缺氧状态下人小细胞肺癌H446细胞错配修复基因MLH1、MSH2异常甲基化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺氧是肺癌等实体肿瘤的主要微环境特征,其选择压力及其诱导的遗传变异是肿瘤细胞遗传异质性和遗传不稳定性的重要原因,可诱导肿瘤细胞表现出更具恶性的生物学表型、更强的侵袭和转移能力以及对化疗和放疗的不敏感性。DNA错配修复(MMR)在维持遗传稳定性中具有重要作用。已有研究表明,缺氧可能与MMR基因表达失活有关,但其机制尚不清楚。以往的研究多认为,基因水平的改变主要为基因的突变或缺失即遗传学层面上的改变,但随着基因表遗传学研究的加深,越来越多的人认识到基因的表达增高或降低与表遗传学水平上的改变如DNA甲基化等相关。但是,DNA甲基化等表遗传学水平上的改变是否参与了缺氧对MMR基因的调控尚需进一步探讨。同时,鉴于甲基化模式异常与肿瘤密切相关,而肿瘤细胞内可能存在迫使其发生甲基化失衡的压力,缺氧是否参与其中也值得关注。此外,甲基化作为一个可逆的调控过程,有望成为肿瘤干预新的切入点。已证实去甲基化药物5-Aza-CdR可恢复甲基化基因的表达,并在多种肿瘤中表现出一定的抗癌活性,但在小细胞肺癌中的应用目前尚未见报道。
     目的
     1.研究缺氧(3% O2)对人小细胞肺癌H446细胞生物学性状的影响。
     2.观察缺氧对错配修复基因MLH1、MSH2表达的影响,并探讨启动子甲基化在其表达调控中的作用。
     3.探讨缺氧与DNA甲基化的关系。
     4.研究甲基转移酶抑制剂5-Aza-CdR对H446细胞的抑制生长作用及其与缺氧的关系。
     方法
     1.观察缺氧对H446细胞生物学性状的影响光镜及透射电镜观察缺氧条件下H446细胞的形态学变化;MTT法检测缺氧条件下H446细胞的增殖能力及对多种化疗药物的半数抑制浓度; PI标记流式细胞术检测缺氧条件下细胞周期分布;自发光荧光仪检测缺氧条件下细胞内caspase-3/7活性;罗丹明123外排实验评估缺氧对P-gp介导的药物外排能力的影响;流式细胞仪及荧光显微镜检测缺氧对细胞内活性氧簇生成的影响。
     2.观察缺氧对MLH1、MSH2基因表达的影响RT-PCR检测MLH1、MSH2基因在mRNA水平上的表达;Western blot检测MLH1、MSH2基因在蛋白水平上的表达。
     3.探讨DNA甲基化在MLH1、MSH2基因表达下调中的作用及其与缺氧的关系MSP检测缺氧条件下MLH1、MSH2基因启动子甲基化状态的变化并测序鉴定;RT-PCR及Western blot检测5-Aza-CdR对缺氧条件下MLH1、MSH2基因表达的恢复作用;MS-AP-PCR检测缺氧条件下H446细胞基因组甲基化水平的变化。
     4.观察5-Aza-CdR对H446细胞的生长抑制作用及其与缺氧的关系MTT法检测细胞增殖能力及对多种化疗药物的半数抑制浓度;PI标记流式细胞术检测细胞周期分布;自发光荧光仪检测细胞内caspase-3/7活性;罗丹明123外排实验评估P-gp介导的药物外排能力;MS-AP-PCR检测细胞基因组甲基化水平。
     结果
     1.在缺氧条件下,H446细胞增殖能力显著减弱,胞浆内可见线粒体肿胀、细胞器空泡变、髓鞘样改变和核糖体增多,部分细胞内出现微腺腔;同时,H446细胞对VP-16、多柔比星等化疗药物的敏感性显著降低,Rh123外排效率显著增加(常氧:11.45±2.33,缺氧:17.25±1.46,P<0.05);随着缺氧时间的延长,H446细胞中S期细胞显著增加,G2期细胞显著减少(P<0.01),缺氧48h后细胞内casase-3/7活性显著增强。H446细胞内活性氧含量在缺氧早期显著增多,缺氧12h后显著减少(P<0.01)。
     2.缺氧状态下,H446细胞MLH1、MSH2基因在转录和翻译水平均显著性降低(P<0.01)。同时,随着缺氧时间延长,MSH2基因启动子直接由非甲基化状态转变为完全甲基化状态,所有待测CpG位点均发生甲基化,而MLH1基因启动子逐渐由非甲基化状态、部分甲基化状态转变为完全甲基化状态,只有部分位点发生了甲基化。5-Aza-CdR可使缺氧状态下H446细胞的MLH1、MSH2基因表达水平有所恢复,但去除5-Aza-CdR后基因表达再次下调。常氧及缺氧条件下H446细胞基因组甲基化水平存在显著差异,后者同时出现部分基因高甲基化和部分基因低甲基化。
     3.常氧条件下,5-Aza-CdR可显著降低H446细胞的增殖能力(呈剂量依赖性,P<0.01),诱导G1期阻滞(呈时间依赖性,P<0.05)和细胞凋亡(P<0.05)。同时,P-gp介导的药物外排效率增加,基因组DNA甲基化水平降低,但H446细胞对顺铂等化疗药物的敏感性无显著性变化。缺氧在抑制细胞增殖、诱导G1期阻滞和降低基因组DNA甲基化水平等方面与5-Aza-CdR具有协同作用。
     结论
     1.缺氧状态下,人小细胞肺癌H446细胞生物学性状发生显著改变:细胞增殖能力减弱、大量细胞阻滞在S期、凋亡潜能细胞减少、药物外排效率增强,并对化疗药物的敏感性降低。
     2.缺氧状态下,H446细胞错配修复基因MLH1、MSH2基因的表达显著降低,启动子甲基化可能是其表达下调的重要机制之一。
     3.缺氧可能是造成肿瘤细胞甲基化异常的压力之一。
     4.在常氧及缺氧状态下,5-Aza-CdR均可显著抑制H446细胞生长,错配修复基因表达恢复、诱导G1期阻滞和细胞凋亡可能是其抗瘤活性的主要机制,而缺氧具有部分协同作用。
Hypoxia is a common microenvironmental characteristic of human solid tumors including lung cancer. The selective pressure and induced mutations of hypoxia may be the strong driving force for genetic heterogeneity and instability, which contribute to a poor prognosis due to tumor progression towards a more malignant phenotype, with increased metastatic potential, and an increased resistance to treatment.
     Some evidence has indicated that hypoxia is related to inactive MMR, which plays an important role in maintaining genetic stability, but the mechanism is still unclear. It was previously thought that gene changes mainly meant mutation or deletion, namely at genetics level, but with recent progress of epigenetics, more and more people realized that the regulation of gene expression also was closely related to changes at epigenetics level such as DNA methylation, even more critical. Therefore, it is worth further exploring the relationship between DNA methylation and mechnism of hypoxia on MMR genes regulation.
     Furthermore, abnormal methylation patterns is closely related to cancer and some forces in cancer cells involved in. The relationship between hypoxia and methylation deserved attention.
     In conclusion, methylation is a reversible regulation program, which may become a new strategy of gene therapy for tumor. The treatment of demethylation drugs, such as 5-Aza-CdR, can restore the tumor suppressor gene and DNA repair gene expression and shows a certain antitumor activity in several tumors, but not mentioned in SCLC.
     Objective
     1. To observe the effect of hypoxia on biological characteristics of human SCLC cell line H446.
     2. To investigate the expression and the role of promoter methylation of DNA mismatch repair genes MLH1 and MSH2 in H446 cells under hypoxic condition.
     3. To study the growth inhibition effect of 5-Aza-CdR on H446 cells and the relationship with hypoxia.
     Materials and methods
     1. Light microscope and TEM were used to observe cell morphological changes. MTT was used to determine the proliferation and the 50% inhibitory concentration(IC50) for different drugs. FACs was emplored to detect the efficacy of drug exclusion and cell cycle. The caspase-3/7 activity and generation of ROS was assessed by luminometer, flow cytometry and fluorescence microscope, respectively.
     2. RT-PCR and Western blot were applied to detect MLH1 and MSH2 expression in human SCLC cell line H446 at the mRNA and the protein level, respectively, under the hypoxic condition and after 5-Aza-CdR treatment. Meanwhile, methylation-specific PCR(MSP) was used to determine promoter methylation of MLH1 and MSH2. MS-AP-PCR was emplored to detect the genomic methylation level of H446 cells under hypoxic condition.
     3. The proliferation, IC50, cell cycle caspase-3/7 activity, Rh123 exclusion efficacy and genomic methylation level of H446 cells with 5-Aza-CdR treatment were analyzed as above.
     Result
     1. Under hypoxic condition, the proliferation of H446 cell was decreased significantly. Mitochondria swelling,organelle bubbing and myelinogenesis were observed in H446 cells, even microadencavity emerged in some cells. Meanwhile, H446 cells were more resisted to VP-16 and doxorubicin (P<0.05) under hypoxic condition. Rh123 exclusion efficacy of H446 cells significantly increased (P<0.05). Hypoxia induced the arrest of H446 cells in S phase in the time manner. Moreover, the G2 phase cells decreased, finally disappeared after 48h, but the caspase-3/7 activity did not increase until 48h. FACs showed that ROS increased at first, but significantly decreased after 12h.
     2. The expression of MLH1 and MSH2 in H446 cells significantly decreased both at the mRNA and the protein level under the hypoxic condition. Meanwhile, the promoter methylation status changed with time of hypoxia: MSH2 gene promoter directly changed from unmethlation to complete methylation and all the CpG sites occurred methlation. Nevertheless, MLH1 gene promoter gradually transformed unmethylation into partial methylation, finally methylation completely and only part of CpG sites occurred methlation. 5-Aza-CdR treatment led to the restoration of MLH1 and MSH2 expression, while, both MLH1 and MSH2 were down-regulated again after removing 5-Aza-CdR. Some genes high-methylation and some genes low-methylation both appeared in H446 cells under hypoxic condition, which was different from H446 cells under normoxic condition.
     3. Under normoxic condition, 5-Aza-CdR could significantly decrease the proliferation of H446 cells in dose-indepentent manner, induce G1 phase arrest and apoptosis in time-independent manner. Simultaneously, Rh123 exclusion efficacy was increased, genomic methylation level was decreased, while the sensitivities to drugs were not affected. Hypoxia has a synergistic effect on growth inhibition, G1 phase arrest and genomic methylation level reduction.
     Conclusion
     1. Hypoxia could inhibit growth, induce S phase arrest, increase the efficacy of drug exclusion and decrease apoptotic potential cells, meanwhile, decrease the sensitivities of H446 cells to chemotherapeitic drugs. This shows that hypoxia may regulate the biological characteristics of tumor cells and its process through a variety of mechanisms.
     2. The promoter methylation of MLH1 and MSH2 may play an important role in its defective expression in H446 cells under the hypoxic conditon.
     3. Hypoxia might be one of forces inducing abnormal methylation of tumor cells.
     4. 5-Aza-CdR could inhibit cell growth, restore mismatch repair genes expression, induce G1 phase arrest and apoptosis, which might be important in antitumor effect of 5-Aza-CdR on H446 cell. Hypoxia has a certain synergy.
引文
1. J emal A, Thomas A, Murray T, et al .Cancer statistics, 2002. CA Cancer J Clin, 2002, 52 (1): 23-47. Erratum in: CA Cancer J Clin, 2002, 52 (2): 119. CA Cancer J Clin, 2002, 52 (3) : 181-182.
    2. Chua YJ, Steer C, Yip D. Recent advances in management of small-cell lung cancer. Cancer Treat Rev 2004, 30: 521–543.
    3. Kurup A, Hanna NH. Treatment of small cell lung cancer. Crit Rev Oncol Hematol, 2004, 52: 117–26.
    4. Potter C, Harris AL. Hypoxia inducible carbonic anhydrase IX, marker of tumor hypoxia, survival pathway and therapy target [J]. Cell Cycle, 2004, 3(2): 164-167.
    5. Bottaro DP, Liotta LA. Out of air is not out of action. Nature, 2003, 423: 593-595.
    6. Gardner LB, Li Q, Park MS, et al. Hypoxia inhibits G1/ S transition through regulation of p27 expression. J Biol Chem, 2001, 276(11): 7919-7926.
    7. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol, 1998, 8: 2845–2854.
    8. Giatromanolaki A, KoukourakisM I, Sowter HM, et al. BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer [J]. Clin Cancer Res, 2004, 10(16): 5566-5571.
    9. Kunz M, Ibrahim SM. Molecular response to hypoxia in tumor cells. Mol Cancer, 2003, 2: 23-36.
    10. Wouters BG, Koritzinsky M, Chiu RK, et al. Modulation of cell death in the tumor microenvironment. Semin Radiat Oncol, 2003, 13: 31-41.
    11. Reynolds TY, Rock well S, Glazer PM. Genetic instability induced by the tumor microenviroment [J]. Cancer Res, 1996, 56(24): 5754.
    12. Yu JL, Rak JW, Coomber BL, et al. Effect of p53 status on tumor response to antiangiogenic therapy [J]. Science, 2002, 295(59): 1526.
    13. Jogi A, Vallon Christersson J, Holmquist L, et al. Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res, 2004, 295(2): 469-487.
    14. Wartenberg M, Gronczynska S, Bekhite MM, et al. Regulation of the multidrugresisitance transporter P-glycoprotein in multicellular prostate tumor spheroids by hyperthermia and reactive oxygen species. Int J Cancer, 2005, 113(2): 229-240.
    15. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the Multidrug Resistance(MDR1) gene. Cancer Res, 2002, 62(12): 3387-3394.
    16. Greijer AE, de Jong MC, Scheffer GL, et al. Hypoxia-induced acidification causes mitoxantrone resisitance not mediated by drug transproters in human breast cancer cells. Cell Oncol, 2005, 27(1): 43-49.
    17. Santo reMT, McClintock DS, Lee VY, et al. A noxia- induced apoptosis occurs through a mitochondrion-dependent pathway in lung epithelial cells [J]. Am J Physiology Lung Cell Mol Physiol, 2002, 282: 727-734.
    18. Harris AL. Hypoxia: a key regulatory factor in tumor growth [J]. Cancer, 2002, 89(2): 38-47.
    19. Sasaki M, Kobayashi D, Watanabe N. Augmented adriamycin sensitivity in cells transduced with an antisense tumor necrosis factor gene is mediated by caspase-3 downstream from reactive oxygen species. Jpn J Cancer Res, 2001, 92(9): 983-988.
    20. Jacobson MD, Raff MC. Programmed cell death and Bcl-2 protection in very low oxygen. Nature, 1995, 374(6525): 814- 816.
    21. Ibui Y, Goto R. The antiapoptotic effect of low-down- dose UVB irradiation in NIH3T3 cells involves caspase inhibitions. Photochem Photobiol, 2003, 77(3): 276-283.
    22. Wartenberg M, Ling FC, Schallenberg M, et al. Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem, 2001, 276 (20): 17420-17428.
    23. Wartenberg M, Ling FC, Muschen M, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor ( HIF-1 ) and reactive oxygen species. FASEB J, 2003, 17 (3): 503-505.
    24. Page EL, Robitaille GA, Pouyssegur J, et al. Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem, 2002, 277(50): 48403-48409.
    25. Enomoto N, Koshikawa N, Gassmann M, et al. Hypoxic induction of hypoxia-inducible factor-1alpha and oxygen-regulated gene expression in mitochondrial DNA-depletedHeLa cells. Biochem Biophys Res Commun, 2002, 297(2): 346-352.
    26. Brown NS, Bicknell R. Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res, 2001, 3 (5): 323-327.
    27. Helene Pelicano, Dennis Carney and Peng Huang. ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates, 2004, 7(2): 97-110.
    28. Koshiji M, To KK, Hammer S, et al. HIF-1 induces genetic instability by transcriptionally down-regulating MutS expression. Mol Cell, 2005, 17: 793–803.
    29. Huang LE, Bindra RS, Glazer PM, et al. Hypoxia-induced genetic instability--a calculated mechanism underlying tumor progression. J Mol Med, 2007, 85(2): 139-148.
    30. M Bignamia, I Casorellia, P Karran. Mismatch repair and response to DNA-damaging antitumor therapies. European Journal of Cancer, 2003, 39:2142-2149.
    31. Hiroaki M, Nada HK, Liya G, et al. Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett, 2005, 223(1): 143-150.
    32. Helleman J, van-Staveren IL, Dinjens WN, et al. Mismatch repair and treatment resistance in ovarian cancer. BMC-Cancer, 2006, 6: 201.
    33. Fink D, Nebel S, Norris PS, et al. Enrichment for DNA mismatch repair-deficient cells during treatment with cisplatin. Int J Cancer, 1998, 77: 741–746.
    34. Rellecke P, Kuchelmeister K, Schachenmayr W, et al. Mismatch repair protein hMSH2 in primary drug resistance in vitro human malignant gliomas. J-Neurosurg. 2004, 101(4): 653-658.
    35. SL Gibson, L Narayanan, DC Hegan, et al. Over-expression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance. Cancer Letters xx, 2006, 1-8.
    36.董彩婷,杨青,董奇男等.错配修复基因Hmsh2的表达与肺癌相关性的分析。实用肿瘤杂志, 2004, 19(3): 196-199
    37. Klingler H, Hemmerle C, Bannwart F, et al. Expression of the hMSH6 mismatch-repair protein in colon cancer and HeLa cells[J]. Swiss Med Wkly, 2002, 132(5~6): 57- 63.
    38. Kondo A, Safaci R, Moshima M, et al. Hypoxia induced enrichment and mutagenesis of cells that have lost DNA mismatch repair [J].Cancer Res, 2001, 61(20): 7603-7607.
    39. Ranjit S B, Paul J.S, Alice M, et al. Alterations in DNA Repair Gene Expression underHypoxia: Elucidating the Mechanisms of Hypoxia-Induced Genetic Instability. Ann N Y Acad. Sci, 2005, 1059: 184–195.
    40. V.T. Mihaylova, R.S. Bindra, J. Yuan, et al. Decreased expression of the DNA mismatch repair gene MIh1 under hypoxic stress in mammalian cells. Mol.Cell.Biol, 2003, 23(9): 3265–3273.
    41. Morimoto H, Tsukada J, Kominato Y, et al. Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am-J-Hematol, 2005, 78(2): 100-107.
    42.吕嘉春,廖永德,王云南等。错配修复基因Hmsh2表达地下与人群肺癌发病的关系。广州医学院学报, 2003, 31(2): 6-11
    43. Giarnieri E, Mancini R, Pisani T. MSH2, Fhit, p53, Bcl-2 and Bax expression in invasive and in situ squamous cell carcinoma of the uterine cervix[J]. Clin Cancer Res, 2000, 6(9): 3600-3606.
    44. Warnick CT, Dabbas B, Ford CD, et al. Identification of a p53 response element in the promoter region of the Hmsh2 gene required for expression in A2780 ovarian cancer cells. J Biol Chem, 2001, 276(29): 27363-27370.
    45. Ballestar E, Wolffe AP. Methyl-CpG-binding proteins: targeting specific gene repression. Eur J Biochem, 2001, 268: 1-6.
    46. Cowled P, Kanter I, Leonardos L, et al. Uroplakin Ib gene transcription in urothelial tumor cells is regulated by CpG methylation, 2005, 7: 1091-1103.
    47. Storre J, Schafer A, Reichert N, et al. Silencing of the meiotic genes SMC1beta and STAG3 in somatic cells by E2F6. J Biol Chem, 2005, 280: 4180-4186
    48. Liu S, Shen T, Huynh L, et al. Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukernia. Cancer Res, 2005, 65: 1277-1284.
    49. Ladd PD, Butler JS, Skalnik DG. Identification of a genomic fragment that directs hematopoietic-specific expression of Rac2 and analysis of the DNA methylation profile of the gene locus. Gene, 2004, 341: 323-333.
    50. Jens M, Teodoridisl, Jacqueline Hall, et al. CpG Island Methylation of DNA Damage Response Genes in Advanced Ovarian Cancer. Cancer Res, 2005, 65: 8961-8967.
    51. Deng G, Chen A, Hong J, et al. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res, 1999, 59: 2029-2033.
    52. Tycko B. Epigenetic gene silencing in cancer. J Clin Invest, 2000, 105: 401-407.
    53. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003, 33: 245-254.
    54. Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol, 2005, 32: 521-530.
    55. Choi IS, Wu TT. Epigenetic alterations in gastric carcinogenesis. Cell Res, 2005, 15: 247-254.
    56. Issa JP. Epigenetic variation and human disease. J Nutr, 2002, 132(8 Suppl): 2388-2392.
    57. Kim Y, Pogribny IP, Basnakia AG, et al. Folate deficiency in rats induces DNA strand breaks and hypomenthylation with the p53 tumor suppresser gene. Am J Clin Nutr, 1997, 65: 46-52.
    58. Verma M, Sfivastava S. Epigenetics in cancer implication for early detection and prevention. Lancet Oncol, 2002, 3: 755-763.
    59. Whitman S P, Liu S, Vukosavljevic T, et al. The MLL partial tandem duplication: evidence for recessive gain of function in acute myeloid leukemia identifies a novel patient subgroup for molecular targeted therapy. Blood, 2005, 106 (1): 345~352.
    60. Momparler RL, Eliopoulos N, Ayoub J. Evaluation of an inhibitor of DNA methylation,
    5-aza-2′-deoxycytidine[J]. Oncogene, 1995, 11: 1211-1216.
    61. Christman JK. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, 21: 5483-5495.
    62. Suh SI, Pyun HY, Cho JW, et al. 5-Aza-2′-deoxycytidine leads to down-regulation of aberrant p16INK4A RNA transcripts and restores the functional retinoblastoma protein pathway in hepatocellular carcinoma cell lines. Cancer Lett, 2000, 160(1): 81-88.
    63. Bender CM, Pao MM, Jones PA. Inhibition of DNA methylation by 5-aza-2′- deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res, 1998, 58: 95-101.
    64. Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429(6990): 457-463.
    1. Adams GE, Hasan NM, Joiner MC. Radiation, hypoxia and genetic stimulation: implications for future therapies. Radiother Oncol, 1997, 44: 101-109.
    2. Marx J. How cells endure low oxygen1 Science, 2004, 303(5663): 1454-14561.
    3. Bottaro DP, Liotta LA. Out of air is not out of action. Nature, 2003, 423: 593-595.
    4. Robert AB, Lawrence AL. Genetic instability in cancer: Theory and experiment. Seminars in Cancer Biology, 2005, 15(6): 423-435.
    5. Reynolds TY, Rockwell S, Glazer PM. Genetic instability induced by the tumor microenvironment[J]. Cancer Res, 1996, 56: 5754-5757.
    6. Coquelle A, Toledo F, Stern S. A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell, 1998, 2: 259-265.
    7. Kondo A , Safaei R. Moshima M, et al. Hypoxia– induced enrichment and mutagenesis of cells that have lost DNA mismatch repair [J]. Cancer Res, 2001, 61(20): 7603.
    8. Graeber TG, Osmanian C, Jacks T, et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature, 1999; 379(6560): 88-91.
    9. Hockel M, Schlenger K, Hockel S, Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res, 1999, 59: 4525-4528.
    10. Yu JL, Rak JW, Coomber BL, et al. Effect of p53 status on tumor response to antiangiogenic therapy [J]. Science, 2002, 295(59): 1526.
    11. Mahoney RP, Raghurnand N, Baggett B, et al. Tumor acidity, ion trapping and chemotherapeutics I. Acid pH affects the distribution of chemotherapeutic agents in vitro[J]. Biochem Pharmacal, 2003, 66(7): 1207.
    12. Um JH, Kang CD, Bae JH, et al. Association of DNA-dependent protein kinase with hypoxia inducible factor-1 and its implication in resistance to anticancer drugs in hypoxic tumor cells. Exp Mol Med, 2004, 36(30): 233-242.
    13. Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene, 2003, 22(21): 3213-3220.
    14. Wartenberg M, Gronczynska S, Bekhite MM, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular prostate tumor spheroids byhyperthermia and reactive oxygen species. Int J Cancer, 2005, 113(2): 229-240.
    15. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resisitance (MDR1) gene. Cancer Res, 2002, 62(12): 3387-3394.
    16. Levchenko A, Mehta BM, Niu X, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells[J]. Proc Natl Sci USA, 2005, 102(6): 1933.
    17. Greijer AE, de Jong MC, Scheffer GL, et al. Hypoxia-induced acidification causes mitoxantrone resistance not mediated by drug transporters in human breast cancer cells. Cell Oncol, 2005, 27(1): 43-49.
    18. Sarkadi B, Ozvegy Laczka C, Nemet K, et al. ABCG2-a transporter for all seasons. FEBS Lett, 2004, 567(1): 116-120.
    19. Shannon AM, Bouchier Hayes DJ, Condron CM, et al. Tumour hypoxia, chemotherapeutic resisitance and hypoxia-related therapies. Cancer Treat Rev, 2003, 29(4): 297-307.
    20. Mitchell JB, Degraff W, Kim S, et al. Redox generation of nitric oxide to radiosensitize hypoxic cells. Int J Radiat Oncol Biol Phys, 1998, 42: 795-798.
    21. Khandelwal SR, Kavanagh BD, Lin PS, et al . RSR13 , an allosteric effector of haemoglobin , and carbogen radiosensitize FSaⅡa nd SCCVⅡtumors in C3H mice. Br J Cancer, 1999, 79: 814-820.
    22. Marx J. Cell biology. How cells endure low oxygen. Science, 2004, 303(5663): 1454-1456.
    23. Xu RH, Pelicano H, Zhou Y, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res, 2005, 65(2): 613-621.
    1. Siegfried Z, Cedar H. DNA methylation: a molecular lock. Curr Biol, 1997, 7: 305-307.
    2. Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet, 1999, 9(2): 158-163.
    3. Bird AP, Wolffe AP. Methylation-induced repression-belts, braces and chromatin. Cell, 1999, 99: 451-454.
    4. Kuzmichev A, Reinberg D. Role of histone deacetylase complexes in the regulation of chromatin metabolism. Curr Top Microbiol Immunol, 2001, 354: 35-58.
    5. Hark, et al. 2000.
    6. Bell, et al. 2000.
    7. Denils C. Altered states. Nature, 2003, 421: 686—688.
    8. Griesemer J. What is“epi”about epigenetics?Ann NY Acad sci, 2003, 983: l-4.
    9. Ij E. Chromatin modification and epigenetic repmgrammlng in mⅢ-malian development. Nat Rev Ge net, 2002, 3: 662-673.
    10. Esteller, et al. 2001b, 2001c.
    11. Xu, et al. 1999.
    12. Rountree,et al. 2001.
    13. Vertino PM, Sekowski JA, Coll J M, et al. DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle, 2002, 1(6): 416-423.
    14. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247-257.
    15. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002, 416(6880): 552-556.
    16. Chuang LS, et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science, 1997, 277: 1996-2000.
    17. De Marzo AM, et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res, 1999, 59: 3855-3860.
    18. Cheah MS, Wallace CD and Hoffman RM. Hypomethylation of DNA in human cancer cells: a site-specific change in the c-myc oncogene. J Natl Cancer Inst, 1984,73:1057-1065.
    19. Vachtenheim J, Horakova I. and Novotna H. Hypomethylation of CCGG sites in the 3'region of H-ras protooncogene is frequent and is associated with H-ras allele loss in non-small cell lung cancer. Cancer Res 1994, 54: 1145-1148.
    20. Laird PW, et al. Cell, 1995, 81: 197-205.
    21. Ramchandani S et al. Proc Natl Acad Sci USA, 1997, 94: 684-689.
    22. Merlo A, Herman JG, Mao L, et al. 5′CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers. Cancer Nat Med, 1995, 1: 686-692.
    23. Levkau B, Koyama H, Rainnes EW, et al. Cleavage of p21Cipl/Wafl and p27 Kipl mediates apoptosis in endothelial cells through activation of Cdk2:role of a caspase cascade. Mol Cell, 1998, 1: 553-563.
    24. Malkowicz SB, Tomaszewski JE, Linnenbach AJ, et al. Novel p21wafl/CIP1 mutation in superficial and invasive transitional cell carcinomas. Oncogene, 1996, 13: 1831-1837.
    25. Pogribny IP, James SJ. Reduction of p53 gene expression in human primary hepatocellular carcinoma is associated with promoter region methylation without coding region mutation. Cancer Lett, 2002, 176: 169-174.
    26. Ehrlich M: DNA methylation in cancer:Too much, but also too little. Oncogene, 2002, 21: 5400-5413.
    27. Ji W, Hernandez R, Zhang XY, et al. DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat Res, 1997, 379: 33.
    28. Crossen PE & Morrison MJ. Methylation status of the 3rd exon of the C-myc oncogene in B-cell malignancies. Leu Res, 1999, 23: 251.
    29. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003, 33: 245-254.
    30. Toyota M, Issa JP. Epigenetic changes in solid and hematopoietic tumors. Semin Oncol, 2005, 32: 521-530.
    31. Gaudet F, Hodgson JG, Edcn A, et al. Induction of tumors in mice by genomic hypomethylation. Science, 2003, 300(5618): 489-492.
    32. Eden A, Gaudet F, aghmare A, et al. Chromosomal instability tumors promoted by DVA hypomethylation. Science, 2003, 455.
    33. Christoph Lengauer. CANCER: An Unstable Liaison. Science, 2003, 300: 442-443.
    34. Szyf M. Targeting DNA methylation in cancer. Ageing Res Rev, 2003, 2: 299-328.
    35. Cervoni N, Detich N, Seo SB, et al . The oncoprotein SetPTAF21beta, an inhibitor of histone acetyltransferase , inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem, 2002, 277: 25026-25031.
    36. Chen RZ, Pettersson U, Beard C, et al. DNA hypomethylation leads to elevated mutation rates. Nature, 1998, 395: 89.
    37. Feinerg AP. Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: An introduction. Cancer Res, 1999, 59: 1743.
    38. Florl AR, Lower R, Schmitz-Drager BJ, et al. DNA methylation and expression of LINE-1 and HERV-k provirus sequences in urothelial and renal cell carcinomas. Br J Cancer, 1999, 80: 1312.
    39. Takaguchi M, Achanzar WE, Qu W, et al. Effects of cadmiumon DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-inducedcellular transformation. Exp Cell Res, 2003, 286: 355- 365.
    40. Okoji RS, Yu RC, Maronpot RR, et al. Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BLP6J mice. Carcinogenesis, 2002, 23: 777-785.
    41. Oommen AM, Griffin JB, Sarath G, et al. Roles for nutrients in epigenetic events. J Nutr Biochem, 2005, 16: 74-77.
    42. El2-Osta A. The rise and fall of genomic methylation in cancer. Leukemia, 2004, 18: 233-237.
    43. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999, 96: 8681-8686.
    1. Gardner LB, Li Q, Park MS, et al. Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem, 2001, 276(11): 7919-79261.
    2. Kunz M, Ibrahim SM. Molecular response to hypoxia in tumor cells. Mol Cancer, 2003, 2: 23-36.
    3. Wouters BG, Koritzinsky M, Chiu RK, et al. Modulation of cell death in the tumor microenvironment. Semin Radiate Oncol, 2003, 13: 31-41.
    4. Bottaro DP, Liotta LA. Out of air is not out of action. Nature, 2003, 423: 593-595.
    5. Xia S, Yu S, Yuan X. Effects of hypoxia on expression of P-gp and multidrug resistance protein in human lung adenocarcinoma A549 cell line. J Huazhong Univ Sci Technolog Med Sci. 2005, 25(3): 279-281.
    6. Urano F, Bertolotti A, Ron D. IRE1 and efferent signaling from the endoplasmic reticulum[J]. Cell Sci, 2000, 113 (21): 3697-3702.
    7. Ibui Y, Goto R. The anti-apoptotic effect of low-down- dose UVB irradiation in NIH3T3 cells involves caspase inhibitions. Photochemical Photobiology, 2003, 77(3): 276-283.
    8. Helene Pelicano, Dennis Carney and Peng Huang. ROS stress in cancer cells and therapeutic implications. Drug Resistance Updates, 2004, 7(2): 97-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700