利用环境示踪剂研究滹沱河冲洪积扇地下水补给强度及其变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化和人类活动对地下水资源的影响是目前水资源可持续开发管理所关注的重要科学问题之一。而地下水补给的研究作为地下水资源评价的一个重要内容,其变化直接关系着一个地区地下水资源的可开发利用程度,其研究的重要理论和现实意义是不言而喻的。
     一般而言,地下水补给量是个变量,它受到多种因素的影响,主要表现为天然和人为因素两个方面。由于地下水的各项补给量是变化的,因此恢复补给历史、评估补给强度变化是比较困难的。目前估算地下水补给强度的方法主要有三种:物理方法、示踪剂方法和数值模拟。不同的方法提供的补给强度的时空范围不同,精度和适用范围也各不相同,其各有优缺点。本文主要采用示踪剂方法对地下水补给强度进行研究,并利用多种示踪剂对比验证计算结果的合理性。
     本文的研究目的主要是以包气带和含水层作为了解地下水补给变化的地质信息载体,提取其中所包含的水化学和同位素信息,用以估算补给强度、恢复补给历史、区分不同的补给来源、确定地下水补给机制的变化、探讨天然补给的变化特征,同时区分出天然和人工补给的量,从而为地下水资源的正确评价和合理开发利用提供理论依据。
     本文的研究主要侧重在以下几个方面:(1)含水层中环境示踪剂分布特征;(2)地下水年龄结构与含水层综合补给强度;(3)地下水天然补给历史与天然平均补给强度;(4)地下水补给组成区分与人类活动影响,其中关键科学问题是包气带的补给历史的恢复和地下水补给机制的识别。
     本研究分别从包气带和含水层两个分带的水化学和同位素信息出发,以位于滹沱河冲洪积扇中上部的石家庄地区作为典型研究区,采用环境示踪剂方法、同位素水文学方法并结合传统的水文地质学方法来对滹沱河冲洪积扇地区地下水补给强度的变化规律进行研究。通过研究主要取得以下认识:
     (1)本区的补给来源主要是垂向入渗补给,同时存在着一定程度的侧向补给,受地下水强烈开采影响,石家庄漏斗区附近的地下水的平均侧向渗流速度与山前平原区的平均侧向渗流速度不同,前者大于后者。
     (2)根据包气带示踪剂的计算结果1971年-1998年的天然平均补给强度是0.089m/a,补给强度在过去的27a间呈波动起伏的变化趋势,在1974-1977年、1985-1988年、1990-1997年间处于减小趋势,1971-1974年、1977-1985年、1988-1990年间又有所回升。通过对补给强度与降水、地下水位的变化分析可以发现补给强度的变化主要受到降水的影响,但滞后于降水的变化。
     (3)该区浅层地下水的年龄范围为0~36a,利用~3H—~3He法估算的该区的地下水的总的平均补给强度为0.228~0.304m/a。石家庄漏斗区地下水的平均侧向渗流速度为0.349~0.465m/d,山前平原区的平均侧向渗流速度为0.204~0.272m/d。最后利用水均衡计算结果验证了示踪剂方法得出的天然平均补给强度与综合补给强度结果的合理性。
Effect of Climate Change and Human Activities on groundwater recharge is one of the important scientific issues for sustainable development and management of water resources. As a vital part of evaluation of groundwater resources, groundwater recharge has a direct influence on the extent of development and utilization of groundwater resources in an area, so its estimation has both important theoretical and realistic significances.
     Generally, groundwater recharge rate is not constant, it is affected by many factors, mainly natural and human factors. Because of large spatial and temporal variation, the direct measurement of groundwater recharge rate is hardly possible, so it is very difficult to reconstruct the groundwater recharge history and estimate the changes of recharge rate. Three methods, physical methods、tracer approaches and numerical modeling, are usually used to estimate groundwater recharge: These methods provide different limitations、applicability(range of spatial and temporal scales) and ratings. This paper discussed the changes of the groundwater recharge rate by using environmental tracers, and compared the results with those obtained from multiple tracers.
     The purpose of this paper is to estimate groundwater recharge rate、reconstruct the groundwater recharge rate、identify the different sources of recharge and recharge mechanisms、discuss the changes of natural recharge rate and distinguish the amount of natural and artificial recharge, which can provide a theoretical basis for the estimation of recharge rate and rational development and utilization of groundwater resources.
     This paper mainly focuses on research in the following aspects: (1) the distribution character of environmental tracers in aquifer; (2) the structure of groundwater age and total groundwater recharge rate in the aquifer; (3) the natural groundwater recharge history and average natural groundwater recharge rate; (4) distinguish the different component of groundwater recharge and the influence of human activity. The key scientific problems of these are reconstruction of groundwater recharge in unsaturated zone and distinguish for the groundwater mechanisms.
     Choosing ShiJiazhuang area which located in the upper part of Hutuo River alluvial-proluvial fan as a typical region, this paper discussed the changes of groundwater recharge rate in the Hutuo river alluvial-proluvial fan by environmental tracers, isotope hydrological method and conventional hydrogeological methods, on the basis of the hydrochemical and isotopic information that conserved in the unsaturated zone and aquifer. Through research, the following conclusion can be suggested:
     (1) In this area, the main source of groundwater recharge is vertical infiltration, and there is a certain degree of lateral flow. The average lateral recharge rate in the depression cone near ShiJiazhuang is different from the piedmont plain.
     (2)The average natural groundwater recharge rate calculated by environmental tracers in unsaturated zone is 0.089m/a from 1971 to 1998. The natural recharge rate shows a fluctuant trend of ups and downs in the past 27a, it tends to decrease during 1974-1977, 1985-1988, 1990-1997, while during 1971-1974, 1977-1985, 1988-1990, it has a little increase. The changes of groundwater recharge rate is mainly influenced by the changes of precipitation, and lags behind it by comparing the changes of groundwater recharge rate with precipitation and groundwater level.
     (3)The range of groundwater age in shallow groundwater is 0~36a. The average total groundwater recharge rate is 0.228~0.304m/a calculated by ~3H-~3He method. The average lateral Darcy velocity in the depression cone near ShiJiazhuang is 0.349~0.465m/d, and in the piedmont plain is 0.204~0.272m/d, these results are similar with the results that calculated by water balance method.
引文
[1]陈望和,等.河北地下水.北京:地震出版社,1999,68-80.
    [2]段永候,肖国强.河北平原地下水资源与可持续利用.水文地质工程地质,2003,1:2-8.
    [3]张人权.地下水资源特性及其合理开发利用.水文地质工程地质,2003,6:1-5.
    [4]Beekman H E,Selaolo E T and De Vries J J.Groundwater recharge and resources assessment in the Botswana Kalahari.GRES Ⅱ Executive summary andtechnical reports,1999,pp.48.
    [5]Lloyd JW.A review of aridity and groundwater.Hydrological Processes 1986,1:63-78.
    [6]Lerner D N,Issar A and Simmers I.A guide to understanding and estimating natural recharge,Int.contribution to hydrogeology,I.A.H.Publ.,1990,Vol.8,Verlag Heinz Heisse,pp.345.
    [7]De Vries J J and Simmers I.Groundwater recharge:an overview of processes and challenges.Hydrogeol.J,2002,Vol.10(1):5-17.
    [8]Yongxin Xu and Hans E.Beekman.Groundwater Recharge estimation in Southern Africa,Published by UNESCO Paris,2003.
    [9]Beekman H E,Xu Y,Saayman I et al.A Report to start on the regional workshop "Framework for recharge estimation in Southern Africa",10-11,July 2003,Somerset West-South Africa,pp.24.
    [10]陈宗宇,张宏达,张凤娥等.地下水补给的调查方法译文.全国地下水资源及其环境问题调查评价项目办公室,中国地质科学院水文地质环境地质研究所,2004.
    [11]Allison G B,Gee G W and Tyler S W.Vadose-zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions,Soil Sci.Soc.Am.J.,1994,58:6-14.
    [12]Yong Wu.Groundwater Recharge Estimation In Table Mountain Group Aquifer Systems With a Case Study Of Kammanassie Area.2005.
    [13]Rushton K R.Numerical and conceptual models for recharge estimation in arid and semi-arid zones.In:Simmers I(ed) Estimation of natural groundwater recharge.NATO ASI Series C 222.Reidel,Dordrecht,1988,pp 223-238.
    [14]Cook P G.The spatial and temporal variability of ground-water rechargeo-A case study in semi-arid areas of the western Murray basin:Ph.D.dissertation,The Flinders University of South Australia,School of Earth Sciences,1993,420 p.
    [15]Scanlon B R,Healy R W,Cook P G.,2002.Choosing appropriate techniques for quantifying groundwater recharge,Hydrogeol J,10:DOI 10.1007/s 10040-001-0176-2.
    [16]Simmers I(ed),Recharge of phreatic aquifers in(semi-)arid areas.AA Balkema,Rotterdam,1997,277pp.
    [17]Marios Sophocleous.Ground-water Recharge and Water Budgets of the Kansas High Plains and Related Aquifers.Kansas Geological Survey,Bulletin 249.
    [18]Sophocleous M A.Groundwater recharge and water budgets of the Kansas High Plains and related aquifers.Kansas Geol Surv Bull,2004,249:1-102.
    [19]Allison G B,Hughes M W.The use of environmental chloride and tritium to estimate total recharge to an unsaturated aquifer.Aust.,J.Soil Res,1978,16:181-195.
    [20]Kitching R,Edmunds W M,Shearer T R et al..Assessment of recharge to aquifers.Proc.Int.Symp.Hydrology of Areas of Low Precipitation,Canberra,A.C.T.,Int.Assoc.Hydrol.Sci.1979,pp.C1-C20.
    [21]Allison G B,Barnes C J.Estimation of evaporation from nonvegetated surfaces using natural deuterium.Nature,1983,301:143-145.
    [22]Saxena R K,Dressie Z.Estimation of groundwater recharge and moisture movement in sandy formations by tracing natural oxygen-18 and injected tritium profiles in the unsaturated zone.In:Proceedings of the symposium on isotope hydrology in water resource development,IAEA,Vienna,1984,pp,139-150.
    [23]Barnes C J,Walker G R.The distribution of deuterium and oxygen-18 during unsteady evaporation from a dry soil.J Hydrol,1989,112:55-67.
    [24]Knowlton RG Jr,Parsons A M,Gaither K N.Techniques for quantifying the recharge rate through unsaturated soils ASTM Special Technical Publication.ASTM,Philadelphia,1992,pp 111-123.
    [25]Mathieu R,Bariac T.An isotopic study(~2H and ~(18)O) of water movements in clayey soils under a semiarid climate.Water Resour Res,1996,32:779-789.
    [26]Allison G B,Barnes C J,Hughes M W and Leaney F W J.Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils.In:Isotope Hydrology 1983,IAEA Symposium 270,September 1983,Vienna,195-123.In:Clark,I.D.and Fritz,P.1997.Environmental isotopes in hydrogeology.Lewis Publishers,New York,1984,328 pp.
    [27]Allison G B,Hughes M W.Comparison of recharge to groundwater under pasture and forest using environmental tritium.J Hydrol,1972,17:81-95.
    [28]Bengtsson L,Saxena R K,Dressie Z.Soil water movement estimated from isotope tracers.Hydrol Sci J,1987,32:497-520.
    [29]张之淦,刘芳珍,张洪平等.水文地质工程地质,应用环境氚研究黄土包气带水分运移及入渗补给量,1990,54(3):5-7.
    [30]Lin R T,Wei K Q.Environmental isotope profiles of the soil water in loess unsaturated zone in semi-arid areas of China.In:Isotope based assessment of groundwater renewal in water scarce regions:Proceedings of a Final Research Coordination meeting,18—21 October 1999,Vienna,IAEA,2001,pp.101-118.
    [31]武清华,李云峰,冀绍伟等.氚示踪剂在土壤包气层实验中的应用.核技术,2000,第23卷第10期,739-742.
    [32]Eriksson和Khunakasem.Chloride concentration in groundwater,recharge rate and rate of deposition of chloride in the Israel Coastal Plain,Journal of Hydrology,1969,7:178-197.
    [33]Johnston C D.Perferred water flow and localized recharge in a variable regolith.Journal of hydrology,1987,94:129-142;
    [34]Edmunds W M and Gaye C B.Estimating the spatial variability of groundwater recharge in the Sahel using chloride.Journal of hydrology,1994,156:47-59.
    [35]Wood W W and Sanford W E.Chemical and isotopic methods for quantifying groundwater recharge in a regional,semi-arid environment.Ground Water,1995,33(3),458-468.
    [36]Sami K and Hughes D A.A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a chloride mass balance and an integrated surface-sub-surface model.J.of Hydrol,1996,179:111-136.
    [37]Bazuhair A S and Wood W W.Chloride mass-balance method for estimating groundwater recharge in arid areas:examples from western Saudi Arabia.J.of Hydrol,1996,186:153-159.
    [38]Cook P G,Herczeg A L,McEwan K L.Groundwater recharge and stream baseflow Atherton Tablelands,Queensland,CSIRO Land Water Tech Rep 08/01,2001.
    [39]马金珠,李相虎,黄天明等.石羊河流域水化学演化与地下水补给特征.资源科学,2005,27卷第 3期:117-122.
    [40]John Houston,Recharge to groundwater in the Turi Basin,northern Chile:An evaluation based on tritium and chloride mass balance techniques,Journal of Hydrology,2007,334,534-544.
    [41]E.Zagana,M.Obeidat,Ch.Kuells et al.Chloride,hydrochemical and isotope methods of groundwater recharge estimation in estern Mediterranean areas:a case study in Jordan.Hydrol.Process,2007,21:2112-2123.
    [42]Tolstikhin L N,Karmenskiy I L.Determination of ground-water age by T-~3He method,Geochemistry International,1969,6:810-811.
    [43]Ekwurzel B,Schosser P,Smethie W M Jr et al.Dating of Shallow groundwater:Comparison of the transient tracer 3 H/3He,Chlorofluorocarbon,and 85Kr.Water Resource Research,1994,30(6):1693-1708.
    [44]W.Aeschbach-Hertig,P.Schlosser,M.Stute et al.A 3H/3He study of Groundwater Flow in a Fractured Bedrock Aquifer,Ground water,1998,vol.36,No.4,661-670.
    [45]James D.Happell,Stephen Opsahl,Zafer Top et al.Apparent CFC and 3H/3He age differences in water from Floridan Aquifer springs,Journal of hydrology,2006,319:410-426.
    [46]K.Zoellmann,W.Kinzelbach,C.Fulda,Environmental tracer transport(~3H and SF_6) in the saturated and unsaturated zones and its use in nitrate pollution management.Journal of Hydrology,2001,240:187-205.
    [47]Daren C.Gooddy,W.George Darling,Corinna Abesser et al.Using chlorofluorocarbons(CFCs) and sulphur hexafluoride(SF6) to characterize groundwater movement and residence time in a lowland Chalk catchment.Journal of Hydrology,2006,330:44-52.
    [48]Dong-Chan Koh,L.Niel Plummer,Eurybiades Busenberg et al.,Evidence for terrigenic SF_6 in groundwater from basaltic aquifers,Jeju Island,Korea:Implications for groundwater dating,Journal of Hydrology,2007,339:93-104
    [49]Nicholas Santella,David T.Ho,Peter Schiosser et al.Widespread elevated atmospheric SF_6 mixing ratios in the Northeastern United States:Implications for groundwater dating.Journal of Hydrology,2008,349:139-146.
    [50]张宗祜,沈照理,任福弘等.人类活动影响下华北平原地下水环境的演化,地质出版社,2000.
    [51]张光辉,费宇红,刘克岩.海河平原地下水演变与对策,科学出版社,2004.
    [52]张宗祜,张光辉,任福弘等.区域地下水演化过程及其相邻层圈的相互作用,地质出版社,2006.
    [53]刘存富,王佩仪,周炼.河北平原地下水氢、氧、碳、氯同位素组成的环境意义,地学前缘(中国地质大学,北京),1997,第4卷第1-2期:267-274.
    [54]陈宗宇,毕二平,聂振龙等.包气带剖面中古水文-气候信息的初步研究,地球学报,2001,第22卷第4期:335-339.
    [55]Yang Yonghui,Masataka Watanabel,Yasuo Sakura et al.Groundwater-table and recharge changes in the Piedmont region of Taihang Mountain in Gaocheng City and its relation to agricultural water use.Water SA,2002,Vol.28 No.2.
    [56]Kendy E,Zhang Y Q,Liu C M et al.Groundwater recharge from irrigated cropland in the North China Plain:case study of Luancheng County,Hebei Province,1949-2000.Hydrol.Proc,2004,18:2289-2302.
    [57]张光辉,费宇红,王金哲等.300年以来太行山前平原地下水补给演化特征与趋势,地球学报,2003,24卷第3期:261-266.
    [58]靳孟贵,高云福,王文峰等.用同位素测井技术确定地下水侧向补给量,水文地质工程地质,2005,4:32-36.
    [59]汪丙国,靳孟贵,王文峰等.氯离子示踪法在河北平原地下水垂向入渗补给量评价中的应用,节水灌溉,2006,第3期:16-20.
    [60]范琦,王骥,蔺文静等.包气带增厚条件下地下水补给规律研究,水文地质工程地质,2006,3:21-24.
    [61]卢小慧,靳孟贵,刘延峰等.利用EARTH模型计算河北栾城地下水垂向补给量,地质科技情报,2007,26(3):99-103.
    [62]张光辉,费宇红,杨丽芝等.地下水补给与开采量对降水变化响应特征:以京津以南河北平原为例,地球科学——中国地质大学学报,2006,31(6),879-884
    [63]宋献方,李发东,刘昌明等.太行山区水循环及其对华北平原地下水的补给,自然资源学报,2007,22(3):398-408.
    [64]Fadong Li,Xianfang Song,Changyuan Tang et al.Tracing infiltration and recharge using stable isotope in Taihang Mt.,North China,Environ Geol,2007,vol 33,no3,pp.687-696
    [65]林学钰,焦雨.石家庄市地下水资源的科学管理,1987,长春地质学院学报编辑委员会.
    [66]河北地质调查院,华北平原地下水可持续利用调查评价报告(河北部分),2003.
    [67]沈彦俊,宋献方,肖捷颖等.石家庄地区近70年来伴随经济发展的水文环境变化分析.自然资源学报,2007,22(1):51-61.
    [68]Plummer L N,Michel R L,Thurman E M et al."Environmental tracers for age dating young ground water",In:W.M.Alley(Ed.),Regional Ground-Water Quarterly,V.N.Reinhold,New York,1993,pp.255-294.
    [69]Hendrickx J,Walker G.Rechargeable from precipitation.In:Simmers I(ed) Recharge of phreatic aquifers in(semi)arid areas.AA Balkema,Rotterdam,1997,pp 19-98.
    [70]Thoma G,Esser N,Sonntag C et al.New technique for in-situ soil-moisture sampling for environmental isotope analysis applied at Pilat sand dune near Bordeaux.1979,P.753-766.in Isot.Hydrol.Proc.Int Symp.Neuherberg,Germany.19-23 June 1978.Vol.2.IAEA,Vienna.
    [71]Bath A H,Darling W G,and Brunsden A P.The stable isotopic composition of infiltration moisture in the unsaturated zone of English Chalk.1982,P.161-166 in H.L.Schmidt(ed.)Stable isotopes.Elsevier,Amsterdam.
    [72]Saxena,R.K.and Z.Gressie.Estimation of groundwater recharge and moisture movement in sandy formations by tracing natural oxygen-18 and injected tritium profiles in the unsaturated zone,1984,P.139-150.in Isot.Hydrol.Proc.Symp.Isot.Hydrol.Water Resour.Dev.,Vienna.12-16 Sept.1983.IAEA,Vienna.
    [73]Allison G B,Barnes C J,Hughes M W et al.Effects of climate and vegetation on oxygen-18 and deuterium profiles in soils,1984,P.105-123.in Isot.Hydrol.,Proc.Int.Symp.Isot.Hydrol.Water resour.Dev.,Vienna.12-16 Sept.1983.IAEA,Vienna.
    [74]Allision G.B,Hughes,M.W.Comparison of recharge to groundwater under pasture and forest using environmental tritium,Journal of Hydrology,1972,17:81-95.
    [75]Dincer T,Al-Mugrin W,Zimmermann V.Study of the infiltration and recharge through the sand dunes in arid zones with special references to the stable isotopes and thermonuclear tritium.J Hydrol,1974,23:79-109.
    [76]Phillips F M,Mattick J L,Duval T A et al.Chlorine-36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soil.Water Resour.Res,1988,24:1877-1891.
    [77]Allison G B,Hughes M W.The use of environmental chloride and tritium to estimate total recharge to an unsaturated aquifer.Aust.,J.Soil Res,1978,16:181-195.
    [78]Mook W G.Environmental Isotopes in the Hydrological Cycle:Principles and Applications.UNESCO/IAEA,2001.
    [79]陈植华,徐恒力.确定干旱—半干旱地区降水入渗补给量的新方法——氯离子示踪法,地质科技 情报,1996,第15卷第3期.
    [80]Allison G B.A review of some of the physical,chemical and isotopic techniques available for estimating groundwater recharge,NATO ASI SER,1988,Ser C 222:49-72.
    [81]Allison G B,Stone W J and Hughes M W.Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride.J.Hydrol.,1985.76:1-26.
    [82]Tyler S W,Chapman J B,Conrad S H,et al.Soil-water flux in the southern Great Basin,United States:Temporal and spatial variations over the last 120,000 years.Water Resources Research,1996,32:1481-1499.
    [83]Andreas M.Kreuzer,Christoph von Rohden,Ronny Friedrich et al.A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain.Chemical Geology.2009,168-180.
    [84]Gholam A.KAZEMI,Jay H.LEHR,Pierre Perrochet.Groundwater age John Wiley & Sons,Inc,2006.
    [85]Clarke W P,BEG M A,CRAIG H.Excess ~3He in the sea:evidence for terrestrial primordial 1969,6:213-220.
    [86]万军伟,刘存富,晁念英等.同位素水文学理论与实践,2003,中国地质大学出版社(武汉).
    [87]Clark I D,Fritz P.Environmental Isotopes in Hydrogeology.Lewis Publishers,Boca Raton,1997,328PP.
    [88]Aeschbach-Hertig W,Peeters F,Beyerle U et al.Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air.Nature,2000.405(6790):1040-1044.
    [89]Aeschbach-Hertig W,Peeters F,Beyerle U et al.Interpretation of dissolved atmospheric noble gases in natural waters.Water Resour.Res.,1999,35(9):2779-2792.
    [90]Kreuzer A M,C.von Rohden,R.Friedrich et al.A record of temperature and monsoon over the past 40kyr from groundwater in the North China Plain.Revised version submitted to Chem.Geol.2008,259:168-180.
    [91]Chen J Y,Tang C Y,Shen Y J et al.Use of water balance calculation and tritium to examine the dropdown of groundwater table in the piedmont of the North China Plain(NCP).Environ.Geol.,2003b,44:564-571.
    [92]Chen J Y,Tang C Y,Yu J J.Use of ~(18)O,~2H and ~(15)N to identify nitrate contamination of groundwater in a wastewater irrigated field near the city of Shijiazhuang,China.J.Hydrol.,2006,326:367-378.
    [93]Kendy E,Zhang Y Q,Liu C M et al.Groundwater recharge from irrigated cropland in the North China Plain:case study of Luancheng County,Hebei Province,1949-2000.Hydrol.Proc.,2004,18:2289-2302.
    [94]Lu Y T,Tang C Y,Chen J Y et al.Spatial characteristics of water quality,stable isotopes and tritium associated with groundwater flow in the Hutuo River alluvial fan plain of the North China Plain.Hydrogeol.J.,2008,16:1003-1015.
    [95]张兆吉,费宇红,陈宗宇等.华北平原地下水可持续利用.北京:地质出版社,2008.
    [96]汪丙国,靳孟贵,王文峰等.氯离子示踪法在河北平原地下水垂向入渗补给量评价中的应用,节水灌溉,2006,第3期:16-20.
    [97]Gieske A,Selaolo E T and Beckman H E.Tracer interpretation of moisture transport in a Kalahari sand profile.Proc.Int.Symp."Application of tracers in arid zone hydrology"(ed.E.M.Adar and C.Leibundgut),22-26 Aug.'94,Vienna-Austria,IAHS Publ[M].1995,232:373-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700