压电多方向振动能量收集结构及其充电控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大规模集成电路技术、超精密加工技术及网络通信技术的发展,各种微机电系统及微小型电子设备的应用日趋广泛。目前,多数微小型电子设备供电依赖于电池或电线供电。使用电池或电线供电存在代价大、更换困难、污染严重等问题,寻找清洁、可再生的能量取代传统供电方式是解决能量问题的关键所在。压电式振动能量收集技术因其能量转换效率高、结构简单、易于实现微型化与集成化等优点,成为研究较为集中的能量收集技术。本项目组针对目前所研究的压电式振动能量收集结构只能对单一方向振动激励进行能量收集的特点,提出并研制了立方体-球状及蒲公英状多方向振动能量收集器。
     本文主要研究了多方向振动能量收集结构中各压电换能元件输出信号电学特征,完成了相应充电控制电路拓扑的设计及其无源开关策略实现,并研究了面向振动能量收集结构的自适应频率调谐方法,以提高其对外界频率的适应性。主要研究工作及创新点如下:
     首先从压电能量收集结构基本工作原理出发,结合压电方程和振动理论给出了一种典型压电能量收集结构---悬臂梁式压电振动能量收集结构的输出功率的理论模型。在此基础上建立了立方体-球、蒲公英状多方向振动能量收集结构的动力学模型,并分析了不同压电换能元件上输出的电压或电流信号之间的幅值、相位关系,为下一步充电电路设计提供了依据。
     针对单电荷源情况,提出了一种改进的无源同步电荷提取(SCE)电路,及一种基于倍流整流的同步开关电感(SSHI-CDR)电路,并对开关电路中所采用的无源开关(Electronic Breaker)策略进行了理论分析。其中,改进的SCE电路输出功率为经典AC-DC电路最大输出功率的2.98倍。且该电路输出功率恒定,解决了能量收集电路输出功率受负载影响的问题。新型SSHI-CDR电路有效利用了开关过程中电感剩余磁能,在一个机械振动周期内完成四次充电过程,最大输出功率为已有串联同步开关电感(Series SSHI)电路的1.8倍,为经典AC-DC电路的8.4倍。同时,证明了将Electronic Breaker开关电路分别与SCE及并联同步开关电感(Parallel SSHI)电路结合,可以实现不同开关时间,且该开关电路功耗极低,可以实现各类开关电路的能量自给。
     针对多方向振动能量收集结构的特殊情况,首先提出了多源全桥并联电路与多源全桥串联电路,然后将单电荷源下所提出的改进的无源SCE电路及Parallel SSHI电路应用于多电荷源情况,最后提出一种基于倍压整流的同步开关电感(SSHI-VDR)电路。其中,多源全桥并联电路与多源全桥串联电路下,输出功率分别为单电荷源下经典AC-DC电路的1.98倍与1.96倍。多源SCE电路及多源Parallel SSHI电路下,输出功率分别为多源全桥并联电路的4倍与14.36倍。而新型多源SSHI-VDR电路的最大输出功率达到多源Parallel SSHI电路最大输出功率的1.55倍。同时证明了上述多方向能量收集电路输出功率均不受电荷源相位差影响,适合相位差变化的多源情况。最后,设计了一种低功耗电能调理电路,结合能量收集接口电路,可以输出稳定的3.6V直流电压。
     为解决能量收集结构输出功率受激励频率影响的问题,提出了一种改进的半主动自适应频率调谐策略。以立方体状多方向能量收集结构为研究对象,利用同步开关刚度控制(SSSC)电路,改变能量收集结构固有频率,使之趋近于外界激励频率。实验结果表明,在该策略调节作用下,结构固有频率频率变化率达到5.45%。且在一定外界激励范围内,可以实现能量自给。
     本文在机械结构力学及控制国家重点实验室完成。
With the development of the large scale integration technology, the precision manufacturingtechnology and the network communication technology, the applications of microelectromechanicalsystems (MEMS) and microelectronic equipments have been spread. At present, most microelectronicequipments are powered by batteries or wires. The traditional power methods may induce the problemof a costly maintenance, the difficulty in installation and the environmental pollution. To solve theseproblems, clear sustainable power generation methods have been researched. Piezoelectric energyharvesters have received much attention since they have high electromechanical coupling, have simplestructures and are suitable for integration. Since most piezoelectric energy harvesters developed aresensitive to unidirectional vibration excitation, the cube-type and the dandelion-type multidirectionalpiezoelectric energy harvesters have been proposed.
     Thus the paper mainly focuses on the investigation of the characteristics of the charge outputs of thedifferent energy harvesting elements, the charging strategies in the case of multidirectional chargingsources and the passive switching control methods. Meanwhile, the frenquency self-tuning method hasbeen proposed to widen the response range of the energy harvester. The main research work andinnovations are summarized as follows.
     Based on the working principles of piezoelectric energy harvesting, the theoretical model of theoutput power for the cantilever energy harvesting structure has been set up. And then the kinetic modelsof the cube-type and the dandelion-type multidirectional energy harvesters have been built. Finally, thecharacteristics of the voltage or the current sources of the different piezoelectric elements have beenanalized in order to provide a reference for the circuit design.
     In the case of a unidirectional charging source, an improved Synchronous Charge Extraction (SCE)interface and a new interface named the Synchronized Switch Harvesting on Inductor with CurrentDoubler Rectifier (SSHI-CDR) have been proposed. Meanwhile, the mechanism of the passiveswitching control method named the Electronic Breaker adopted in the synchronized switching energyharvesting interfaces has been investigated. As shown in experiment, the output power of this circuitleads to a gain of2.98compared with the maximal power of the standard circuit. And the power gainremains constant for any load resistance, solving the problem that the maximum harvested poweroccurs only at the optimal load resistance. By taking into account not only the energy transferred fromthe piezoelectric element to the load but also that stored on the inductor during the non-linear switchingprocess, the SSHI-CDR circuit allows four energy extraction cycles per vibration period. Experimental results show that the proposed circuit allows a power gain of8.4compared to the standard circuit and apower gain over1.8compared to the existed series SSHI interface. Moreover, it has been proved thatthe electronic breaker circuit can fulfill different switching times with different energy harvestinginterfaces. Since the switching method consumes ultralow power of that harvested, the energyharvesters can be truly self-powered.
     In the case of the multidirectional charging sources, the two AC-DC interfaces separately with theparallel rectifier bridge and with the series bridge are researched. Then the improved SCE interface andthe existed Parallel SSHI interface in the case of the unicharging source are adopted in themulticharging case. Furthermore, a new interface named the Synchronized Switch Harvesting onInductor with Voltage Doubler Rectifier (SSHI-VDR) has been proposed. Among these interfaces, thepower gains of the two different AC-DC interfaces under multicharging sources are separately1.98and1.96compared to the AC-DC circuit under unicharging source. The power gain of the SCE interfaceand the Parallel SSHI interface separately reaches4and14.36in comparison with the AC-DC interfacewith the parallel rectifier bridge.And the maximal output power of the SSHI-VDR circuit leads to again of1.55compared to the Parallel SSHI interface. Meanwhile, all of these energy harvestinginterfaces discussed are independent of the phase conditions of the charging sources. In the end, apower conditioning circuit is proposed with a stable output voltage of3.6V.
     Since the piezoelectric generator could obtain the maximum power only when the excitationfrequency matches exactly with the resonance frequency of the generator, a semi-active frequencyself-tuning method is proposed. Taking advantage of the Synchronized Switch Stiffness Control (SSSC)circuit, the resonance frequency of the energy harvester can be tuned. Experimental results show thatthe variation of the resonance frequency for the cube-type energy harvester reaches5.45%in terms ofthe resonance frequency. Meanwhile, the self-tunable generator could be self-powered within certainfrequency range.
     This paper is supported by State Key Laboratory of Mechanics and Control of MechanicalStructures.
引文
[1] Roundy S, Steingart D, Frechette L, et al. Power sources for wireless sensor networks.Wireless Sensor Networks. First European Workshop, EWSN2004,2910:1-17.
    [2]胡冠山,姚彦青.无线网络传感器能量收集管理技术.传感器世界,2006(3):33-36.
    [3] Doja M N, Krishna, M B. Wireless sensor networks for mechanical and electrical applications.Proceedings of the2009International Conference on Mechanical and Electronics Engineering,2010:313-17.
    [4] Yongxia W. Application of wireless sensor networks. IEEE International Conference onComputer Application and System Modeling (ICCASM),2010:287-91.
    [5]贾杰.压电发电装置的能量转换及存储特性研究[硕士学位论文].吉林:吉林大学,2007.
    [6]吴光斌,梁长垠.无线传感器网络能量有效性的研究.传感器技术,2004,31(7):74-80.
    [7]杜冬梅,何青,张志.无线传感器网络能量采集技术分析.微纳电子技术,2007(8):430-433.
    [8]杨喜敏.传感器网络中的能量消耗问题研究.单片机与嵌入式系统应用,2006(1):27-29.
    [9] Cook-Chennault K A, Thambi N and Sastry A M. Powering MEMS portable devices: a reviewof non-regenerative and regenerative power supply systems with special emphasis on piezoelectricenergy harvesting systems. Smart Materials and Structures,2008,17(4):0431001.
    [10] Fiorini P, Doms I, Hoof C V, et al. Micropower Energy Scavenging. IEEE WATS Division,2008:4-9.
    [11] Rabaey J, Burghardt F, Steingart D, et al. Energy Harvesting-A Systems Perspective. IEEEInternational Electron Devices Meeting,2007:363-366.
    [12] Michael A. Weimer, Thurein S, et al. Remote area wind energy harvesting for low-powerautonomous sensors.37th IEEE Power Electronics Specialists Conference,2006:2911-2915.
    [13] Sodano H A, Inman D J and Park G. A review of power harvesting from vibration usingpiezoelectric materials. Shock and Vibration Digest,2004,26(3):197-205.
    [14] Bennett G L, Lombarbo J J, Hemler R J, et al. Mission of Daring: The General-Purpose HeatSource Radioisotope Thermoelectric Generator. AIAA,2006:4096.
    [15] Kimball J W, Kuhn B T, Balog R S. A System Design Approach for Unattended Solar EnergyHarvesting Supply. IEEE,2009,24(4):952-960.
    [16] Harb A. Energy harvesting: state-of-the-art. Renewable energy,2010:1-14.
    [17]汪小燕,王峻峰,何岭松.基于能量采集技术的无线传感网研究进展.传感器与仪器仪表,2006,22(8):4-6.
    [18]宁玉怀.压电发电的能量转换及存储技术研究[硕士学位论文].长沙:中南大学,2010.
    [19] Priya S. Modeling of electric energy harvesting using piezoelectric windmill. Applied PhysicsLetters,2005,87(18):184101-3.
    [20]廖海洋,钟正青.压电陶瓷轮胎发电机的设计.光学精密工程,2009,17(6):1327-1331.
    [21] Guigon R, Chaillout J J, Jager T, et al. Harvesting raindrop energy: experimental study. SmartMaterials and Structures,2008,17(1):015039-015045.
    [22] Priya S, Inman D J. Energy Harvesting technologies.南京:东南大学出版社.2011:162-172.
    [23] James E P, Tudor M J, Beeby S P, et al. An investigation of self-powered systems forcondition monitoring applications. Sensors and Actuators A,2004(1-3):171-176.
    [24] Discenzo F M, Chung D and Loparo KA. Pump condition monitoring using selfpoweredwireless sensors. Sound and Vibration,2006,40(5):12-15.
    [25] Inman D J and Grisso B L. Towards autonomous sensing. Proceedings of SPIE,2006,6174:1740-1749.
    [26] Lewandowski B E, Kilgore K L and Gustafson K J. Design considerations for an implantable,muscle powered piezoelectric system for generating electrical power. Annals of BiomedicalEngineering,2007,35(4):631-641.
    [27] Kymissis J, Kendall C, Paradiso J, et al. Parasitic power harvesting in shoes. Second IEEEInternational Conference on Wearable Computing,1998:132-139.
    [28] Yang B and Yun K S. Efficient energy harvesting from human motion using wearablepiezoelectric shell structures. Transducers2011-201116th International Solid-State Sensors,Actuators and Microsystems Conference,2011:2646-2649.
    [29] Feenstraa J, Granstroma J, Sodano H. Energy harvesting through a backpack employing amechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing,2008,22(3):721-734.
    [30] Roundy S, Wright P K and Rabaey J. A study of low level vibrations as a power source forwireless sensor nodes. Computer Communications,2003,26(11):1131-1144.
    [31]唐彬.基于驻极体的振动式静电微型发电机研究[硕士学位论文].重庆:重庆大学,2008.
    [32] Roundy S, Wright P K, Pister K S J. Micro-electrostatic vibration-to-electricity converters.ASME International Mechanical Engineering Congress and Exposition, Proceedings,2002:487-496.
    [33] Priya S and Inman D J. Energy harvesting technologies. Berlin: Springer Science+BusinessMedia,2009.
    [34] Beeby S P, Torah R N, Tudor M J, et al. A micro electromagnetic generator for vibrationenergy harvesting. Journal of Micromechanics and Microengineering,2007,17(7):1257-65.
    [35] Kim H U, Bedekar V, Islam R A, et al. Laser-machined piezoelectric cantilevers formechanical energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2008,55(9):1900-1905.
    [36] Ng T H, Liao W H. Feasibility study of a self-powered piezoelectric sensor. Proceedings ofthe SPIE-The International Society for Optical Engineering,2004,5389(1):377-388.
    [37] Karami, M A, Bilgen O, Inman D J, et al. Experimental and Analytical Parametric Study ofSingle-Crystal Unimorph Beams for Vibration Energy Harvesting. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,2011,58(7):1508-1520.
    [38]单小彪,袁江波,谢涛,等.悬臂梁单晶压电振子发电的理论建模与仿真.浙江大学学报,2010,44(3):528-532.
    [39]陈伟.压电发电装置的研制及其发电性能的研究[硕士学位论文].吉林大学,2006:27.
    [40] Xu R, Lei A, Petersen C D, et al. Thomsen E V and Hansen O. Screen printed PZT/PZT thickfilm bimorph MEMS cantilever device for vibration energy harvesting. TRANSDUCERS2011-201116th International Solid-State Sensors, Actuators and Microsystems Conference,2011:679-82.
    [41]沈星,万建国.具有大位移驱动能力的RAINBOW压电陶瓷研究进展.材料科学与工程学报,2004,22(3):428-431.
    [42]刘祥建,陈仁文. Rainbow型压电换能结构的有限元分析与实验.光学精密工程,2011,19(4):.789-796.
    [43]刘智,单小彪,袁江波,谢涛. Cymbal压电换能器发电性能的有限元仿真分析.机械设计与制造,2010(5):12-14.
    [44]王光庆.压电叠堆式发电装置的建模与仿真分析.中国机械工程,2009,20(19):2298-2303.
    [45]党永.非谐振压电叠堆发电特性研究[硕士学位论文].大连:大连理工大学,2010:58-59.
    [46]于丽,陈仁文.褶皱型复合式压电换能结构的建模及分析.压电与声光,2011,33(4):585-589.
    [47] Goldschmidtboeing F, Woias P. Characterization of different beam shapes for piezoelectricenergy harvesting. Journal of Micromechanics and Microengineering,2008,18(10):104013-104020.
    [48] Baker J, Roundy S, Wright P. Alternative geometries for increasing power density in vibrationenergy scavenging for wireless sensor networks. Collection of Technical Papers-3rd InternationalEnergy Conversion Engineering Conference,2005(2):959-970.
    [49]邓冠前,陈仲生,陶利民.不同形状压电振子的振动发电行为研究.压电与声光,2010,32(3):440-446.
    [50] Mehraeen S, Jaqannathan S, Corzine K A. Energy harvesting from vibration with alternatescavenging circuitry and tapered cantilever beam. IEEE Transactions on Industrial Electronics,2010,57(3):820-830.
    [51]单小彪,袁江波,谢涛,等.不对称悬臂梁压电发电装置的实验研究.压电与声光,2010,32(4):608-614.
    [52] Challa V R, Prasad M G, Shi Y, et al. A vibration energy harvesting device with bidirectionalresonance frequency tenability. Smart Materials and Structures.2008,17(1):015035-015045.
    [53] Kok S L, Mohamad N, Weng D F, et al. Multi-Frequency Energy Harvesting UsingThick-Film Piezoelectric Cantilever. International Conference on Electrical, Control andComputer Engineering (INECCE),2011:420-423.
    [54] Liu J Q, Fang H B, Xu Z Y, et al. A MEMS-based piezoelectric power generator array forvibration energy harvesting. Microelectronics Journal.2008,39(5):802-806.
    [55]刘祥建,陈仁文. Rainbow型压电单膜片换能结构负载电压和输出功率分析.航空学报,2011,32(3):561-570.
    [56]陈仁文,刘祥建,焦丽娟,等.蒲公英状多方向、宽频带压电振动能量收集装置,中国, A,201010601354,2010.
    [57]陈仁文.新型环境能量采集技术.北京:国防工业出社.2011:180-202.
    [58] Ottman G K, Hofmann H F, Bhatt A C, et al. Adaptive Piezoelectric Energy HarvestingCircuit for Wireless Remote Power Supply. IEEE Transactions on Power Electronics,2002,17(5):669-676.
    [59] Shu Y C, Lien I C. Analysis of power output for piezoelectric energy harvesting systems.Smart Materials and Structures,2006,15(6):1499-1512.
    [60] Shu Y C, Lien I C. Efficiency of energy conversion for a piezoelectric power harvestingsystem. Journal of Micromechanics and Microengineering,2006,16(11):2429–2438.
    [61] Taylor G W, Burns J R, Kammann S A, et al. The energy harvesting Eel: a small subsurfaceocean/river power generator. IEEE Journal of Oceanic Engineering,2001,26(4):539-547.
    [62] Lefeuvre E, Badel A, Richard C, et al. A comparison between several vibration-poweredpiezoelectric generators for standalone systems. Sensors and Actuators,2005,126(2):405-416.
    [63] Lefeuvre E, Babel A, Richard C, et al. Piezoelectric energy harvesting device optimization bysynchronous electric charge extraction. Journal of Intelligent Material Systems and Structures,2005,16(10):865-876.
    [64] Lallart M, Wu Y C and Guyomar D. Switching delay effects on nonlinear piezoelectricenergy harvesting techniques. IEEE Transactions on Industrial Electronics,2011,59(1):464-472.
    [65] Garbuio L, Lallart M, Guyomar D, et al. Mechanical Energy Harvester With UltralowThreshold Rectification Based on SSHI Nonlinear Technique. IEEE Transactions on IndustrialElectronics,2009,56(4):1048-1056.
    [66] Lallart M, Richard C, Petit L, et al. High efficiency, wide load bandwidth piezoelectric energyscavenging by a hybrid nonlinear approach. Sensors and Actuators A,2011,165(2):294-302.
    [67] Ottman G K, Hofmann H F, Lesieutre G A. Optimized Piezoelectric Energy HarvestingCircuit Using Step-Down Converter in Discontinuous Conduction Mode. IEEE Transactions onPower Electronics,2003,18(2):696-703.
    [68] Lefeuvre E, Audigier D, Richard C, et al. Buck-boost converter for sensorless poweroptimization of piezoelectric energy harvester. IEEE Transactions on Power Electronics,2007,22(5):2018-2025.
    [69] Lallart M, Garbuio L, Petit L, et al. Double Synchronized Switch Harvesting (DSSH): A NewEnergy Harvesting Scheme for Efficient Energy Extraction. IEEE Transactions on Ultrasonics andFerroelectrics and Frequency Control,2008,55(10):2119-2129.
    [70] Umeda M, Nakamura K and Ueha S. Energy Storage Characteristics of a Piezo-GeneratorUsing Impact Induced Vibration. Japanese Journal of Applied Physics,1997,35(5B):3146-3151.
    [71] Shenck N S and Paradiso J A. Energy Scavenging with Shoe-Mounted Piezoelectrics. IEEEMicro,2001,21(3):30-42.
    [72] Ng T H and Liao W H. Sensitivity Analysis and Energy Harvesting for a Self-PoweredPiezoelectric Sensor. Journal of Intelligent Material Systems and Structures,2005,16(10):785-797.
    [73] Jiang X, Polastre J and Culler D. Perpetual Environmentally Powered Sensor Networks.Fourth International Symposium on Information Processing in Sensor Networks,2005:463-468.
    [74] Sodano H A, Inman D J and Park G. Generation and Storage of Electricity from PowerHarvesting Devices. Journal of Intelligent Material Systems and Structures,2005,16(1):67-75.
    [75] Guan M J and Liao W H. Characteristics of Energy Storage Devices in Piezoelectric EnergyHarvesting Systems. Journal of Intelligent Material Systems and Structures,2008,19(6):671-680.
    [80]Priya S, Inman D J. Energy Harvesting technologies.南京:东南大学出版社.2011:313-324.
    [76] Zhu D, Tudor M J, Beeby S P. Strategies for increasing the operating frequency range ofvibration energy harvesters: a review. Measurement Science and Technology,2010,21(2):022001-022029.
    [77]朱莉娅,陈仁文,雷娴.压电振动发电机的研究现状与发展趋势.中国机械工程.2011,22(24):3016-3022.
    [78] Challa V R, Prasad M G, Shi Y, et al. A vibration energy harvesting device with bidirectionalresonance frequency tenability. Smart Materials and Structures,2008,17(1):015035-035044.
    [79] Peters C, Maurath D, Schock W, et al. Novel electrically tunable mechanical resonator forenergy harvesting. Procedings of PowerMEMS,2008:253-258.
    [80] Guyomar D, Lallart M, Monnier T. Stiffness Tuning Using a Low-Cost Semiactive NonlinearTechnique. IEEE/ASME Transactions on Mechatronics,2008,13(5):604-607.
    [81] Lallart M, Anton S R, Inman D J. Frequency Self-tuning Scheme for Broadband VibrationEnergy Harvesting. Journal of Intelligent Material Systems and Structures,2010,21(9):897-906.
    [82] Leland E S, Wright P K. Resonance tuning of piezoelectric vibration energy scavenginggenerators using compressive axial preload. Smart Materials and Structure,2006,15(5):1413-20.
    [83] Eichhorn C, Goldschmidtboeing F and Woias P. A frequency piezoelectric energy convertbased on a cantilever beam. Procedings of PowerMEMS,2008:309-312.
    [84]陶宝祺.智能材料结构.北京:国防工业出版社.1997:57-76.
    [85]孙康,张学福.压电学.北京:国防工业出版社.1986:46-272.
    [86] Kenji Uchino.Ferroelectric Devices.New York: Marcel Dekker,1999.
    [87]胡海岩.机械振动基础.北京:北京航空航天大学出版社.2005:27-29.
    [88]蔡怀崇,闵行.材料力学.西安:西安交通大学出版社.2004.
    [89]于丽.基于压电材料的多方向振动能量采集换能结构的研究[硕士学位论文].南京:南京航空航天大学,2010:19-20.
    [90]龚立娇.基于压电材料的能量采集研究[硕士学位论文].南京:南京航空航天大学,2008:20-22.
    [91]刘祥建,陈仁文.材料、尺寸参数对Rainbow型压电换能器发电能力的影响.南京航空航天大学学报.2011,43(2):198-201.
    [92]刘祥建,陈仁文. Rainbow型压电单膜片换能结构负载电压和输出功率分析.航空学报,2011,32(3):561-569.
    [93] Richard C, Guyomar D and Lefeuvre D. Self-powered electronic breaker with automaticswitching by detecting maxima or minima of potential difference between its power electrodes.France, A, WO/2007/06319,2007.
    [94] M. Lallart and D. Guyomar. An optimized self-powered switching circuit for non-linearenergy harvesting with low voltage output. Smart Materials and Structures,2008,17(3):035030-38.
    [95] Guyomar D, Badel A, Lefeuvre E, et al. Toward energy harvesting using active materials andconversion improvement by nonlinear processing. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2005,52(4):584-95.
    [96] Lallart M, Lefeuvre E, Richard C, et al.Self-powered circuit for broadband, multimodalpiezoelectric vibration control. Sensors Actuators A,2008,143,(2):377-82.
    [97]菅新乐.基于压电陶瓷的汽车轮胎压力监测系统无源化研究[硕士学位论文].长春:吉林大学,2006:51-64.
    [98]周强,王金全,杨波.超级电容器:性能优越的储能器件.电气技术,2006(6):64-68.
    [99] Burke A.Ultracapacitors: why, how and where is the technology. Journal of Power Sources,2000,91(1):37-50.
    [100] Peters C, Maurath D, Schock W, et al. Closed loop wide range tunable mechanical resonatorfor energy harvesting systems. Journal of Micromechanics and Microengineering,2009,19(9):094004.
    [101] Guyomar D, Badel A. Nonlinear semi-passive multimodal vibration damping: An efficientprobabilistic approach. Journal of Sound and Vibration,2006,294(1-2):249-268.
    [102] Lallart M, Lefeuvre E, Richard C, et al. Self-powered circuit for broadband, multimodalpiezoelectric vibration control. Sensors Actuators A,2008,143(2):377-382.
    [103] Badel A, Guyomar D, Lefeuvre E, et al. Piezoelectric energy harvesting using asynchronized switch technique. Journal of Intelligent Material Systems and Structures,2006,17(8-9):831-839.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700