基于空间电磁能的无线传感器自供能技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展智能电网是当今电力工业的核心内容,而无线传感器网络作为智能电网高级量测体系的重要组成部分,也成为工业界和学术界的研究热点。现场供能问题是束缚无线传感器网络规模化应用的重要瓶颈,而自供能技术的发展为其提供了一种有效的解决途径。基于变电站空间电磁能的自供能技术,因比其他自供能方式更具优势而受到更多关注,在高压电力系统中的应用前景广阔。
     本文旨在发展基于空间电磁能的无线传感器自供能技术,分别针对电场能和磁场能的收集开展相关理论探索与技术创新研究,以期解决制约工程化应用的关键问题。
     针对平板型电场集能转换器适应性差、集能效率低等问题,研究提出一种新的球冠型集能转换器拓扑,并在圆环坐标系下基于分离变量法建立了其解析模型,导出转换器空间电势及电容的完整解析形式。提出储能增量系数的概念以表征球冠型转换器对电容储能的改善程度,并导出以球冠开口半径与球半径之比为变量的储能增量系数表达式,可作为拓扑优化的目标函数。针对不同空间尺寸的球冠型拓扑进行储能增量系数的测试研究,验证了所建立球冠型转换器拓扑解析模型的正确性。研究结果为自供能装置集能转换器的优化设计奠定了理论依据。
     为解决传统调理单元电路存在的负载适应性差、传输效率低、启动时间长等问题,提出两种调理单元拓扑形式以适应不同的外电场工况条件建立了含稳压电路调理单元拓扑的大信号模型和动态扰动分析模型,藉此研究其静态稳定性和动态扰动工作特性,获得关键参数计算公式,实现反馈补偿网络的设计。证明存在最优占空比使得电路具有最大输出功率,并据此设计了以输出功率最大化为目标的调理单元闭环控制驱动电路。仿真结果验证了上述调理单元拓扑建模及参数选择方法的有效性。
     在电场集能转换器和调理单元优化分析的基础上,设计了不同类型的自供能装置实验样机并搭建了实验平台,对自供能系统的整体性能开展测试研究。实验结果验证了上述建模和优化方法的有效性,并指出不同调理单元拓扑可稳定工作的电场变化范围,为自供能装置的工程应用提供了重要依据。
     论文还针对基于磁场能的自供能技术开展了探索研究,提出环绕式和分离式两种磁能转换器拓扑结构。建立了环绕式磁能转换器拓扑的数学模型,并定义感应系数以表征其磁能收集能力,给出环绕式磁能转换器的优化设计原则。针对分离式磁能转换器,提出有效磁导率的概念及其计算方法,并以骨架长度与直径之比为变量给出有效磁导率的函数表达式,进而由此建立转换器最大输出功率的估算方法。实验研究表明该估算方法有效,可为分离式磁能转换器的优化设计提供理论和实验依据。
     本文研究重点围绕基于空间电磁能的自供能关键技术,进一步发展了相关理论基础、系统建模与仿真分析方法。
Development of smart grid technologies has been the kernel and prevailing tasks of nowadays power industry, among which wireless sensor technology as an important part of smart measurement and monitoring turns to be a hot area of research preference. Energy scavenging technology provides an effective solution to the self-sustained power supply issues that obstructs application of the wireless sensors. Energy scavenging technology based on spatial electromagnetic coupling renders outstanding advantages compared with other available methods and sightsee a promising future in high voltage power systems.
     The dissertation aims to develop energy scavenging technology based on special electromagnetic coupling for powering wireless sensors. Theoretical exploration and technological innovation are intentionally achieved as to solve the power supplying problem which restricts engineering application of the smart transducers.
     A new topology with spherical cap for energy harvesting is proposed to overcome the unsatisfactory adaptability and low efficiency of the traditional converting topologies. Based on the method of separated variables within the toridal coordinate system, a corresponding analytical model for spherical cap converter is further established so as to obtain the analytic expressions of the topology capacitance and the output voltage. The concept of energy increment factor is specifically defined to denote the improvement of energy storage efficiency. In term of the radius ratio between a spherical cap and a sphere cap, numerical expression of the energy increment factor is presented, which can be used as the objective function for topological optimization. With regard to spherical cap converters of different dimensions, the measured values of energy increment factor coincide well with the theoretical equivalents, indicating an effective verification of the proposed analytical model for the spherical cap converter topology. The research results present theoretical basis for optimal design of the energy scavenging devices.
     Traditional conditioning unit for energy scarvenging devices show some unique disadvantages such as poor adaptability, low transmission efficiency and long starting time. Two novel types of conditioning units are presented for different environmental conditions of electric field. A large-signal model as well as a dynamic disturbance model is established so as to analyze the static and dynamic characteristics of the conditioning unit, and the computational formula for key parameters are deduced, which form the basis for optimal design of the feedback compensation network. The relationship between the duty ratio and the output power is expored and the driving circuit is designed with a closed-loop control scheme as to obtain the maximum output power. Simulation results verified the effectiveness of the proposed topology structure and the parameter selection methodologies. Based on optimization of the converter topologies and the conditioning units, different prototypes of energy scavenging devices are designed and an experimental rig is also set up for overall performance test of these prototypes. Experimental results demonstrated the effectiveness of the proposed methodology for modeling and optimization. The optimal range of electric field intensity in which conditioning units can operate steadily is indicated, which is of sensible significance for engineering application of the energy scavenging devices.
     Exploratory research on magnetic energy scavenging is also carried out. Two types of magnetic energy converters, namely armillary and standalone, are proposed respectively. For the armillary topology, a mathematical model is established and the optimal design principle is further given. A specific inductive factor is defined to represent energy scavenging capability of the armillary converter. For the standalone topology, the concept of effective permeability together with corresponding algorithms is put forward. The ratio of framework's length to topology diameter being the variable, a formula for the effective permeability is achieved, with which an estimating method for maximum output power of the standalone converters is further proposed. Experimental studies show feasibility and effectiveness of the control scheme.
     The innovative research of the dissertation further develops fundamental theories, modeling schemes and simulation methodologies for the energy scavenging technology based on spacial electromagnetic coupling.
引文
[1]杜新伟.对智能电网概念的理解与四川发展智能电网的思考[J].对智能电网概念的理解与四川发展智能电网的思考[J].四川电力技术,2009,32,(12):67-69.
    [2]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,29(34):1-8.
    [3]杨德昌,李勇,Rehtanz C,等.中国式智能电网的构成和发展规划研究[J].电网技术,2009,33(20):13-20.
    [4]刘凯,陈志东,邹德福,等MEMS传感器和智能传感器的发展[J].仪表技术与传感器,2007,(9):9-10.
    [5]王惠.新型传感器的现状与发展[J].机械管理开发,2007,(5):34-35.
    [6]韩小涛,尹项根,张哲,等.光电传感器在变电站通信控制系统中的应用探讨[J].电力系统及其自动化学报,2003,15(3):94-96.
    [7]刘君华,郭灿新,姚明,等.局部放电电磁波在GIS中传播路径的分析[J].高电压技术,2009,35(5):1044-1048.
    [8]林忠华,胡国清,刘文艳,等.微机电系统的发展及其应用[J].纳米技术与精密工程2004,2(2)117-123.
    [9]武俊齐.微型传感器及纳米传感器[J].半导体情报,1998,35(3):22-28.
    [10]周开宇,薛尤贵,解冲锋.无线传感器网络的发展与路由需求[J].电信网技术,2007,(7):21-24.
    [11]李学东,余志伟,杨明忠.基于MEMS技术的微型传感器[J].仪表技术与传感器,2005,(9):4-5.
    [12]孙军,朱小平,方彦军.基于ZigBee的无线传感器网络在变电站中的应用[J].电气应用,2008,27(9):41-43.
    [13]余勇昌,韦岗.无线传感器网络路由协议研究进展及发展趋势[J].计算机应用研究,2008,25(6):1616-1621.
    [14]汪泉弟,杜松旺,李永明,等.一种适用于变电站自动化的无线传感器网络结构[J].信息与控制,2007,36(5):529-533.
    [15]张强,杨涛.用于环境监测的自供电传感器网络[J].仪表技术与传感器,2008,(2):34-36.
    [16]Dasheng Lee. Wireless and Powerless Sensing Node System Developed for Monitoring Motors [J]. Sensors,2008,8(8):5005-5022.
    [17]Fiorini P, Doms 1, Hoof C Van, et al. Micropower Energy Scavenging [C]. Solid-State Device Research Conference, Edinburgh, UK,15-19 Sept,2008,:4-9.
    [18]Yeatman E M. Advances in Power Sources for Wireless Sensor Nodes [C].1st International Workshop on Body Sensor Networks, London, UK, April,2004, 20-21.
    [19]Yeatman Eric M. Energy Scavenging for Wireless Sensor Nodes [C].2nd IEEE Int. Workshop on Advances in Sensors & Interfaces, Bari, Italy,26-27 June,2007, 87-90.
    [20]Joseph A Paradiso, Thad Starner. Energy Scavenging for Mobile and Wireless Electronics [J]. IEEE Transactions on Pervasive Computing,2005,4(1):18-27.
    [21]Bing Jiang, Joshua R Smith, Matthai Philipose, et al. Energy Scavenging for Inductively Coupled Passive RFID Systems [J]. IEEE Transactions on Instrumentation and Measurment,2007,56(1):118-125.
    [22]Alex S Weddell, Nick R Harris, Neil M White. Alternative Energy Sources for Sensor Nodes:Rationalized Design for Long-Term Deployment [C]. IEEE International Instrumentation and Measurement Technology Conference, Victoria, Vancouver Island, Canada,12-15 May,2008,:1370-1375.
    [23]Simone Dalola, Vittorio Ferrari, Michele Guizzetti, et al. Autonomous Sensor System with Power Harvesting for Telemetric Temperature Measurements of Pipes [J]. IEEE Transactions on Instrumentation and Measurement,2009,58(5): 1471-1478.
    [24]Lefeuvre E, Badel A, Richard C, et al. A Comparison between Several Vibration-powered Piezoelectric Generators for Standalone Systems [J]. Sensors and Actuators A,2006,126(2):405-416.
    [25]Tyndall National Institute, Lee Maltings, Prospect Row, et al. Energy scavenging for Long-Term Deployable Wireless Sensor Networks [J]. Talanta,2007,75(3): 613-623.
    [26]Christine Ho, James Evan, Michael Mark, et al. Technologies for an Autonomous Wireless Home Healthcare System [C]. The Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Washington, USA, June,2009, 29-34.
    [27]Stuart A Jacobson, Alan H Epstein. An Informal Survey of Power Mens [C]. International Symposium on Micro-Mechanical Engineering, Dec.,2003,12: 513-519.
    [28]Williams C B, Yates R B. Analysis of a Micro-electric Generator for Micro-systems [J]. Sensors and Actuators A:Physical,1996,53(1-3):8-11.
    [29]Loreto Mateu, Francesc Moll. Review of Energy Harvesting Techniques and p;Applications for Microelectronics [C]. The International Society for Optical Engineering, Sevilla, Spain,9 May,2005,:359-373.
    [30]Nathan Ota, Paul Wright. Trends in Wireless Sensor Networks for Manufacturing [J]. Int. J. Manufacturing Research,2006,1(1):3-17.
    [31]余义斌,余江,王贵,等.传感器节点环境能量的收集方法[J].广东海洋大学学报,2007,27(6):93-96.
    [32]汪小燕,王峻峰,何岭松.基于能量采集技术的无线传感网研究进展[J].传感器与仪器仪表,2006,22(8):4-6.
    [33]卞雷祥,文玉梅,李平.微型传感器自供能技术[J].仪器仪表学报,2006,27(6):297-298.
    [34]杜冬梅,何青,张志.无线传感器网络能量收集技术分析[J].微纳电子技术,2007,44(7):430-433.
    [35]胡冠山,姚彦青.无线网络传感器能量收集管理技术[J].传感器世界,2006,12(3):33-36.
    [36]Vijay Raghunathan, Aman Kansal, Jason Hsu, et al. Design Considerations for Solar Energy Harvesting Wireless Embedded Systems [C]. Fourth International Symposium on Information Processing in Sensor Networks, Los Angeles, California, USA,2005,:457-462.
    [37]Thiemo Voigt, Hartmut Ritter, Jochen Schiller, et al. Utilizing Solar Power in Wireless Sensor Networks [C].28th Annual IEEE International Conference on Local Computer Networks, Bonn, Germany,20-24 Oct,2003,:426-422.
    [38]孙玉国.基于太阳能供电的无线振动传感器试验研究[J].噪声与振动控制,2007,27(4):132-133.
    [39]郑宗慧,崔琦,黄玲,等.新型太阳能电池板的研究[J].上海应用技术学院学报,2008,8(2):153-156.
    [40]高敏苓,贾金平,宋文华,等.薄膜太阳能电池的研究现状与分析[J].资源节约与环境保护,2011,(4):68-69.
    [41]郭阳雪,孔祥洪,杨渭.硅太阳能电池输出功率与负载匹配特性[J].实验室研究与探索,2011,30(7):20-22.
    [42]姜云峰,管啸天,霍江涛.基于太阳能电池的移动机器人能源自治控制系统研究[J].河北工业大学学报,40(3):30-34.
    [43]袁银梅.几种硅基太阳能电池输出特性的测试与分析[J].节能技术,2011,29(4):367-371.
    [44]徐刚,陆丹.晶体硅电池组件在不同地域的性能分析[J].中国勘察设计, 2011,(9):68-71.
    [45]史红军,史建军,史永基.太阳能传感器技术进展(一):硅太阳能传感器[J].传感器世界,2003,(6):1-10.
    [46]史建军,史红军,史永基.太阳能传感器技术进展(二):非晶体硅太阳能传感器[J].传感器世界,2003,(8):1-9.
    [47]史东军,史战军,史永基.太阳能传感器技术进展(三):太阳能传感器应用[J].传感器世界,2003,(9):1-9.
    [48]陈豪,王明召.太阳能电池的基本原理[J].中国现代教育装备,2011,(16):59-60.
    [49]秦易.太阳能电池技术进展与趋势[J].科技创新导报,2011,(16):86-87.
    [50]胡志伟,吉宗威.太阳能电池制备工艺理论研究[J].中国新技术新产品,2011,(17):138-139.
    [51]史永基,高雅利.有机半导体太阳能传感器技术研究进展[J].传感器世界,2009,15(2):4-10.
    [52]Masayuki Miyazaki, Hidetoshi Tanaka, Goichi Ono, et al. Electric-energy Generation Using Variable-capacitive Resonator for Power-Free LSI:Efficiency Analysis and Fundamental Experiment [C]. The 2003 International Symposium on Low Power Electronics and Design, Seoul, Korea, Aug,2003,:193-198.
    [53]邓冠前,陶利民,陈仲生,等.基于压电陶瓷的自供电关键技术分析[J].自动测量与控制,2008,27(5):67-69.
    [54]齐洪东,杨涛,岳高铭,等.微型压电陶瓷振动发电技术研究综述[J].传感器与微系统,2007,26(5):1-4.
    [55]Dallago E, Miatton D, Venchi G, et al. Electronic Interface for Piezoelectric Energy Scavenging System [C]. Solid-State Circuits Conference,2008. ESSCIRC 2008.34th European, Dinburgh, Scotland, UK,15-19 September,2008,:402-405.
    [56]Shahab Mehraeen, Jagannathan S, Keith Corzine. Energy Harvesting Using Piezoelectric Materials and High Voltage Scavenging Circuitry [C]. IEEE International Conference on Industrial Technology, Chengdu, China,21-24 April, 2008,:1-8.
    [57]Sarah Scherrer, Donald G Plumlee, Amy J Moll. Energy Scavenging Device in LTCC Materials [C].2005 IEEE Workshop on Microelectronics and Electron Devices, Boise, ID,15 April,2005,:77-78.
    [58]Xiaochun Wu, Alireza Khaligh, Yang Xu. Modeling, Design and Optimization of Hybrid Electromagnetic and Piezoelectric MEMS Energy Scavengers [C]. IEEE 2008 Custom Intergrated Circuits Conference, San Jose, California,21-24 September,2008,:177-180.
    [59]沈修成,方华斌,王亚军.基于MEMS的压电微能量采集器的电路研究与测试[J].传感技术学报,2008,21(4):692-694.
    [60]王佩红,鲁李乐,戴旭涵.基于电镀铜平面弹簧的微型电磁式振动能量采集器[J].功能材料与器件学报,2008,14(1):171-174.
    [61]王佩红,戴旭涵,方东明.微型电磁式振动能量采集器的设计和电磁特性仿真研究[J].合肥工业大学学报,2008,31(4):518-521.
    [62]王佩红,戴旭涵,赵小林.微型电磁式振动能量采集器的研究进展[J].振动与冲击,2007,26(9):94-98.
    [63]魏双会,褚金奎,杜小振.压电发电器建模研究[J].传感器与微系统,2008,27(6):27-30.
    [64]刘大为,李亮亮,李敬锋.微型热电器件应用的最新研究进展[J].中国科技论文在线,2011,6(8):574-579.
    [65]邹乾林.温差电技术原理及在工科物理实验中的应用[J].大学物理实验,2010,23(5):43-46.
    [66]王婵,周泽广,区煜广.温差发电器的研究进展[J].电测与仪表,2010,47(532):40-44.
    [67]Shad Roundy, Brian P Otis, Yuen-Hui Chee, et al. A 1.9GHz RF Transmit Beacon Using Environmentally Scavenged Energy [C]. IEEE Int. Symposium on Low Power Elec. and Devices, Seoul, Korea,2003,
    [68]刘盼刚,文玉梅,李平,等.一种磁电自供电无线传感器电源管理电路研究[J].传感技术学报,2008,21(8):1427-1431.
    [69]卞雷祥,文玉梅,李平,等.GMMPZT和超声变幅杆复合结构磁电换能器研究[J].传感技术学报,2007,20(8):1742-1746.
    [70]Ping Li, Yumei Wen. Self-powered Wireless Sensor by Collecting Electromagnetic Energy in Inhomogeneous Structure [J]. Sensors,2005,:28-31.
    [71]Ping Li, Yumei Wen. Energy Harvesting Transducer by Collecting ectromagnetic Energy Based on Ultrasonic Horn [C]. The 2006 IEEE International Conference on Information Acquisition, Weihai, Shandong, China,20-23 August,2006, 550-555.
    [72]翟俊玉,张运国.110kV输变电工程电磁辐射的产生及防治[J].东北电力技术,2004,(3):23,33,43.
    [73]Jari Latva-Teikari, Tapani Karjanlahti, Jussi Kurikka-Oja, et al. Measuring Occupational Exposure to Electric and Magnetic Fields at 400 kV Substations [C]. Transmission and Distribution Conference and Exposition, Chicago, IL,21-24, April,2008,:1-4.
    [74]邓春,沈丙申,陈建军.电力设备及高压架空线路周围工频磁场的探讨[J].华北电力技术,2002,(7):1-3.
    [75]阮黎东,宋福祥,孙全红.高压变电站对周围环境的影响与评价[J].电力环境保护,2005,21(3):1-3.
    [76]林晓宇,陈仕修,张晓敏.高压输电线路电晕放电电磁辐射影响分析[J].电力环境保护,2004,20(3):6,16,26.
    [77]邹澎,侯均衡,周晓萍.高压输电线路附近电磁环境的预测模型和软件[J].电力建设,1999,(1):5-8.
    [78]舒晓金,李志利.关于高压输变电工程的工频电磁场强度的研究——以500 kV施秉变电站为例[J].遵义医学院学报,2008,31(2):134-136.
    [79]徐禄文,李永明,刘昌盛.重庆地区500kV变电站内工频电磁场分析[J].电网技术,2008,32(2):66-70.
    [80]Roscoe N M, Judd M D, Fitch J. Development of Magnetic Induction Energy Harvesting for Condition Monitoring [C]. The 44th International Universities Power Engineering Conference (UPEC), Southampton, UK,2009,:1-5.
    [81]Clifford C Federspiel, Johnny Chen. Air-powered Sensor [J]. Sensors,2003,1: 22-25.
    [82]许泽刚,谢少军.人体动能收集的发电装置研究[J].常州工学院学报,2007,20(4):12-17.
    [83]Nathan S Shenck, Joseph A Paradiso. Energy Scavenging with Shoe-mounted Piezoelectrics [J]. IEEE Transactions on Micro,2001,21(3):30-42.
    [84]余义斌,曹长修.基于人体能量的微传感器节点能量利用方法[J].自动化与仪器仪表,2006,(6):8-11.
    [85]Zhu M, Baker P C, Roscoe N M, et al. Alternative Power Sources for Autonomous Sensors in High Voltage Plant [C].2009 IEEE Electrical Insulation Conference, Montreal, QC, Canada,31 May-3 June,2009,:36-40
    [86]Zhu M, Reid A, Finney S, et al. Energy Scavenging Technique for Powering Wireless Sensors [C].2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China,21-24 April,2008,:881-884
    [87]王元明.数学物理方程与特殊函数[M].北京:高等教育出版社,2004.
    [88]李旭.对偏心球形电容器电容的计算[J].首都师范大学学报(自然科学版), 2003,24(4):34-35
    [89]Marwa S Salem, Mona S Salem, Zekry A A, et al. Determining the Required Pulses for Controlling the Operation of Electrostatic MEMS Converters [C]. The 2006 International Conference on MEMS, NANO and Smart Systems, Cairo, Egypt, 27-29 Dec,2006,:27-30.
    [90]Marwa S SalemI, Zekr A A, Ragai H F. Three Different Spice Models for Representing the Behavior of Electrostatic MEMS Converters [C]. IEEE International Conference on Radio Science, Cairo, Egypt,17-19 March,2009:1-9.
    [91]Majumder S, Lampen J, Morrison R, et al. A Packaged, High-lifetime Ohmic MEMS RF Switch [C]. Philadelphia, Pennsylvania,8-13 June,2003,:1935-1938.
    [92]Kunio Hinohara, Tatsuo Kobayashi, Chihiro Kawakita. Magnetic and Mechanical Design of Ultraminiature Reed Switches [J]. IEEE Transactions on Components, Hybrids and Manufacturing technology,1992,15(2):172-176.
    [93]Hulst R D, Driesen J. Power Processing Circuits for Vibration-based Energy Harvester [C]. Power Electronics Specialists Conference, Rhodes,15-19 June, 2008,:2556-2562.
    [94]Stark B H, Mitcheson P D, Miao P, et al. Power Processing Issues for Micro-power Electrostatic Generators [C].35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany.2004,:4156-4162.
    [95]黄金鑫,张黎,李庆民,等.智能监测用电容式集能转换器拓扑性能研究[J].电力自动化设备,2011,31(9):78-81.
    [96]周嘉农,曾小平.DC-DC开关变换器的建模与分析的动态评述[J].华南理工大学学报,2000,28(8):112-116.
    [97]杨会敏,宋建成.基于双环控制的单相电压型PWM逆变器建模与仿真[J].电气传动自动化,2009,31(1):15-18.
    [98]曹文思,杨育霞.基于状态空间平均法的BOOST变换器仿真分析[J].系统仿真学报,2007,19(6):1329-1330.
    [99]王崇武,任章,李宏.谐振逆变器的等效小参量法分析[J].西北大学学报,2003,33(3):272-276.
    [100]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005.
    [101]陈坚.电力电子学[M].北京:高等教育出版社,2007.
    [102]Fumihiro Sato, Takashi Nomoto, Genki Kano, et al. A New Contactless Power-signal Transmission Device for Implanted Functional Electrical Stimulation (FES) [J]. IEEE Transactions on Magnetics,2004,40(4):2964-2966.
    [103]Chunbo Zhu, Chunlai Yu, Kai Liu, et al. Research on the Topology of Wireless Energy Transfer Device [C]. IEEE Vehicle Power and Propulsion Conference, Harbin, China,3-5 September,2008,:1-5.
    [104]Chunbo Zhu, Kai Liu, Chunlai Yu, et al. Simulation and Experimental Analysis on Wireless Energy Transfer Based on Magnetic Resonances [C]. IEEE Vehicle Power and Propulsion Conference, Harbin, China,3-5 September,2008,:1-4.
    [105]林其壬,赵佑民.磁路设计原理[M].北京:机械工业出版社,1987
    [106]张世远,路权,薛荣华,等.磁性材料基础[M].1988
    [107]马官营,颜国正,何秀.基于电磁感应的消化道内微系统的无线供能[J].上海交通大学学报,2008,42(5):798-802.
    [108]何秀,颜国正,马官营.互感系数的影响因素及其对无线能量传输系统效率的影响[J].测控技术,2007,27(11):57-60.
    [109]徐泽亮,马培荪.基于电磁能量理论的爬壁机器人履带永磁吸盘设计研究[J].机械设计,2002,(11):23-24.
    [110]张雪松,朱超甫,李忠富.基于微带天线的能量传输技术及其性能研究[J].电子与信息学报,2007,29(1):232-235.
    [111]张雪松,朱超甫,顾颐.使用微带天线进行近距离能量传递[J].北京科技大学学报,2003,25(6):587-590.
    [112]田野,张永祥,明廷涛.松耦合感应电源性能的影响因素分析[J].电工电能新技术,2006,25(1):73-76.
    [113]张雪松,朱超甫,张春发.无线能量传输技术及其在扭矩监测系统中的应用[J].北京科技大学学报,2005,27(6):724-727.
    [114]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报,2004,24(5):63-66.
    [115]武瑛,严陆光,黄常纲.新型无接触电能传输系统的性能分析[J].电工电能新技术,2003,22(4):10-13.
    [116]Clerk Maxwell, James. Treatise on Electricity and Magnetism [M]. Oxford:The Clarendon Press,1873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700