空间润滑谐波减速器失效机理及其加速寿命试验方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
课题来源于民用航天预研项目及国家自然科学基金重点项目“新型高性能传动件及系统的可靠性设计理论与方法”。随着航天技术的发展,空间驱动机构正向长寿命、高精度、高可靠、高功率密度及高稳定度技术方向发展。但空间驱动机构的可靠性和工作寿命直接受相关基础理论研究的影响,尤其在复杂空间环境综合应力作用下的动态服役行为和失效机理还没得到深入分析和研究,也没有建立一套科学合理的寿命试验方法和规范以经济有效地验证研制产品的在轨寿命,这些问题已经成为空间驱动机构长寿命技术发展中的薄弱环节,也是造成近年来空间驱动机构在轨故障频发的主要深层次原因,极大地制约着后续航天器长寿命技术的发展。
     针对上述问题,本课题以空间驱动机构中最典型的关键部件谐波减速器为研究对象,采用混合润滑相关理论对其失效机理进行深入研究,并建立失效模型,在此基础上提出了加速寿命试验方法,最后搭建空间润滑谐波减速器综合性能测试系统并进行了相关的试验验证。主要研究内容包括:
     (1)制备了空间润滑谐波减速器,刚轮与柔轮齿面采用类金刚石碳膜(WC-DLC:H)与PFPE基润滑脂(Braycote601)复合润滑,柔性轴承采用MoS2-Ti复合固体润滑薄膜与聚四氟乙烯保持器进行润滑,柔轮与波发生器间的接触面单独采用Braycote601进行润滑。并对各润滑材料进行了力学与摩擦学性能试验。
     (2)为建立混合润滑模型以研究油脂润滑部位的失效机理,首先推导了等温条件下的Reynolds方程,在此基础上建立了考虑表面粗糙度的线接触统一膜厚方程,同时考虑了润滑剂的黏—压、黏—温、密—压及非牛顿流体特性。分析柔轮内壁—柔性轴承外圈,柔轮—刚轮齿面两对接触副的相对运动及载荷分布情况,并建立了等效润滑模型。在此基础上以膜厚比(λ)、微凸体接触承担的载荷比例(Wc)以及所占接触面积比例(Ac)作为混合润滑状态表征量,对其进行混合润滑仿真分析。
     (3)基于混合润滑仿真分析结果,探讨了油脂润滑接触区域的失效机理,转速、载荷、温度对其润滑状态的影响规律及作用机制。发现转速对润滑状态的影响效果最为明显,载荷与温度影响相对较小。且低速运转时温度与载荷对微凸体接触程度的影响效果较为明显,随着转速的增大温度与载荷对其影响逐渐减小,该理论分析结果为加速寿命试验的加速应力与加速因子选择提供了理论依据。
     (4)分析了谐波减速器回差、扭转刚度与传动精度的影响因素及其作用规律,建立了减速器内部各摩擦副之间磨损产生的间隙与其回差、扭转刚度及传动精度的计算公式。
     (5)通过磨损试验拟合了MoS2-Ti复合薄膜与聚四氟乙烯两种材料的磨损模型,基于磨损模型判断了两种固体润滑材料的可加速性。分析了混合润滑状态下,微凸体接触程度对摩擦系数的影响规律,并基于Johnson—Williamson的混合润滑模型与Archard的黏着磨损模型提出了以摩擦系数为主要表征量的混合润滑状态下的黏着磨损模型。基于该磨损模型与线接触弹流润滑的膜厚方程,分别提出了全膜润滑与混合润滑两种状态下摩擦副的加速寿命试验准则。进一步提出了空间润滑谐波减速器的加速寿命试验方法,包括加速应力与加速因子的选择以及加速寿命与正常寿命间的外推关系建立。
     (6)研究了谐波减速器传动精度、传动效率、回差与扭转刚度的精密测试方法,搭建了热真空环境下谐波减速器各传动性能指标在线、原位测试的实验系统。对空间润滑谐波减速器进行5000小时的热真空寿命试验,相关试验结果验证了理论分析的正确性。
Present work is based on the Civil Aerospace Advance Research Program and theproject “The theory and method of reliability design of a new model drive componentsand the systematic” which had been supported by National Natural Science Foundationof China. Due to the development of aerospace technology, long-life, high-precision,high-reliability, high-power density and high-stability become fundamentalperformances for modern space driving mechanisms. However, the reliability andservice life of space drive mechanism is directly influenced by fundamental theoreticalresearch, especially for the dynamic service behavior and failure mechanism of themechanism under complex space environment, there still lack of complete theoreticalframework and experimental study for them. All these issues have become the weakpoints during the development process of long-life space drive mechanism, andconstituted the major causes of frequent on-orbit malfunctions of space drivemechanism, furthermore, become the stumbling block for the development of modernspacecraft.
     Therefore, this paper takes lubricated harmonic drive, the most typical componentsin space drive mechanism, as the research object, applying mixed lubrication theory,conducts simulation analysis on the failure mechanism of the harmonic drive,establishes the failure model and based on above, proposes the optimal acceleratedlife testing method. At last, the comprehensive performance testing system of spacelubricated harmonic drive is set up and the relevant tests are carried on to verify theeffectiveness of the proposed method. The main research content is composed of thefollowing six parts:
     (1) Lubricated harmonic drives for space application are prepared for testing, thetooth surfaces of circular spline and flexspline are lubricated by mixed diamond-likecarbon films (WC-DLC:H) and PFPE-based grease (Braycote601). The wave generatorbearing is lubricated by MoS2-Ti composite films and polytetrafluoroethylene retainer,the contact surface between flexspline and wave generator is lubricated only byBraycote601. Meanwhile, the mechanical and tribological properties of the lubricatingmaterial are tested.
     (2) In order to obtain proper mixed lubrication model to study the failuremechanism of the lubricated parts, Reynolds equation is first deduced under isothermal condition. Then, film thickness equation of line contact taking surface roughness intoconsideration is established and in which the relationships of viscosity–pressure,viscosity–temperature, density–pressure and no Newtonian fluid property for thelubricant are considered. The relative motions and load distributions of contact surfacesbetween the inner flexspline and wave generator bearing, circular spline and flexsplinetooth surface are analyzed, and the equivalent lubrication model is established. Basedon above, the mixed lubrication simulation is conducted with the film thickness ratio (λ),load distributed generated by asperity contact (Wc) and relative contact area (Ac) as therepresentative variables.
     (3) After obtain the mixed lubrication simulation results, the failure mechanism ofthe grease lubricated contact parts and the effects of rotation speed, load, temperature ontheir lubrication status is discussed. The results release that the rotation speed has themost significant effect comparing to load and temperature. Moreover, the effects of thetemperature and load on asperity contact are more serious at a lower speed while theeffects decrease with increase in the rotation speed. The analysis results become thetheoretical basis for the determination of accelerated stress and accelerated factor duringaccelerated life test.
     (4) The factors effect backlash, torsional stiffness and transmission accuracy of theharmonic drive and how they generate those effects are analyzed. The computationalformulas for calculating backlash, torsional stiffness, transmission accuracy and wearclearances between friction pairs in the harmonic drive are presented.
     (5) The wear model of MoS2-Ti composite film and polytetrafluoroethylene werefitted through the data obtained from wear tests, and the possibility for conductingaccelerated test for the two lubricating materials are analyzed based on the wear model.The effect of asperity distribution on friction coefficient during contact in mixedlubrication is investigated. And then the adhesive wear model characterized by frictioncoefficient in mixed lubrication is proposed based on Johnson-Williamson mixedlubrication model and Archard adhesive wear model. Furthermore, based on the wearmodel and film thickness equation of line contact elastohydrodynamic lubrication, theaccelerated life test schemes for full film lubrication and mixed lubrication are proposed,respectively. Finally, accelerated life test scheme for the harmonic drive is obtained,including the choice of accelerated stress and accelerated factor and establishment of theextrapolation relationship between accelerated life and regular life.
     (6) A precisely testing method for transmission accuracy, transmission efficiency, backlash and torsional stiffness of the harmonic drive is studied and correspondingexperimental system for in-circuit and in-situ test of harmonic drive under thermalvacuum environment is set up. A serial of5000-hours thermal vacuum life tests arecarried out, and the test results verifies the validity of the proposed theory.
引文
[1] Musser C M. The Harmonic Drive Breakthrough in Mechanical Drive Design[J]. MachineDesign,1960,14:89-93.
    [2]乐可锡,沈允文.考虑谐波齿轮传动间隙的柔轮变形状态[J].齿轮,1990,14(3):1-4.
    [3]崔博文,沈允文.谐波齿轮传动的接触状态分析及侧隙计算[J].机械科学与技术,1996,15(4):569-572.
    [4]毛彬彬,张石平.谐波齿轮传动重合度的计算方法研究[J].机械设计与制造,2011,7:213-215.
    [5]范又功,曹炳.谐波齿轮传动技术手册[M].国防工业出版社,1995:8~10123~124
    [6]沈允文,叶庆泰.谐波齿轮传动的理论和设计[M].机械工业出版社,1985:1~3
    [7] M.H.伊万诺夫,沈允文,李克美.谐波齿轮传动[M].北京:国防工业出版社,1987.
    [8]叶荣伟.谐波齿轮传动啮合参数优化设计[D].哈尔滨:哈尔滨工业大学,2007.
    [9]周晖,温庆平,张伟文.谐波减速器在空间飞行器中的应用[J].真空与低温,2004,10(4):187-192.
    [10] Keiji U, Slatter R. Development of harmonic drive gear for space applications[C]. EuropeanSpace Mechanismsand Tribology Symposium,8th, Toulouse, France,1999,259~264.
    [11]刘维民.空间润滑材料与技术手册[M].北京:科学出版社,2009:114-115.
    [12]张景河,韩长宁.现代润滑油与燃料添加剂.北京:中国石化出版社,1991.
    [13]冯大鹏,翁立军,刘维民.全氟聚醚润滑油的摩擦学研究进展[J].摩擦学学报,2005,25(6):597-602.
    [14] Corti C, Sawelli P. Perfluoropolyether lubricants[J]. Journal of synthetic lubricant,1993,9(4):310-330.
    [15] Zaretsky E V, Liquid lubrication in space[J]. Tribology international,1990,23(2):75-93.
    [16] Ohsaka Y. Recent advances in synthetic lubricating oils: Perfluorinated polyetheers[J].Petrotech,1985,(5):840-843.
    [17] Sianesi D, Zamboni V, Fontanelli R, et al. Perfluoropolyethers: their physical properties andbehavior at high and low temperature[J]. Wear,1971,18:85-100.
    [18] Anderson J C, Flabbi L, Caporiccio G. The lubrication of plastics by perfluoropolyethersfluids[J]. Snyth Lubr,1985,5(3):199-214.
    [19] Carre D J. Perfluoropolyalkylether lubricants under conditions: Iron catalysis of lubricantdegradation[J]. Snyth Lubr,1989,6(1):3-15.
    [20]王金清,任嗣利,杨生荣.全氟聚醚润滑剂及其摩擦学特性研究[J].润滑与密封,2002,2:18-21
    [21] Rudnick L R, Shubkin R L. Synthetic lubricants and high-performance functional fluids. NewYork: Marcel Dekker Inc.,329.
    [22] Manfred S, Schmidt J. Life test of industrial standard and of a stainless steel harmonicdrive[C]. Proceedings of the14th ESMATS Symposium, Constance, Germany,2011,698.
    [23]李晓辉,刘继奎,王术.601EF脂润滑谐波减速器热真空传动性能试验研究[J].航天器环境工程,2011,28(5):450-453.
    [24]周晖,孙京,温庆平,翟少雄,金俨,谭立.谐波减速器空间润滑及性能研究[J].宇航学报,2009,30(1):378-394.
    [25] Schafer I, Bourlier P, Hantschack F, et al. Space lubrication and performance of harmonicDrive gears[C]. Proceedings of the11th ESMATS Symposium, Lucerne, Switzerland,2005,591.
    [26] Ueura K, Kiyosawa Y, et al. Tribological aspects of a strain wave gearing system with specificreference to its space application[J]. Part J: J. Engineering Tribology,2008,222:1051-1061.
    [27]间庭和聪,小原新吾.关于航天用谐波齿轮装置的润滑机理的研究[D].宇宙航空研究开发所博士论文,2003(in Japanese).
    [28] Maniwa, K. Study on lubrication mechanisms of strain wave gearing for spaceapplications[D]. Tokyo Metropolitan Institute of Technology,2006.
    [29] Maniwa, K. and Obara, S. Lubrication mechanism between wave generator and flexspline instrain wave gearing under in-vacuum and in-air environments (measurement of contactelectric resistance between mechanical elements)[J]. Soc. Tribol.,2007,52(1):40–50.
    [30] Maniwa, K. and Obara, S. Mixed lubrication analysis between wave generator and flexsplinein strain wave gearing (numerical analysis under load-torque applying operation)(in Japanese)[J]. Soc. Tribol.,2007,52(1):51–61.
    [31] Hans H D, Manfred S. Life test experence on a harmonic drive based actuator[C]. ESA-SP,1995,374:363-367.
    [32]李波,李瑞祥.超载条件下空间润滑谐波减速器传动性能及摩擦磨损性能研究[J].摩擦学学报.2011,31(3):216-220.
    [33] Gill S,Forster D J,Rowntree R A. Thermal Vacuum Performance of Cycloid and HarmonicGearboxes with Solid (MoS2) and Liquid (Braycote601) Lubrication[C]. Proceedings of the5th ESMATS Symposium, Noordwijk, Netherlands,1993,334.
    [34] Michael R. Johnson, Russ Gehling, Ray Head. Life Test Failure of Harmonic Gears in aTwo-Axis Gimbal for the Mars Reconnaissance Orbiter Spacecraft[C]. Proceedings of the38th Aerospace Mechanisms Symposium, Langley Research Center,2006.
    [35]孙晓军,翁立军,于德洋,孙嘉奕,李陇旭,汪晓萍.固体润滑谐波减速器真空运行性能的试验[J].机械传动,1988,22(4):22-25.
    [36] Reynolds O. On the Theory of Lubrication and Its Application to Mr.Beauchamp Tower’sExperiments, Including an Experimental Determination of the Viscosity of Olive Oil[J].Philos. Trans.,1886,177:157–234.
    [37] Martin H M. Lubrication of Gear Teeth[J]. Engineering,1916,102:119–121.
    [38] Peppler W. Untersuchungen uber die Druckubertragung bei Belastetenund GeschmiertenUmlaufenden Achsparallelen Zylindern[J]. Maschinenelemente—Tagung Aachen1935,42:17-26.
    [39] Meldahl A. Contribution to the Theory of the Lubrication of Gears and of the Stressing of theLubricated Flanks of Gear Teeth[J]. Brown Boveri Rev.,1941,28:374–382.
    [40] Gatcombe E K. Lubrication Characteristics of Involute Spur Gears—A TheoreticalInvestigation[J]. Trans. ASME,1945,67:177–185.
    [41] Blok H. Fundamental Mechanical Aspects of Thin Film Lubrication[J]. Ann. N.Y. Acad. Sci.,1950,53:779–804.
    [42] Grubin A N.1949, Fundamentals of the Hydrodynamic Theory of Lubrication of HeavilyLoaded Cylindrical Surfaces[J]. Central Scientific Research Institute for Technology andMechanical Engineering, Moscow (DSIR Translation),30:115–166.
    [43] Ertel A. M. Hydrodynamic Lubrication Based on New Principles[M]. Akad. Nauk. SSSR,Prikladnaya Matematika i Mekhanika,1939,3(2):41–52(in Russian).
    [44] Petrusevich A I. Fundamental Conclusions from the Contact-Hydrodynamic Theory ofLubrication[M]. Izv. Akad. Nauk SSR. Otd. Tekh. Nauk,1951,2:209–233.
    [45] Dowson D, Higginson G R.“A Numerical Solution to the Elastohydrodynamic Problem[J].Eng. Sci.,1959,1:6–15.
    [46] Dowson D, Higginson G R.“New Roller Bearing Lubrication Formula[J]. Engineering,1961,192:158–159.
    [47] Dowson D, Higginson G R. Elastohydrodynamic Lubrication Pergamon[M]. Oxford,1966.
    [48] Dowson D, Toyoda S. A Central Film Thickness Formula for Elastohydrodynamic LineContacts[C]. Proceedings of the Fifth Leeds-Lyon Symposium on Tribology, MechanicalEngineering Publications, Bury St. Edmunds, UK,1979.
    [49] Cheng H S,Sternlicht B. A Numerical Solution for the Pressure,Temperature, and FilmThickness Between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, UnderHeavy Loads[J]. ASME J. Basic Eng.,1964,87:695–707.
    [50] Dowson D, Whitaker A V. A Numerical Procedure for the Solution of theElastohydrodynamic Problem of Rolling and Sliding Contacts Lubricated by a NewtonianFluid[J]. Proc. Inst. Mech. Eng.,1966,180(3B):119–134.
    [51] Zhu D, Wen S Z. A Full Numerical Solution for the Thermoelasto-hydrodynamic Problem inElliptical Contacts[J]. ASME J. Tribol.,1984,106:246–254.
    [52] Cheng H S.“Calculation of Elastohydrodynamic Film Thickness in High Speed Rolling andSliding Contacts[J]. MTI Technical Report1967, No. MIT-67TR24.
    [53] Murch L E, Wilson W R. A Thermal Elastohydrodynamic Inlet Zone Analysis[J]. ASME J.Lubr. Technol.,1975,97:212–216.
    [54] Gupta P K, Cheng H S, et al. Viscoelastic Effects in MIL-L-7808-Type Lubricant, Part I:Analytical Formulation[J]. Tribol. Trans.,1992,35:269–274.
    [55] Wilson A R. The relative thickness of grease and oil films in rolling bearing[J]. Proc I. Mech.E.,1979,193.
    [56] Wedeven L D. Optical measyrements of EHD rolling contact bearing[D]. Ph.D., University ofLondon,1970.
    [57] Dowson D. The inlet boundary condition[J]. Leeds-Lyons Symp,1975:143-152.
    [58] Crook A. W. The Lubrication of Rollers—IV. Measurements of Frictionand EffectiveViscosity[J]. Philos. Trans. R.,1963,255:281–312.
    [59] Plint M A. Traction in Elastohydrodynamic Contacts[J]. Proc. Inst. Mech. Eng.,1967182:300–306.
    [60] Johnson K L, Cameron R. Shear Behavior of Elastohydrodynamic Oil Films at High RollingContact Pressures[J]. Proc. Inst. Mech. Eng.,1967,182:307–319.
    [61] Johnson K L, Tevaarwerk J L. Shear Behavior of EHD Oil Films[J]. Proc. R.,1977,356:215–236.
    [62] Bair S, Winer W O. Rheological Response of Lubricants in EHD Contacts[C]. Proceedings ofthe Fifth Leeds-Lyon Symposium on Tribology, Mechanical Engineering Publications, BurySt. Edmunds, UK,1979,162–169.
    [63] Bair S, Khonsari M. An EHD Inlet Zone Analysis Incorporating the Second Newtonian[J].ASME J. Tribol.,1996,118:341–343.
    [64] Barus C. Isothermals, Isopiestics, and Isometrics Relative to Viscosity[J]. Am. J. Sci., ThirdSeries, XLV,1893,266:87–96.
    [65] Thomas B. W, Ham W R, Dow R B. Viscosity-Pressure Characteristics of Lubricating Oils[J].Indust. Eng. Chem.,1937,31:1267–1270.
    [66] ASME Research Committee on Lubrication,1953,“Viscosity and Density of Over40Lubricating Fluids of Known Composition at Pressure to150,000PSI and Temperature to425F,” ASME. New York.
    [67] Hirst W, Moore A J. Non-Newtonian Behavior in the Elastihydrodynamic Lubrication ofRollers[J]. Symposium on Lubricant Properties in Thin Lubricating Films, AmericanChemical Society, Division of Petroleum Chemistry, Preprints,1976,21(1):27–46.
    [68] Cameron A. The Principles of Lubrication[M]. Wiley, New York,1966.
    [69] Roelands C J. Correlational Aspects of the Viscosity-Temperature-Pressure Relationship ofLubricating Oils[D]. Ph.D., Technische Hogeschool Delft, The Netherlands,1966.
    [70] Doolittle A D. Studies in Newtonian Flow II—The Dependence of the Viscosity of Liquids onFree-Space[J]. J. Appl. Phys.,1951,22:1471–1475.
    [71] Cook R L, Herbst C A, King H E. High-Pressure Viscosity of Glass-Forming LiquidsMeasured by the Centrifugal Force Diamond Anvil Cell Viscometer[J]. J. Phys. Chem.,1993,97:2355–2361.
    [72] Patir N, Cheng H S. Effect of Surface Roughness Orientation on the Central Film Thicknessin EHD Contacts[C]. Proceedings of the Fifth Leeds-Lyon Symposium on Tribology, byMechanical Engineering Publications, Bury St. Edmunds, UK,1979:15–21.
    [73] Patir N, Cheng H S. An Average Flow Model for Determining Effects of Three-DimensionalRoughness on Partial Hydrodynamic Lubrication,” ASME J. Lubr. Technol.,1978,100:12–17.
    [74] Greenwood J A, Tripp J H. The Contact of Two Nominally Flat Rough Surfaces[J]. Proc. Inst.Mech. Eng.,1970,185:625–633.
    [75] Zhu D, Cheng H S. Effect of Surface Roughness on the Point Contact EHL[J]. ASME J.Tribol.,1988,110:32–37.
    [76] Goglia P R, Cusano C, Conry T F. The Effects of Surface Irregularities on theElastohydrodynamic Lubrication of Sliding Line Contacts, Part I—Single Irregularities, PartII—Wavy Surfaces[J]. ASME J. Tribol.,1984,106:104–119.
    [77] Lubrecht A A. The Numerical Solution of Elastohydrodynamic Lubricated Line and PointContact Problems using Multigrid Techniques[D]. Ph.D., University of Twente, TheNetherlands,1987.
    [78] Kweh C C, Evans H P, Sindle R W. Micro-Elastohydrodynamic Lubrication of an EllipticalContact with Transverse and3-Dimensional Roughness[J]. ASME J. Tribol.,1989,111:577–584.
    [79] Chang L, Cusano C, Conry T F. Effects of Lubricant Rheology and Kinematic Conditions onMicro-Elastohydrodynamic Lubrication[J]. ASME J. Tribol.,1989,111:344–351.
    [80] Venner C H. Multilevel Solution of EHL Line and Point Contact Problems[D]. Ph.D thesis,University of Twente, The Netherlands,1991.
    [81] Kweh C C, Patching M J, et al. Simulation of Elastohydrodynamic Contacts Between RoughSurfaces[J]. ASME J. Tribol.,1992,114:412–419.
    [82] Xu G, Sadeghi F. Thermal EHL Analysis of Circular Contacts With Measured SurfaceRoughness[J]. ASME J. Tribol.,1996,118:473–483.
    [83] Zhu D, Ai X. Point Contact EHL Based on Optically Measured Three-Dimensional RoughSurfaces[J]. ASME J. Tribol.,1997,119:375–384.
    [84] Zhu D, Cheng H S, Hamrock B J. Effect of Surface Roughness on Pressure Spike and FilmConstriction in Elastohydrodynamically Lubricated Line Contacts[J]. Tribol. Trans.,1990,33:267–273.
    [85] Ren N, Zhu D, et al. A Three-Dimensional Deterministic Model for Rough Surface LineContact EHL Problems[J]. ASME J. Tribol.,2009,131,011501.
    [86] Dawson P H. Effect of Metallic Contact on the Pitting of Lubricated Rolling Surfaces[J]. J.Mech. Eng. Sci.,1962,4(16):16–21.
    [87] Tallian T E. Theory of Partial Elastohydrodynamic Contacts[J]. Wear,1972,21:49–101.
    [88] Zhu D.A Design Tool for Selection and Optimization of Surface Finish in MixedLubrication[C]. Proc. the29th Leeds-Lyon Symposium, Elsevier B.V.,2002,703-711.
    [89] Zhu D. Effect of Surface Roughness on Mixed EHD Lubrication Characteristics[J]. TribologyTransactions,2003,46:44-48.
    [90] Zhu D. On Some Aspects in Numerical Solution of Thin-Film and Mixed EHL[J] Proc. IMech,Part J, Journal of Engineering Tribology,2007,221:.561-579.
    [91] Zhu D, Ai, X. Point Contact EHL Based on Optically Measured Three-Dimensional RoughSurfaces[J]. ASME Journal of Tribology,1997,119:375-384.
    [92] Zhu D, Cheng H S. An Analysis and Computational Procedure for EHL Film Thickness,Friction and Flash Temperature in Line and Point Contacts[J]. Tribology Transactions,1989,32:364-370.
    [93] Zhu D, and Hu Y Z. The Study of Transition from Full Film Elastohydrodynamic to Mixedand Boundary Lubrication[C]. The Advancing Frontier of Engineering Tribology, Proceedingsof the1999STLE/ASME H.S. Cheng Tribology Surveillance,1999,150-156.
    [94] Zhu D, Hu Y Z. A Computer Program Package for the Prediction of EHL and MixedLubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based onMeasured3-D Surface Roughness[J]. Tribology Transactions,2001,44:383-390.
    [95] Zhu D, Hu Y Z. Effects of Rough Surface Topography and Orientation on the Characteristicsof EHD and Mixed Lubrication in Both Circular and Elliptical Contacts[J]. TribologyTransactions,2001,44:391-398.
    [96] Zhu D, Martini A, Wang W, et al. Simulation of Sliding Wear in Mixed Lubrication[J]. ASMEJournal of Tribology,2007,129:544-552.
    [97] Zhu, D., Ren, N., and Wang, Q.,2009,"Pitting Life Prediction Based on a3-D Line ContactMixed EHL Analysis and Subsurface von Mises Stress Calculation," ASME Journal ofTribology,131,041501,1-8.
    [98] Zhu D, Wen S Z. A Full Numerical Solution for the Thermoelastohydrodynamic Problem inElliptical Contacts[J]. ASME Journal of Tribology,1984,106:246-254.
    [99] Spalvins T. Deposition ofMoS2films by physical sputtering and their lubrication p ropertiesin vacuum[J]. ASLE Trans,1969,12:36-43.
    [100] Roberts E W. Ultralow friction films of MoS2for space application[J]. Thin Solid Films,1989,181:461-473.
    [101] Fleischauer P D, Hilton M R. App lication of space tribology in the USA[J]. TribologyInternational,1999,23:135-139.
    [102]翁立军,刘维民,孙嘉奕,等.空间摩擦学的机遇和挑战[J].摩擦学学报,2005,25(1):92-95.
    [103]王均安,于德洋,欧阳锦林.二硫化钼溅射膜在潮湿空气中贮存后润滑性能的退化与失效机理[J].摩擦学学报,1994,14(1):25-31.
    [104] Lince J R, Hilton M R. Metal incorporation in sputter2deposited films studied by extendedX2ray absorp tion fine structure [M]. California: The Aerospace Corporation,1995.
    [105]孙晓军,汪晓萍,孙嘉奕,等. MoS2基共溅射薄膜摩擦学性能的研究[J].摩擦学学报,1998,18(1):20-24.
    [106] Simmonds M C, Savan A, Van Swygenhoven H, et al. Characterisation of magnetron sputterdeposited MoS2/metalmultilayers[J]. Thin Solid Film,1999,354:59-65.
    [107] Sun Kyu Kim, Young Hwan Ahn, Kwang Ho Kim. MoS2-Ti composite coatings on tool steelby d c magnetron sputtering[J]. Surface and Coatings Technology,2003,169-170:428-432.
    [108] TeerD G, Hamp shire J, Fox V, et al. The tribological properties of MoS2/metal compositecoatings deposited by closed field magnetron sputtering[J]. Surface and Coatings Technology,1997,94-95:572-577.
    [109] Fox V C, RenevierN, TeerD G, et al. The structure of tribologically imp roved MoS2-metalcomposite coatings and their industrial app lications[J]. Surface and Coatings Technology,1999,116-119:492-497.
    [110] Renevier N M, Hamphire J, FoxV C, et al. Advantages of using self-lubricating, hard,wear-resistant MoS2-based coatings [J]. Surface and Coatings Technology,2001,142-144:67-77.
    [111] Renevier N M, Oosterling H, Konig U, et al. Performance and limitations of MoS2/Ticomposite coated inserts[J]. Surface and Coatings Technology,2003,172:13-23.
    [112]周晖,温庆平,郝宏,等.非平衡磁控溅射沉积MoS2-Ti复合薄膜结构与摩擦磨损性能研究[J].摩擦学学报,2006,26(2):183-187.
    [113] Hauert R, A review of,odified DLC coating foe biological applications. Diamond and RelatedMaterials,2003,12:583-589.
    [114] Erdemir A. Tribology of diamond-like carbon films. New York: Springer,2007.
    [115] Erdemir A. Genesis of super low friction and wear in diamond-like carbon films[J]. TribologyInternational,2004,37:1005–1012.
    [116] Tillmann W, Vogli E, Hoffmann F. Wear-resistant and low-friction diamond-like carbon (DLC)layers for industrial tribological app lications under humid conditions [J]. Surface andCoatings Technology,2009,204:1040-1045.
    [117] Tanaka A, Nishibori T, SuzukiM, et al. Tribological properties of DLC films deposited usingvarious p recursors under different humidity conditions[J]. Diamond and Related Materials,2003,12:2066-2071.
    [118] Hiroyuki M K, Takanori T K, Toshiyuki T K. Tribological properties of multilayerDLC/W-DLC films on Si[J]. Thin Solid Films,2008,516:5414-5418.
    [119] Zheng Y F, Liu X L, Zhang H F. Properties of Zr-ZrC-ZrC/DLC gradient films on TiNi alloyby the PIIID technique combined with PECVD[J]. Surface and Coatings Technology,2008,202:3011-3016.
    [120] Luo J K, Huang R, He J H, et al. Modelling and fabrication of low operationtemperaturemicrocageswith a polymer/metal/DLC trilayer structure[J]. Sensors andActuatorsA,2006,132:346-353.
    [121] Lin Y H, Lin H D, Liu C K, et al. Annealing effect on the structural, mechanical andelectrical properties of Titanium-doped diamond-like carbon films[J]. Thin Solid Films,2009,518:1503-1507.
    [122] Yu X, Wang C B, Liu Y, et al. Cr-doped DLC films in three mid-frequency dual-magnetronpower modes[J]. Surface and Coatings Technology,2006,200:6765-6769.
    [123] Hasebe T, Nagashima S, Kamijo A, et al. Depth profiling of fluorine-doped diamond-likecarbon(F-DLC) film: localized fluorine in the top-most thin layer can enhance thenon-thrombogenic properties of F-DLC[J]. Thin Solid Films,2007,516:299-303.
    [124] Boris K, FranzN F, Joe V. Tribological behavior of tungsten-doped DLC coating under oillubrication[J]. Tribology International,2009,42:229-235.
    [125] Carre D J. Perfluoropolyalkylether lubricants under condition: Iron catalysis of lubricantdegradation[J]. J. Synth. Lubr.,1898,6(1):3-15.
    [126] Bhushan B, Cheng Y P. Wear and degradation mechanisms of magnetic thin-film rigid diskswith different lubricants using mass spectrometry[J]. J. Appl. Phys.,1997,81(8):5390-5392.
    [127]徐芝伦.弹性力学[M].北京:人民教育出版社,1978.
    [128] Yang P R, Wen S Z. A Generalized Reynolds Equation for Non-Newtonian ThermalElastohydrodynamio Lubrication[J]. Journal of Tribology,1990,112:631-636.
    [129]高海波,李志刚,邓宗全.基于ANSYS的杯形柔轮结构参数对柔轮应力的敏感度分析[J].机械工程学报,2010,46(5):1-7.
    [130]许洪基,陶燕光,雷光.齿轮手册:上册[M].北京:机械工业出版社,2007:9-13
    [131]鞠永青,孔宪,胡元中.谐波齿轮传动轮齿润滑研究[J].机械传动,1992,16(3):29-34.
    [132] K Ueura, Y Kiyosawa1, J Kurogi, et al. Tribological aspects of a strain wave gearing systemwith specific reference to its space application[J]. Proc.IMechE: Engineering Tribology,2008,222Part J:1051-1061.
    [133]许雪峰,董星涛.谐波齿轮传动误差分析[J].浙江工业大学学报,1996,24(1):53-60.
    [134]李建华,张蕾.固体润滑轴承的寿命分析[J].轴承,2002,11:21-23.
    [135]李建华,姜伟.固体润滑轴承保持架试验分析[J].轴承,2004,9:18-20、48.
    [136] Meeks C R, Bohner J. Predicting life of solid-lubricated ball bearings[J]. ASLETransactions,1986,29(2):203-213.
    [137] Murray S F, et al. Accelerated testing of space mechanisms[J]. NASA CR-198437,1995.
    [138]吴超,刘晓华.空间运动部件液体润滑加速寿命试验可行性分析[J].润滑与密封,2007,32:115-117.
    [139] Lewis S D. Acceletated testing of liquid lubricated spacecraft mechanisms[C]. EuropeanSpace Mechanismsand Tribology Symposium,7th, Toulouse, The Netherlands,1997, SP-410.
    [140] Wilson W R D, Shen S. Effect of inlet shear heating on EHD film thickness[J]. Jnl.Lubrication Technology,105:187-188.
    [141] Rowe C N. Some aspects of the heat of adsorption in the function of a boundary lubricant[J].ASLE Trans,1966,9:100-111.
    [142] Stolarski T A. About the possibility of adhesive wear prediction in lubricated slidingcontacts[D]. Technical University of Gdansk,1978.
    [143] Slolmki T A. Adhesive wear of lubricated contacts[J].Tribol. Int.,1979,12:169-179.
    [144] Stolmki T A. Tribology in Machine Design[M]. Heinemann, Oxford,1990.
    [145] Wu S F, Cheng H S, A sliding wear model for partial EHL contacts[J]. ASME Trib,1990,14:1-8.
    [146]黄平,温诗铸.粘弹性流体动力润滑与润滑磨损[J].机械工程学报,1996,32(2):35-41.
    [147] Zou Q, Huang P, Wen S Z. Abrasive wear model for lubricated sliding contacts[J]. Wear,1996,196:72-76.
    [148] Lee Y Z, Ludema K C. Shared-load wear model in lubricated sliding scuffing criteria andwear cofficients[J]. Wear,1990,138:13-22.
    [149] Johnson K L, Greenwood J A, Poon S Y. A simple theory of asperity contact inelastohydrodynamic lubrication[J]. Wear,1972;19:91-108.
    [150] Tabor D. Junction growth in metallic friction. The role of combined stresses and surfacecontamination[J]. Proc. Roy. Sco.,1959, A251:378-393.
    [151] Zhu D, Wang J X. Mixed Elastohydrodynamic Lubrication in Finite Roller Contacts InvolvingRealistic Geometry and Surface Roughness[J]. Journal of Tribology,2012,134:1-10
    [152]阳培.谐波齿轮传动装置及其短筒柔轮分析研究[D].北京:机械科学研究总院,2006.
    [153]元家祥,杨育林,陈英群,等.动力谐波传动刚度与回差的试验研究[J].机械传动,1994,18(3):21-22.
    [154] Schafer I, Bourlier P. Space lubrication and performance of harmonic drive gears[C].Proceedings of the11thESMATS Symposium, Lucerne, Switerland,2005:591.
    [155]郝俊英,王鹏,刘小强,刘维民.固体-油脂复合润滑Ⅱ:类金刚石(DLC)薄膜在几种空间用油脂润滑下的摩擦学性能[J].摩擦学学报,2010,30(3):217-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700