非线性振动压电式能量采集器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在面临能源紧缺的世纪,寻找和利用新型能源是各国面临的重大问题,在各种能量采集技术中,压电式能量采集技术已成为一个重要的研究领域并且发展迅速。人们对新型能源解决方案需求殷切,需要更省电的方式驱动微芯片,关键挑战是将压电材料所产生的电力放大,并且能够和低成本、小型化的系统进行整合。在众多的压电式能量采集技术当中,利用非线性技术可以获得宽频带和高的输出电压。在宏观结构压电式能量采集器的基础上,国内外很多学者开始关注并采用MEMS技术制作微能量采集器件。
     本文设计、制作和测试了两种结构的非线性压电式能量采集器,分别基于压电双晶片结构和压电微悬臂梁结构。介绍了相关背景知识,包括压电理论、非线性振动理论、压电式能量采集等,并且介绍了压电式MEMS能量采集器的制作工艺。
     在激振加速度为20m/s2时,基于压电双晶片的压电式能量采集器的最大输出电压峰值从65V提高到104V,最优输出功率约为0.48mW,其共振频率变化范围达到18Hz,得到结论,可以使用非线性技术小范围改变压电式能量采集器的共振频率,同时提高其输出电压。另外,对于非线性压电式MEMS能量采集器,在激振台的输入电压为7.2V时,压电式MEMS能量采集器的最大输出电荷为18pC,其输出电荷与同类型的线性压电式MEMS能量采集器相比提高了4倍,其最大输出功率为0.0106nW,并且得到结论,导致其输出电荷提高的主要因素是压电微悬臂梁所承受的弯矩。
The world moves toward greater find and utilize of new type energy sources in this energy-shortage-century. Among of the various energy harvesting technologies, the piezoelectric energy harvester has emerged as a prominent research area and continues to grow at a rapid pace. With the drive for alternative energy solutions, people need to find more efficient ways to power microchips. The key challenge will be amplifying the electrical energy generated by the piezoelectric materials and enable them to be integrated into low-cost and compact structures. Using nonlinear techniques, the piezoelectric energy harvester can obtain a wide vibration frequency and a higher output voltage. Based on the macro-structure of piezoelectric energy harvesting device model, the fabrication of the micro-energy harvester using MEMS technology has been paying more attention by many researchers.
     The nonlinear piezoelectric energy harvesters were design and investigated, which were based on the bimorph and the piezoelectric micro-cantilever respectively. The relevant background knowledge was introduced, including the piezoelectric theory, the nonlinear vibration theory and the piezoelectric harvesting theory. The fabrication processes of the nonlinear piezoelectric MEMS energy harvester were presented.
     As the nonlinear piezoelectric energy harvester which was based on the bimorph. the maximum output peak voltage improved from65V to104V under vibration acceleration of20m/s\the maximum output power was about0.48mW, and the resonant frequency various range was18Hz, it obtained that the resonant frequency of the nonlinear piezoelectric energy harvester can be changed in the small scope, and the output voltage was improved too. However, the bending moment is the main factor that led the output charge improved for the piezoelectric MEMS energy harvester, which maximum output charge was18pC under input excitation voltage of7.2V, the maximum output charge was increased by four times compared to the similar case of the linear piezoelectric MEMS energy harvester, its output maximum power was0.0106nW.
引文
[1]陈仁文.新型环境能量采集技术[M].北京:国防工业出版社,2011.
    [2]Shad Roundy, Eli S. Leland, Jessy Baker, et al. Improving Power Output for Vibration-Based Energy Scavengers [J]. Pervasive computing,2005,4(1):28-34.
    [3]Action Nechibvute,Albert Chawanda, Pearson Luhanga. Piezoelectric Energy Harvesting Devices:An Alternative Energy Source for Wireless Sensors [J]. Smart Materials Research, 2012:1-11.
    [4]Keiji Takeuchi. Activities of Energy Harvesting Consortium in Japan [C]//Microwave Workshop Series on Innovative Wireless Power Transmission Technologies Systems and Applications (IMWS),12-13 May 2011, Uji, Kyoto. United States:IEEE MTTS International, 2011:91-94.
    [5]Hannes Reinisch, Stefan Gruber, Martin Wiessflecker,et al. An Electro-Magnetic Energy Harvester with 190nW Idle Mode Power Consumption for Wireless Sensor Nodes [C]//The 37th European Solid-State Circuits Conference(ESSCIRC). Journal of Solid-state Circuits. United States:IEEE,2011,46(7):1728-1741.
    [6]S. Roundy, P. K. Wright. A piezoelectric vibration based generator for wireless electronics [J].Smart Materials and Structures,2004,13:1131-1142.
    [7]董璐.基于MEMS的压电型微能量采集器的研究[D].上海:上海交通大学,2007.
    [8]Jaejin Lee, Yangki Hong, Seok Bae, et al. Integrated Ferrite Film Inductor for Power System-on-Chip (PowerSoC) Smart Phone Applications [J]. IEEE Transactions on magnetics, 2011,47(2):304-307.
    [9]杜小振.环境振动驱动微型压电发电装置的关键技术研究[D].大连:大连理工大学,2008.
    [10]杜小振,褚金奎,张海军,等.环境振动能收集系统的微型压电悬臂梁设计与制作[J].功能材料与器件学报,2008,14(1):116-120.
    [11]Marzencki M, Basrour S, Chariot B, et al. Design and fabrication of piezoelectric micro power generators for autonomous microsystems Proc [C]//Integration and Packaging of MEMS/MOEMS DTIP05, 1-3rd June 2005, Montreux, Switzerland. Grenoble Cedex France:EDA publishing,2005:299-302.
    [12]S. Meninger, J.0. Mur Miranda, R. Amirtharajah, et al. Vibration-to-electric energy conversion [J]. IEEE Trans. VLSI Syst.,2001,9:64-76.
    [13]P. Miao, A. S. Holmes, E. M Yeatman, et al. Micro-machined variable capacitors for power generation [C]//In Proc. Electrostatics'03, Edinburgh, U. K., Mar.2003,53-58.
    [14]Renno JM, Daqaq MF, Inman DJ. On the optimal energy harvesting from a vibration source [J].Journal of Sound and Vibration,2009,320(1-2):386-405.
    [15]Challa VR,Prasad MG, Shi Y, et al.A vibration energy harvesting device with bidirectional resonance frequency tunability [J]. Smart Mater Struct,2008,17 (1):15-35.
    [16]Morris, D.J., Youngsman, J. M., et al.A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism [J]. Smart Mater Struct,2008,17(6): 065021.
    [17]沙山克·普里亚(印),丹尼尔·茵曼(美)著,黄见秋,黄庆安译.能量收集技术(Energy Harvesting Technologies)[M].南京:东南大学出版社,2011:175-203.
    [18]S. M. Shahruz. Design of Mechanical Band-pass Filters for Energy Scavenging [J]. Journal of Sound and Vibration,2006,292:987-998.
    [19]G. A. Ardila Rodriguez, H. Durou, L. Ourak, et al. Fabrication and simulation of a pzt energy harvester mems[C]//Proceedings of PowerMEMS 2008 and microEMS2008, November 9-12,2008,Sendai, Japan. [Publisher ominous],2008:193-196.
    [20]Marco Ferrari, Vittorio Ferrari, Michele Guizzetti, et al. Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems [J]. Sensors and Actuators A:Physical,2008,142(1):329-335.
    [21]Cottone F, Vocca H, Gammaitoni L. Nonlinear energy harvesting [J].Phys Rev Lett,2008, 102(8):080601.
    [22]Gammaitoni L, Neri I, Vocca H. Nonlinear oscillators for vibration energy harvesting [J]. Applied Physics Letters,2009,94(16):164102.
    [23]Arrieta AF, Hagedorn P, Erturk A, et al.A piezoelectric bistable plate for nonlinear broadband energy harvesting [J]. Applied Physics Letters,2010,97(10):104102.
    [24]Stanton Samuel C, McGehee Clark C, Mann Brian P. Nonlinear dynamics for broadband energy harvesting:Investigation of a bistable piezoelectric inertial generator [J].Phys D: Nonlinear Phenomena,2010,239(10):640-53.
    [25]Ferrari M, Ferrari V,Guizzetti M,et al. Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters [J].Sens Actuators A:Phys,2010,162: 425-431.
    [26]Ando B, Baglio S, Trigona C,et al. Nonlinear mechanism in MEMS devices for energy harvesting applications [J]. J. Micromech Microeng,2010,20:125020.
    [27]Vinod R Challa, M G Prasad, Yong Shi, et al.A vibration energy harvesting device with bidirectional resonance frequency tunability [J]. Smart Mater. Struct,2008,17:15-35.
    [28]HAN Quanwei, LI Kun, YAN Ling,et al. Magnetic Field Enhanced Piezoelectric Cantilever Structure Vibration Generator [J]. Piezoelectrics & Acousto optics,2011, 33(1):85-88.
    [29]Luca Gammaitoni, Helios Vocca, Igor Neri, et al. Vibration Energy Harvesting:Linear and Nonlinear Oscillator Approaches [M/OL]. Sustainable Energy Harvesting Technologies-Past, Present and Future(2011). United Kingdom:InTech,2011:172-189.
    [30]Mohammed F. Daqaq. On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations [J]. Nonlinear Dynamics,2012. DOI 10.1007/s11071-012-0327-0.
    [31]Ravindra Masana, Mohammed F Daqaq. Electromechanical modeling and nonlinear analysis of axially-loaded energy harvesters [J]. Journal of Vibration and Acoustics,2011,133(1): 011007.
    [32]Huicong Liu, Chengkuo Lee, Takeshi Kobayashi. Investigation of Piezoelectric MEMS-based Wideband Energy Harvesting System with Assembled Frequency-up-conversion Mechanism [J].Procedia Engineering,2011,25:725-728.
    [33]王中林.压电式纳米发电机的原理和潜在应用[J].物理,2006,35:897-903.
    [34]Zhonglin Wang, Jinhui Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J]. Science,2006,312:242-246.
    [35]张茜.压电复合材料的多尺度建模[D].安徽:中国科学技术大学,2010.
    [36]方岱宁,刘金喜.压电与铁电体的断裂力学[M].北京:清华大学出版社,2008.
    [37]Shadrach Joseph Roundy. Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion [M]. Berkeley:University of California,2003,52(2): 297.
    [38]Jonathan J Bernstein, Kenneth Houston,Eric L Cross,et al. Advanced MEMS ferroelectric ultrasound 2D arrays [C]//In Ultrasonics Symposium,1999.Proceedings,17-20, October, 1999,Caesars Tahoe, NV.New York:IEEE,1999,2:1145-1153.
    [39]张云电.夹心式压电换能器及其应用[M].北京:科学出版社.2006:20-27.
    [40]王喆垚.微系统设计与制造[M].北京:清华大学出版社,2008:75.
    [41]振动与冲击手册编辑委员会.振动与冲击手册·第一卷[M].北京:国防工业出版社,1990,11:76.
    [42]刘树林,王金东,李凤明,等译.振动与冲击手册(第5版)[M].北京:中国石化出版社,2008.
    [43]康东.压电双晶片双向大幅振动的探讨[J].矿物岩石,2003:114-116.
    [44]闫震,何青.激励环境下悬臂梁式压电振动发电机性能分析[J].中国电机工程学报,2011,31(30):131-145.
    [45]A. J. Moulson, J. M. Herbert. Electroceramics:Materials, Properties, Application 2nd edition [M].New York:John Wiley and Sons,2003:390-393.
    [46]李雯.基于压电悬臂梁的环境振动能量获取方法的初步研究[D].天津:天津大学,2008:15-16.
    [47]王宁.基于压电悬臂结构的能量采集研究[D].南京:南京航空航天大学,2009:16-20.
    [48]朱远,周纪卿.非线性振动和运动稳定性[M].西安:西安交通大学出版社,1992:145-180.
    [49]陈予恕.非线性振动[M].北京:高等教育出版社,2001:1-16.
    [50]钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183.
    [51]Tao Yang,Yi Lin, Xianji Tan, et al. Modeling and Analysis of Piezoelectric Bimorph Cantilever Used for Vibration Energy Harvesting [C]//2010 8th IEEE International Conference on Control and Automation, June 9-11,2010, Xiamen, China. New York:IEEE, 2010:1784-1788.
    [52]Dibin Zhu, Stephen Roberts, Michael J. Tudor, et al. Closed Loop Frequency Tuning of a Vibration-based Micro-generator [C/OL]//Faculty of Physical and Applied Science, Electronics and Computer Science, EEE, Proceedings of PowerMEMS and microMEMS 2008, November 9-12,2008, Sendai, Japan.2008:229-232. http://eprints. soton. ac. uk/266932/
    [53]Ramadass, Y. K., A. P. Chandrakasan. An efficient piezoelectric energy-harvesting interface circuit using a bias-flip rectifier and shared inductor [C]//Solid-State Circuits Conference-Digest of Technical Papers, ISSCC 2009,8-12 Feb.2009, San Francisco, CA.New York:IEEE,2009:296-297.
    [54]Rashi Tiwari, Alex Schlichting, Yuan Zhang, et al. Energy Harvesting Circuit For Pulse Generator[C]//Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2011,18-21, September,2011, Scottsdale, Arizona, USA. New York:ASME,2011,2:215-222.
    [55]Helios Vocca, Igor Neri, Flavio Travasso, et al. Kinetic energy harvesting with bistable oscillators [J]. Applied Energy,2012. DOI:10.1016/j. apenergy.2011.12.087.
    [56]Lobontiu Nicolae. MechanicalDesign of Microresonators [M]. New York:McGraw-Hill,2005: 160-161.
    [57]Bochuang Ceramic Inc. Piezoelectric Ceramic Materials [EB/OL]. http://www.boceramic.com/products.asp?id=179
    [58]高瑞林,李安邦.碳纤维测试方法[M].太原:山西科学教育出版社,1989:69.
    [59]刘薇,曹力军,吴建生.烧结NdFeB永磁合金的断裂韧性[J].稀有金属材料与工程,2005,8(34):1239-1242.
    [60]佘东生,王晓东,张习文,等.低温环境下MEMS微构件的动态特性及测试系统[J].光学精密工程,2010,18(10):2179-2183.
    [61]铁道部科学研究院铁道建筑研究所.振动测试和分析[M].北京:人民铁道出版社,1979:20-23.
    [62]Richard H. Enns, George McGuire. McGuire. Nonlinear Physics with Mathematica for Scientists and Engineers [M]. Boston:Birkhauser,2001:294-351.
    [63]Walter Benenson, John I. Harris, Horst Stocker,et al. Handbook of Physics [M]. United States:Springer,2001:231-243.
    [64]朱利安W.加德纳.微传感器MEMS与智能器件Microsensors, MEMS and Smart Devices[M].北京:中国计量出版社,2001:15.
    [65]Bruce H. Billings, H. P. R. Frederikse, D. F. Bleil, et al. American institute of physics handbook(third edition) [M]. New York:McGraw-Hill,1972.
    [66]Srinath. Advanced Mechanics Of Solids (Third Edition) [M].New York:Tata McGraw-Hill,2009:331-332.
    [67]Cui Yan, Meng Hanbai, Wang Jing, et al. Microforce sensors based on PT/PZT/PT thin films [J]. Optics and Precision Engineering,2007,15(9):1405-1409.
    [68]Julian W. Gardner. Microsensors, MEMS, and Smart Devices [M].New York:John wiley & sons,2001:14.
    [69]黄庆安.硅的微加工技术[M].北京:科学出版社,1996:111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700