of zinc against cadmium for glutathione, Electrophoresis,2008,29:4568-4574
    [221]Nath N, Chilkoti A. A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface, Anal Chem,2002,74:504-509
    [222]Haiss W, et al. Determination of size and concentration of gold nanoparticles from UV-Vis spectra, Anal Chem,2007,79:4215-4221
    [223]Pihlasalo S, et al. Ultrasensitive Protein Concentration Measurement Based on Particle Adsorption and Fluorescence Quenching, Anal Chem,2009,81:4995-5000
    [224]Pramanik S, et al. Size-dependent interaction of gold nanoparticles with transport protein:A spectroscopic study, J Lumin,2008,128:1969-1974
    [225]Sanz-Medel A. Heteroatom(isotope)-tagged genomics and proteomics, Anal Bioanal Chem,2008,390:1-2
    [226]Hanash S. Disease proteomics, Nature,2003,422:226-232
    [227]Brecht A, Abuknesha R. Multi-analyte immunoassays application to environmental analysis, Trac-Trends Anal Chem,1995,14:361-371
    [228]Delehanty J B, Ligler F S. A microarray immunoassay for simultaneous detection of proteins and bacteria, Anal Chem,2002,74:5681-5687
    [229]Moreno-Bondi M C, et al. Multi-analyte analysis system using an antibody-based biochip, Anal Bioanal Chem,2003,375:120-124
    [230]Rowe C A, et al. An array i'mmunosensor for simultaneous detection of clinical analytes, Anal Chem,1999,71:433-439
    [231]Caulum M M, Henry C S. Multi-analyte immunoassay using cleavable tags and microchip micellular electrokinetic chromatography, Analyst,2006,131:1091-1093
    [232]Ekins R P. MULTI-ANALYTE IMMUNOASSAY, J Pharmaceut Biomed,1989,7: 155-168
    [233]Koets M, et al. Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor, Biosens Bioelectron,2009,24:1893-1898
    [234]Zhang B, et al. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor, Biosens Bioelectron,2007,23:19-25
    [235]Perfetto S P, et al. Innovation-Seventeen-colour flow cytometry:unravelling the immune system, Nat Rev Immunol,2004,4:648-655
    [236]Hempen C, Karst U. Labeling strategies for bioassays, Anal Bioanal Chem,2006,384: 572-583
    [237]Razumienko E, et al. Element-tagged immunoassay with ICP-MS detection:Evaluation and comparison to conventional immunoassays, J Immunol Methods,2008,336:56-63
    [238]Luzi E, et al. New trends in affinity sensing:aptamers for ligand binding, Trac-Trends Anal Chem,2003,22:810-818
    [239]Tombelli S, et al. Analytical applications of aptamers, Biosens Bioelectron,2005,20: 2424-2434
    [240]Hamula C L A, et al. Selection and analytical applications of aptamers, Trac-Trends Anal Chem,2008,25:681-691
    [241]Song S P, et al. Aptamer-based biosensors, Trac-Trends Anal Chem,2008,27:108-117
    [242]Liu J W, et al. Functional Nucleic Acid Sensors, Chem Rev,2009,109:1948-1998
    [243]Pierluissi J, Campbell J. METASOMATOTROPHIC DIABETES AND ITS INDUCTION-BASAL INSULIN-SECRETION AND INSULIN RELEASE RESPONSES TO GLUCOSE, GLUCAGON, ARGININE AND MEALS, Diabetologia,1980,18:223-228
    [244]Dincer Y, et al. Serum levels of p53 and cytochrome c in subjects with type 2 diabetes and impaired glucose tolerance, Clin Invest Med,2009,32:E266-E270
    [245]Osaka A, et al. A novel role of serum cytochrome c as a tumor marker in patients with operable cancer, J Cancer Res Clin,2009,135:371-377
    [246]Zhao Q, et al. Aptamer-modified monolithic capillary chromatography for protein separation and detection, Anal Chem,2008,80:3915-3920
    [247]Chinnapen D J F, Sen D. Hemin-stimulated docking of cytochrome c to a hemin-DNA aptamer complex, Biochemistry,2002,41:5202-5212
    [248]Deng H, et al. Monodisperse magnetic single-crystal ferrite microspheres, Angew Chem Int Ed,2005,44:2782-2785
    [249]Stober W, et al. Controlled growth of monodisperse silica spheres in the micron size range, J Colloid Interf Sci,1968,26:62-69
    [250]He Y P, et al. Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications, J Phys D Appl Phys,2005,38: 1342-1350
    [251]Lee P C, Meisel D. ADSORPTION AND SURFACE-ENHANCED RAMAN OF DYES ON SILVER AND GOLD SOLS, J Phys Chem,1982,86:3391-3395
    [252]Huang Y-F, et al. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering, J Nanopart Res,2009,11:775-783
    [253]Ling J, et al. Visual Sandwich Immunoassay System on the Basis of Plasmon Resonance Scattering Signals of Silver Nanoparticles, Anal Chem,2009,81:1707-1714
    [254]El-Boubbou K, et al. Magnetic glyco-nanoparticles:A unique tool for rapid pathogen detection, decontamination, and strain differentiation, J Am Chem Soc,2007,129: 13392-13393
    [255]Cheng Y X, et al. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli, Talanta,2009,77:1332-1336
    [256]Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications-I. Theory, Anal Biochem,1998,262:137-156
    [257]Sakaida I, et al. Cytochrome c is a possible new marker for fulminant hepatitis in humans, J Gastroenterol,2005,40:179-185
    [258]Ho J A A, et al. Development of liposomal immunosensor for the measurement of insulin with femtomole detection, Anal Chim Acta,2006,556:127-132
    [259]Mirkin C A, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature,1996,382:607-609
    [260]Haes A J, Van Duyne R P. A nanoscale optical blosensor:Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J Am Chem Soc,2002,124:10596-10604
    [261]Anker J N, et al. Biosensing with plasmonic nanosensors, Nat Mater,2008,7:442-453
    [262]Alivisatos P. The use of nanocrystals in biological detection, Nat Biotechnol,2004,22: 47-52
    [263]El-Sayed I H, et al. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:Applications in oral cancer, Nano Lett,2005,5:829-834
    [264]Reinhard B M, et al. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes, P Natl Acad Sci USA,2007,104: 2667-2672
    [265]Azzazy H M E, et al. Nanodiagnostics:A New Frontier for Clinical Laboratory Medicine, Clin Chem,2006,52:1238-1246
    [266]Jain P K, et al. Au nanoparticles target cancer, Nano Today,2007,2:18-29
    [267]Castellana E T, et al. Label-Free Biosensing with Lipid-Functionalized Gold Nanorods, J Am Chem Soc,2011,133:4182-4185
    [268]Liu A-C, et al. Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II), Anal Chem,1999,71:1549-1552
    [269]Yang W R, et al. Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes, Chem Commun,2001:1982-1983
    [270]Salaun P, van den Berg C M G. Voltammetric detection of mercury and copper in seawater using a gold microwire electrode, Anal Chem,2006,78:5052-5060
    [271]Jena B K, Raj C R. Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper, Anal Chem,2008,80:4836-4844
    [272]Orozco J, et al. Underpotential deposition-anodic stripping voltammetric detection of copper at gold nanoparticle-modified ultramicroelectrode arrays, Environ Sci Technol,2008, 42:4877-4882
    [273]Zheng Y J, et al. Peptidyl fluorescent chemosensors for the detection of divalent copper, Anal Chem,2003,75:1706-1712
    [274]Zheng Y J, et al. Development of fluorescent film sensors for the detection of divalent copper, J Am Chem Soc,2003,125:2680-2686
    [275]Chan Y-H, et al. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-Brightened Luminescence of CdSe Quantum Dots, Anal Chem,2010,82:3671-3678
    [276]Lan G Y, et al. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions, Chem Commun,2010,46:1257-1259
    [277]Lin W Y, et al. Fluorescence tum-on detection of Cu2+in water samples and living cells based on the unprecedented copper-mediated dihydrorosamine oxidation reaction, Chem Commun,2010,46:1311-1313
    [278]Su Y-T, et al. Detection of Copper Ions Through Recovery of the Fluorescence of DNA-Templated Copper/Silver Nanoclusters in the Presence of Mercaptopropionic Acid, Anal Chem,2010,82:8566-8572
    [279]Zhou Y, et al. Visual detection of copper(II) by azide-and alkyne-functionalized gold nanoparticles using click chemistry, Angew Chem Int Ed,2008,47:7454-7456
    [280]Yin B-C, et al. An Allosteric Dual-DNAzyme Unimolecular Probe for Colorimetric Detection of Copper(II), J Am Chem Soc,2009,131:14624-14625
    [281]Zhao Y, et al. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Chemosensor for Cu2+in Aqueous Solution and Living Cells, Anal Chem,2009,81: 7022-7030
    [282]Song Y J, et al. Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes, Chem Commun,2010,46: 6572-6574
    [283]Pourreza N, Hoveizavi R. Simultaneous preconcentration of Cu, Fe and Pb as methylthymol blue complexes on naphthalene adsorbent and flame atomic absorption-determination, Anal Chim Acta,2005,549:124-128
    [284]Wu J F, Boyle E A. Low Blank Preconcentration Technique for the Determination of Lead, Copper, and Cadmium in Small-Volume Seawater Samples by Isotope Dilution ICPMS, Anal Chem,1997,69:2464-2470
    [285]Kriegeskotte C, et al. Laser secondary neutral mass spectrometry for copper detection in micro-scale biopsies, J Mass Spectrom,2009,44:1417-1422
    [286]Sudeep P K, et al. Selective detection of cysteine and glutathione using gold nanorods, J Am Chem Soc,2005,127:6516-6517
    [287]Yu C X, Irudayaraj J. Multiplex biosensor using gold nanorods, Anal Chem,2007,79: 572-579
    [288]Caswell K K, et al. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors, J Am Chem Soc,2003,125:13914-13915
    [289]Huang H W, et al. Ultra-sensitive detection of cysteine by gold nanorod assembly, Biosens Bioelectron,2010:2078-83
    [290]Uvdal K, et al.1-cysteine adsorbed on gold and copper:An X-ray photoelectron spectroscopy study, J Colloid Interf Sci,1992,149:162-173
    [291]Yang W R, et al. Characterisation of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper, J Electroanal Chem, 2001,516:10-16
    [292]Wang K M, et al. Molecular Engineering of DNA:Molecular Beacons, Angew Chem Int Ed,2009,48:856-870
    [293]Kostrikis L G, et al. Molecular beacons-Spectral genotyping of human alleles, Science, 1998,279:1228-1229
    [294]Bonnet G, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes, P Natl Acad Sci USA,1999,96:6171-6176
    [295]Tan L, et al. Molecular beacons for bioanalytical applications, Analyst,2005,130: 1002-1005
    [296]Fang X H, et al. Molecular beacons-Novel fluorescent probes, Anal Chem,2000,72: 747A-753A
    [297]Iliuk A B, et al. Aptamer in Bioanalytical Applications, Anal Chem,2011,83: 4440-4452
    [298]Roh Y H, et al. Engineering DNA-based functional materials, Chem Soc Rev,2011,40: 5730-5744
    [299]Mascini M, et al. Nucleic Acid and Peptide Aptamers:Fundamentals and Bioanalytical Aspects, Angew Chem Int Ed,2012,51:1316-1332
    [300]Su S, et al. Silicon Nanowire-Based Molecular Beacons for High-Sensitivity and Sequence-Specific DNA Multiplexed Analysis, Acs Nano,2012,6:2582-2590
    [301]Huang P-J J, Liu J. Molecular Beacon Lighting up on Graphene Oxide, Anal Chem, 2012,84:4192-4198
    [302]Meng H-M, et al. Efficient Fluorescence Turn-On Probe for Zirconium via a Target-Triggered DNA Molecular Beacon Strategy, Anal Chem,2012,84:2124-2128
    [303]Lovell J F, et al. Programmed Nanoparticle Aggregation Using Molecular Beacons, Angew Chem Int Ed,2010,49:7917-7919
    [304]Giesendorf B A J, et al. Molecular beacons:a new approach for semiautomated mutation analysis, Clin Chem,1998,44:482-486
    [305]Fang X H, et al. Designing a novel molecular beacon for surface-immobilized DNA hybridization studies, J Am Chem Soc,1999,121:2921-2922
    [306]Wu J, et al. A Molecular Peptide Beacon for the Ratiometric Sensing of Nucleic Acids, J Am Chem Soc,2012,134:1958-1961
    [307]Piatek A S, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis, Nat Biotechnol,1998,16:359-363
    [308]Grossmann T N, et al. Triplex molecular beacons as modular probes for DNA detection, Angew Chem Int Ed,2007,46:5223-5225
    [309]Zhang P, et al. Design of a molecular beacon DNA probe with two fluorophores, Angew Chem Int Ed,2001,40:402-405
    [310]Bourdoncle A, et al. Quadruplex-based molecular beacons as tunable DNA probes, J Am Chem Soc,2006,128:11094-11105
    [311]Stoermer R L, et al. Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays, J Am Chem Soc,2006,128:16892-16903
    [312]Heyduk T, Heyduk E. Molecular beacons for detecting DNA binding proteins, Nat Biotechnol,2002,20:171-176
    [313]Tyagi S, et al. Multicolor molecular beacons for allele discrimination, Nat Biotechnol, 1998,16:49-53
    [314]Tyagi S, Kramer F R. Molecular beacons:Probes that fluoresce upon hybridization, Nat Biotechnol,1996,14:303-308
    [315]Tyagi S, et al. Wavelength-shifting molecular beacons, Nat Biotechnol,2000,18: 1191-1196
    [316]Sokol D L, et al. Real time detection of DNA RNA hybridization in living cells, P Natl Acad Sci USA,1998,95:11538-11543
    [317]Medley C D, et al. Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells, Anal Chem,2005,77:4713-4718
    [318]Perlette J, Tan W H. Real-time monitoring of intracellular mRNA hybridization inside single living cells, Anal Chem,2001,73:5544-5550
    [319]Santangelo P J, et al. Dual FRET molecular beacons for mRNA detection in living cells, Nucleic Acids Res,2004,32:
    [320]Bratu D P, et al. Visualizing the distribution and transport of mRNAs in living cells, P Natl Acad Sci USA,2003,100:13308-13313
    [321]Li J J, et al. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA, Nucleic Acids Res,2000,28:E52
    [322]Tang Z W, et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons, Nucleic Acids Res,2003,31:
    [323]Tang Z W, et al. Real-time investigation of nucleic acids phosphorylation process using molecular beacons, Nucleic Acids Res,2005,33:
    [324]Fang X H, et al. Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA, Anal Chem,2000,72:3280-3285
    [325]Li J W J, et al. Molecular beacons:A novel approach to detect protein-DNA interactions, Angew Chem Int Ed,2000,39:1049-1050
    [326]Tan W H, et al. Molecular beacons:A novel DNA probe for nucleic acid and protein studies, Chem Eur J,2000,6:1107-1111
    [327]Yao G, Tan W H. Molecular-beacon-based array for sensitive DNA analysis, Anal Biochem,2004,331:216-223
    [328]Wang H, et al. Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film, Nucleic Acids Res,2002,30:
    [329]Fang X H, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy, Anal Chem,2001,73:5752-5757
    [330]Tuleuova N, et al. Development of an Aptamer Beacon for Detection of Interferon-Gamma, Anal Chem,2010,82:1851-1857
    [331]Cao Z H, Tan W H. Molecular aptamers for real-time protein-protein interaction study, Chem Eur J,2005,11:4502-4508
    [332]Yang C J, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids, P Natl Acad Sci USA,2005,102:17278-17283
    [333]Wang Y, et al. Silver Ions-Mediated Conformational Switch:Facile Design of Structure-Controllable Nucleic Acid Probes, Anal Chem,2010,82:6607-6612
    [334]Wang Y X, et al. Strategy for Molecular Beacon Binding Readout:Separating Molecular Recognition Element and Signal Reporter, Anal Chem,2009,81:9703-9709
    [335]Yang R H, et al. Reversible molecular switching of molecular beacon:controlling DNA hybridization kinetics and thermodynamics using mercury(II) ions, Chem Commun,2009: 322-324
    [336]Vallon V, et al. Adenosine and kidney function, Physiol Rev,2006,86:901-940
    [337]Wang J, et al. Aptamer-based ATP assay using a luminescent light switching complex, Anal Chem,2005,77:3542-3546
    [338]Wang Y Y, et al. Fluorescent detection of ATP based on signaling DNA aptamer attached silica nanoparticles, Nanotechnology,2008,19:
    [339]He H-Z, et al. A label-free G-quadruplex-based switch-on fluorescence assay for the selective detection of ATP, Analyst,2012,137:1538-1540
    [340]Kim J H, et al. A Luciferase/Single-Walled Carbon Nanotube Conjugate for Near-Infrared Fluorescent Detection of Cellular ATP, Angew Chem Int Ed,2010,49: 1456-1459
    [341]Chen Z, et al. A new method for the detection of ATP using a quantum-dot-tagged aptamer, Anal Bioanal Chem,2008,392:1185-1188
    [342]Moro A J, et al. Surface-functionalized fluorescent silica nanoparticles for the detection of ATP, Chem Commun,2011,47:6066-6068
    [343]Yao W, et al. An aptamer-based electrochemiluminescent biosensor for ATP detection, Biosens Bioelectron,2009,24:3269-3274
    [344]Huang H P, et al. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence, Nanoscale,2010,2:606-612
    [345]Li W, et al. A sensitive, label free electrochemical aptasensor for ATP detection, Talanta, 2009,78:954-958
    [346]Zuo X L, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP, J Am Chem Soc,2007,129:1042-1043
    [347]Guo W W, et al. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ion, Chem Commun,2009: 3395-3397
    [348]Zhang S S, et al. Electrochemical Biosensor for Detection of Adenosine Based on Structure-Switching Aptamer and Amplification with Reporter Probe DNA Modified Au Nanoparticles, Anal Chem,2008,80:8382-8388
    [349]Taniai H, et al. A simple quantitative assay for urinary adenosine using column-switching high-performance liquid chromatography, Tohoku J Exp Med,2006,208: 57-63
    [350]Feng G, et al. Fluorescence bioimaging with conjugated polyelectrolytes, Nanoscale, 2012,4:6150-6165
    [351]Lee D-E, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis, Chem Soc Rev,2012,41:2656-2672
    [352]Yang Y, et al. Luminescent Chemodosimeters for Bioimaging, Chem Rev,2012:
    [353]Rao J H, et al. Fluorescence imaging in vivo:recent advances, Curr Opin Biotech,2007, 18:17-25
    [354]Dong H, et al. Target-Cell-Specific Delivery, Imaging, and Detection of Intracellular MicroRNA with a Multifunctional SnO2 Nanoprobe, Angew Chem Int Ed,2012,51: 4607-4612
    [355]Hong G, et al. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region, Angew Chem Int Ed,2012,51:9818-9821
    [356]Li J-L, et al. Graphene Oxide Nanoparticles as a Nonbleaching Optical Probe for Two-Photon Luminescence Imaging and Cell Therapy, Angew Chem Int Ed,2012,51: 1830-1834
    [357]Yang Y, et al. In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles, Angew Chem Int Ed,2012,51:3125-3129
    [358]Gu Y-P, et al. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging, J Am Chem Soc,2011,134:79-82
    [359]Ju Q, et al. Amine-Functionalized Lanthanide-Doped KGdF4 Nanocrystals as Potential Optical/Magnetic Multimodal Bioprobes, J Am Chem Soc,2011,134:1323-1330
    [360]Robinson J T, et al. In Vivo Fluorescence Imaging in the Second Near-Infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake, J Am Chem Soc,2012,134:10664-10669
    [361]Pinaud F, et al. Advances in fluorescence imaging with quantum dot bio-probes, Biomaterials,2006,27:1679-1687
    [362]Li P-H, et al. Using Gold Nanoclusters As Selective Luminescent Probes for Phosphate-Containing Metabolites, Anal Chem,2012,84:5484-5488
    [363]Wang Y, et al. Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+Breast Cancer, Acs Nano,2011,5:9718-9725
    [364]Yun C S, et al. Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J Am Chem Soc,2005,127:3115-3119
    [365]Chen C-W, et al. Highly Sensitive Emission Sensor Based on Surface Plasmon Enhanced Energy Transfer between Gold Nanoclusters and Silver Nanoparticles, J Phys Chem C,2009,114:799-802
    [366]Jagt R B C, et al. Pattern-Based Recognition of Heparin Contaminants by an Array of Self-Assembling Fluorescent Receptors, Angew Chem Int Ed,2009,48:1995-1997
    [367]Wright A T, et al. A Functional Assay for Heparin in Serum Using a Designed Synthetic Receptor, Angew Chem Int Ed,2005,44:5679-5682
    [368]Pu K-Y, Liu B. A Multicolor Cationic Conjugated Polymer for Naked-Eye Detection and Quantification of Heparin, Macromolecules,2008,41:6636-6640
    [369]Mecca T, et al. Polycationic calix[8]arenes able to recognize and neutralize heparin, Org Biomol Chem,2006,4:3763-3768
    [370]Gu X G, et al. A new ratiometric fluorescence detection of heparin based on the combination of the aggregation-induced fluorescence quenching and enhancement phenomena, Analyst,2012,137:365-369
    [371]Wang M, et al. The convenient fluorescence turn-on detection of heparin with a silole derivative featuring an ammonium group, Chem Commun,2008:4469-4471
    [372]Sun W, et al. A Fluorescent Polymeric Heparin Sensor, Chem Eur J,2007,13: 7701-7707
    [373]Dai Q, et al. Ratiometric Fluorescence Sensor Based on a Pyrene Derivative and Quantification Detection of Heparin in Aqueous Solution and Serum, Anal Chem,2011,83: 6559-6564
    [374]Zhan R Y, et al. Naked-Eye Detection and Quantification of Heparin in Serum with a Cationic Polythiophene, Anal Chem,2010,82:1326-1333
    [375]Fu X L, et al. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide, Biosens Bioelectron,2012, 34:227-231
    [376]Gemene K L, Meyerhoff M E. Reversible Detection of Heparin and Other Polyanions by Pulsed Chronopotentiometric Polymer Membrane Electrode, Anal Chem,2010,82: 1612-1615
    [377]Retnakumari A, et al. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging, Nanotechnology,2010,21:
    [378]Kawasaki H, et al. Trypsin-Stabilized Fluorescent Gold Nanocluster for Sensitive and Selective Hg(2+) Detection, Anal Sci,2011,27:591-596
    [379]Pu K-Y, Liu B. Conjugated Polyelectrolytes as Light-Up Macromolecular Probes for Heparin Sensing, Adv Funct Mater,2009,19:277-284
    [380]Wang S, Chang Y-T. Discovery of heparin chemosensors through diversity oriented fluorescence library approach, Chem Commun,2008:1173-1175
    [381]Yan H, Wang H-F. Turn-on Room Temperature Phosphorescence Assay of Heparin with Tunable Sensitivity and Detection Window Based on Target-Induced Self-Assembly of Polyethyleneimine Capped Mn-Doped ZnS Quantum Dots, Anal Chem,2011,83:8589-8595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700