核电结构材料裂尖蠕变特征和环境致裂定量预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奥氏体不锈钢和镍基合金在核电站高温水环境中的环境致裂(EAC)行为严重威胁着核电站的安全,准确预测EAC裂纹扩展速率(CGR)已成为核电安全评价的关键问题之一。为了获得EAC裂纹扩展速率,本文采用理论分析和有限元结合的方法,研究了裂尖蠕变力学特征,建立了基于裂尖蠕变与膜破裂的核电结构材料EAC裂纹扩展速率定量预测模型。主要研究内容有:
     (1)以滑移溶解理论和Ford-Andresen模型为基础,根据裂尖蠕变主导裂尖钝化膜破裂的思想,重新诠释了裂尖钝化膜的破裂机理及EAC裂纹扩展历程,推导建立了以裂尖蠕变率为主要力学参量的EAC裂纹扩展速率定量预测模型。
     (2)采用理论分析与数值计算结合的方法,得到了裂纹扩展速率与裂尖电化学参量之间的关系,结果表明裂纹扩展速率与钝化膜形成时间和阳极溶解电流密度正相关,与电流衰减指数负相关。通过建立裂尖电化学环境计算模型,研究了裂纹缝隙中物质的传输和缝隙电化学行为,得到了金属阳极电位、溶液pH值及缝隙尺寸对裂尖局部电化学环境的影响规律。
     (3)以标准紧凑拉伸试样为研究对象,通过建立裂尖蠕变的有限元模型,研究出了蠕变对裂尖力学特征的影响,确定将裂尖正前方位置的蠕变率用于预测模型;分析得到了不同电化学参数下,材料力学性能和裂尖力学状态对蠕变率、Mises应力、等效塑性应变等裂尖蠕变力学特征及裂纹扩展速率预测模型的影响。
     (4)对新建立的EAC定量预测模型、FRI模型、裂尖应变梯度模型及实验数据进行对比,获得了不同参数下各模型的特点及与实验数据的差别,结果表明采用蠕变致膜破裂的裂纹扩展速率预测模型进行高温水环境中EAC裂纹扩展速率预测是可行的。
     (5)焊接造成的非匀质在核电关键结构中普遍存在,本文通过建立焊接接头的简化有限元模型,研究了蠕变对材料力学性能不均匀裂尖力学特征的影响,结果表明蠕变将显著改善材料力学性能不均匀引起的裂尖应力分布差异。通过将基于蠕变与膜破裂的CGR定量预测模型应用到焊接接头中,得出了非匀质材料中EAC裂纹扩展速率的规律。
     本文提出的基于蠕变致裂尖膜破裂机理的EAC定量预测模型,为核电结构材料安全评价和寿命预测提供了新的思路和依据。
The safety of nuclear power plants is threatened by environmentally assistedcracking(EAC) of austenitic stainless steels and nickel-based alloys in high temperature waterenvironments. And the accurately prediction of EAC crack growth rate(CGR) has become oneof the key issues in safety assessment of nuclear power plants. By adopting theoreticalanalysis and finite element method, the creep characteristics of crack tip was studied, and thequantitative predictive model of EAC in structure materials of nuclear power plants was alsobuilt based on passivation film rupture induced by the creep at the crack tip. The main worksin this dissertation are as follow:
     (1) The quantitative predictive model of EAC crack growth rate was built according thethe idea that the rupture of crack tip passivation film in high temperature water environmentsis dominant by the creep of metal based on slip dissolution theory and Ford-Andresen model.The mechanism of the crack tip passivation film ruptures and EAC crack growth process werereinterpreted.
     (2) The relationship between CGR and electrochemical parameters at the crack tip werestudied by theory and numerical calculation, the results indicates that the CGR is positivelycorrelated with duration of constant current density and oxidization current density, and isnegatively correlated with exponent of current decay curve. The mass transport andelectrochemical behavior in the crack were studied according to the electrochemicalenvironment modeling built, and the effects of anode potential, pH and crack size on localelectrochemical parameters at crack tip were achieved.
     (3) The effects of the creep on the mechanical characteristics at the crack tip werestudied with a compact tension specimen and finite element method, and the creep strain ratein front of the crack tip was selected to use in the EAC rate prediction model. The effects of material mechanical properties and stress status of crack tip on mechanical characteristics ofcreep crack tip such as creep strain rates, Mises stress and equivalent plastic strain underdifferent electrochemical parameters were obtained.
     (4) The comparisons under different model parameters among predictive CGR of thenew model proposed in this dissertation, FRI model, crack tip strain gradient model andexperimental data were taken, the results indicate that it is practicable to predicate the EACrate in high temperature water by the model based on crack tip creep induced passivation filmrupture.
     (5) The inhomogeneous of material caused by weld are common in key structures ofnuclear power plants. The effects of creep on mechanical characteristics of weld joints werestudied by finite element model of simplified weld joints, the results indicate that thedifferences of stress distribution caused by weld inhomogeneous would be reduceddramatically by creep. The EAC rates in the weld joint were also achieved by applying theCGR prediction model to the weld joints.
     The proposed EAC quantitative predictive model, which is based on the crack tip creepinduced passivation film rupture, provides new method to evaluate the safety and predict thelife of structural materials in nuclear power plants.
引文
[1]国务院.2014年中华人民共和国国务院政府工作报告[R].2014.03.05.
    [2]国家发展和改革委员会.核电中长期发展规划(2005-2020)[R].2007,10.
    [3]陆永浩,褚武扬,高克玮等.304L不锈钢在高温水中的应力腐蚀裂纹扩展[J].金属学报,2004,40(7):763-767.
    [4] USNRC. Davis-Besse reactor pressure vessel head degradation[R]. NUREG/BR-0353,Rev.1,2008,08.
    [5] Lu Z, Shoji T, Xue H, et al. Deterministic formulation of the effect of stress intensityfactor on PWSCC of Ni-Base alloys and weld metals[J]. J. Press. Vess.-T. ASME,2013,135(2):120-129.
    [6] Sato Y, Xue H, Takeda Y, et al. Development of a stress corrosion crack testmethodology using tube-shaped specimen[J]. ASTM J. Test. Eval.,2007,35(3):254-258.
    [7] Xue H, Sato Y, Shoji T. Quantitative estimation of the growth of environmentallyassisted cracks at flaws in light water reactor components[J]. J. Press. Vess.-T. ASME,2009,131(1):61-70.
    [8] Parkins RN. Predictive approaches to stress corrosion cracking failure[J]. Corros. Sci.,1980,20(2):147-166.
    [9] Ford FP. Stress corrosion cracking[M]//Parkins RN. Corrosion processes. London:Applied Science Publishers,1982.
    [10] Macdonald DD, Urquidi-Macdonald M. A coupled environment model for stresscorrosion cracking in sensitized type304stainless steel in LWR environments[J].Corros. Sci.,1991,32(1):51-81.
    [11] Galvele JoséR. A stress corrosion cracking mechanism based on surface mobility[J].Corros. Sci.,1987,27(1):1-33.
    [12] Scott PM, LeCalvar M. On the role of oxygen in stress corrosion cracking as a functionof temperature[C]//Magnin T, Gras JM. Corrosion-deformation interactions. Nice,France: Les éditions de physique,1996:384.
    [13] Scott PM, LeCalvar M. Some possible mechanisms of intergranular stress corrosioncracking of alloy600in PWR primary water[C]//Gold RE, Simonen EP. Proc.6th Int.Symp. on environmental degradation of Mats. in Nucl. power systems: water reactors.Warrendale, PA, USA: TMS,1993:657-667.
    [14] Aaltonen PA, Saario T, et al. Vacancy-creep model for EAC of metallic materials inhigh temperature water[C]//Corrosion96. Houston: NACE,1996.
    [15] Paskin A, Sieradzki K, Som DK, et al. Environmentally induced crack nucleation andbrittle fracture[J]. Acta Metall.,1982,30(9):1781-1788.
    [16] Sieradzki K, Newman RC. Brittel behaviour of ductile metals during stress-corrosioncracking[J]. Philos. Mag. A,1985,51(1):95-132.
    [17] Rebak RB, Szklarska-Smialowska Z. The mechanism of stress corrosion cracking ofalloy600in high temperature water[J]. Corros. Sci.,1996,38(6):971-988.
    [18] Coriou H, Grall L, Mahieu C, et al. Sensitiviy to stress corrosion and intergranularattack of high-nickel austenitic alloys[J]. Corrosion,1996,22:280-290.
    [19] Domian HA, Emanuelson RH, Sarver L W, et al. Effect of microstructure on stresscorrosion cracking of alloy600in high-purity water[J]. Corrosion,1977,33:26-37.
    [20] Gorman JA. Status and suggested course of action for nondenting related primary sideIGSCC of westinghouse-type steam generators[R]. EPRI-NP-4594-LD. Palo Alto, CA,USA: EPRI,1986.
    [21] Owens CM. The primary side stress corrosion cracking performance of mill annealedinconel600tubing in C-E designed steam generators, NEA/NEA/CSNIUNIPEDEspecialists meeting on steam generators, Stockholm,1984.
    [22] Tas H, Hernalsteen P, Houben R, et al. Relationship between microstructural featuresand tube cracking as observed on tube samples of a Doel2steam generator[R]. EPRINP-5158. Palo Alto, CA, USA: EPRI,1985.
    [23] Norring K, Engstrom J, Tornblom H. Intergranular stress corrosion cracking of steamgenerator tubing:25000hours testing of alloy600and alloy690[C]//Cubicciotti D.Proc.4th Int. Symp. on environmental degradation of Mats. in Nucl. PowerSystems-Water Reactors. Houston: NACE:1989:12-1.
    [24] Totsuka N, Lunarska E, Cragnolino G, et al. Effect of hydrogen on the intergranularstress corrosion cracking of alloy600in high temperature aqueous environments[J].Corrosion,1987,43:505-514.
    [25] Gras JM. Stress corrosion cracking of seam generator tubing materials[J]//BruemmerSM, et al. Proc. Parkins Symp. on fundamental aspects of stress corrosion cracking.Warrendale, PA, USA: TMS,1992:411-432.
    [26] Norring K, Engstrom J, Norberg P. Intergranular stress corrosion cracking in steamgenerator tubing. testing of alloy690and alloy600tubes[C]//Theus GJ, Weeks JR.Proc.3rd Int. Symp. on environmental degradation of Mats. in Nucl. powersystems-water reactors. Warrendale, PA, USA: TMS,1988:587-593.
    [27] Stein AA, McIlree AR. Relationship of annealing temperature and microstructure toprimary side cracking of alloy600steam generator tubing and the prediction of stresscorrosion cracking in primary water[C]//ANS. Proc.2nd Int. Symp. on environmentaldegradation of Mats. in Nucl. power systems-water reactors. La Grange Park, Illinois,USA: ANS,1986:47-51.
    [28] Cattant F, Garriga-Majo D, De Keroulas F, et al. Effectiveness of700℃thermaltreatment on primary water stress corrosion sensitivity of alloy600steam generatortubes: laboratory tests and in field experience[C]//ANS. Proc.5th Int. Symp. onenvironmental degradation of Mats. in Nucl. power systems-water reactors. La GrangePark, Illinois, USA: ANS,1992:901-911.
    [29] Cassagne TB, Gelpi A. Crack growth rate measurements on alloy600steam generatortubes in steam and primary water[C]//ANS. Proc.5th Int. Symp. on environmentaldegradation of Mats. in Nucl. power systems-water reactors. La Grange Park, Illinois,USA: ANS,1992:518-524.
    [30] Serra E. Stress corrosion cracking of alloy600[R]. EPRI Report NP-2114-SR. PaloAlto, CA USA: EPRI,1981.
    [31] Garud YS, Gerber TL. Intergranular stress corrosion cracking of Ni-Cr-Fe alloy600tubes in PWR primary water-review and assessment for model development[R]., EPRIReport NP-3057. Palo Alto, CA USA: EPRI,1983.
    [32] Cassagne TB, Combrade P, Foucault MA, et al. The influence of mechanical andenvironmental parameters on the crack growth behavior of alloy600in primarywater[C]//Tunturi PJ. Proc.12th Scandinavian corrosion congress and Eurocorr '92.Finland:Corrosion Society of Finland,1992:55-67.
    [33] Rebak RB, Xia Z, Szklarska-Smialowska Z. Effect of temperature and cold work on thecrack growth rate of alloy600in primary water[J]. Corrosion,1995,51:689-697.
    [34] Palumbo, G, King, PJ, Aust KT, et al. Grain boundary design and control forintergranular stress-corrosion resistance[J]. Scr. Metall. Mater.,1991,25:1775–1780.
    [35] Lehockey EM, Palumbo G. On the creep behaviour of grain boundary engineerednickel1[J]. Mater. Sci. Eng. A,1997,237(2):168-172.
    [36] Alexandreanu B, Capell B, Was GS. Combined effect of special grain boundaries andgrain boundary carbides on IGSCC of Ni-16Cr-9Fe-xC alloys[J]. Mater. Sci. Eng. A,2001,300(1–2):94-104.
    [37] Gertsman VY, Bruemmer SM. Study of grain boundary character along intergranularstress corrosion crack paths in austenitic alloys. Acta Mater.,2001,49(9):1589-1598.
    [38] Pan Y, Adams BL, Olson T, et al. Grain-boundary structure effects on intergranularstress corrosion cracking of alloy X-750[J]. Acta Mater.,1996,44(12):4685-4695.
    [39] Aust KT, Erb U, Palumbo G. Interface control for resistance to intergranular cracking[J].Mater. Sci. Eng. A,1994,176(1-2):329-334.
    [40] Angeliu TM, Paraventi DJ, Was GS. Creep and intergranular cracking behavior ofNi-Cr-Fe-C alloys in360℃water[J]. Corrosion,1995,51:837-848.
    [41] Boursier JM, Desjardins D, Vaillant F. The influence of the strain rate on the stresscorrosion cracking of alloy600in high-temperature primary water[J]. Corros. Sci.,1995,37:493-508.
    [42] Thaveeprungsriporn V, Angeliu TM, Paraventi DJ, et al. Grain boundary deformation ofNi-Cr-Fe-C at360°C[C]//Gold RE, Simonen EP. Proc.6th Int. Symp. onenvironmental degradation of Mats. in Nucl. power systems: water reactors.Warrendale, PA, USA: TMS,1993:721-727.
    [43] Theus GJ. Summary of the babeock and wileox company’s stress corrosion crackingtests of alloy600[R]. EPRI WS-80-0136. Palo Alto, CA, USA: EPRI,1980.
    [44] Yonezawa T, Onimura K. Effect of chemical composition and microstructure on thestress corrosion cracking resistance of nickel-base alloys in high-temperature water[C]//EPRI meeting: Intergranular corrosion and primary water IGSCC mechanisms,Washington, DC,1987.
    [45] Vermilyea DA, Tedmon Jr.CS, Broecker DE. Effect of phosphorous and silicon on theintergranular corrosion of a nickel-base alloy[J]. Corrosion,1975,31:222-223.
    [46] Fujiwara Y, Nemoto R, Osozawa K, et al. Influence of C, N and Nb contents onintergranular corrosion, stress corrosion cracking and mechanical strength of alloy600[C]//Goel VS. Corrosion cracking: Proc. of corrosion cracking program: relatedpapers. Metals Park, OH, USA: ASM,1986:167.
    [47] McIlree AR, Michels HT, Morris PE. Effects of variation of carbon, sulfur andphosphorous on the corrosion behavior of alloy600[J] Corrosion,1975,31:441-448.
    [48] Guttman M, Dumoulin Ph, Tan-Tai N, et al. An auger electron spectroscopic study ofphosphorous segregation in the grain boundaries of nickel base alloy600[J]. Corrosion,1981,37:416-425.
    [49] Airey GP. Optimization of metallurgical variables to improve corrosion resistance ofinconel600[R]. EPRI NP-3051. Palo Alto, CA, USA:EPRI,1983.
    [50] Bandy R, van Rooyen D. Stress corrosion cracking of inconel alloy600inhigh-temperature water-an update[J]. Corrosion,1984,40:425-430.
    [51] Norring K. Influence of LiOH and H2on primary side IGSCC of alloy600steamgenerator tubes[R]. Studsvik AB: Studsvik Energy,1990.
    [52] Economy G, Jacko RJ, Pement FW. IGSCC behavior of alloy600steam generatortubing in water or steam tests above360°C[J]. Corrosion,1987,43:727-734.
    [53] Economy G, Jacko RJ, Begley JA, et al. Influence of hydrogen partial pressure on theIGSCC behavior of alloy600tubing in360°C water or400°C steam[C]//Corrosion87.Houston: NACE,1987.
    [54] Rocher A, Cassagne T, Durbec V, et al. The Influence of chemical factors on theinitiation of primary side IG-SCC in alloy600steam generator tubing[C]//Contributionof materials investigation to the resolution of problems encountered in pressurizedwater reactors: Proc. of the Int. Symp. Fontevraud III. Fontevraud, France: FrenchNuclear Energy Society,1994,1:337-346.
    [55] Pathania SS, McIlree AR. A review of the effect of hydrogen on stress corrosioncracking of alloy600in300°C water[C]//Theus GJ, Weeks JR. Proc.3rd Int. Symp. onenvironmental degradation of Mats. in Nucl. power systems-water reactors. Warrendale,PA, USA: TMS,1988:551-554.
    [56] Esposito JN, Economy G, Byers WA, et al. The addition of zinc to primary reactorcoolant for enhanced PWSCC resistance[C]//ANS. Proc.5th Int. Symp. onenvironmental degradation of Mats. in Nucl. power systems-water reactors. La GrangePark, Illinois, USA: ANS,1992:495-501.
    [57] Andresen PL, Angeliu TM. Effects of zinc additions on the stress corrosion crackgrowth rate of sensitized stainless steel, alloy600&alloy182weld metal in288°Cwater[C]//Corrosion95. Houston: NACE,1995.
    [58] Byers WA, Jacko RJ. The influence of zinc additions and PWR primary waterchemistry on surface films that form on nickel base alloys and stainless steels[C]//GoldRE, Simonen EP. Proc.6th Int. Symp. on environmental degradation of Mats. in Nucl.power systems: water reactors. Warrendale, PA, USA: TMS,1993:837-844.
    [59] Morton DS, Gladding D, Schurman MK, et al. Effect of soluble zinc additions on theSCC performance of nickel alloys in deaerated hydrogenated water[C]//ANS. Proc.8thInt. Symp. on environmental degradation of Mats. in Nucl. power systems-waterreactors. La Grange Park, Illinois, USA: ANS,1997:387-394.
    [60] Newman JF. Stress corrosion of alloys600and690in acid sulfate solutions at elevatedtemperatures[R]. EPRI Final Report NP-3043. Palo Alto, CA, USA: EPRI,1983.
    [61] Gorman JA, Ogren RA, Paine JPN. Correlation of temperature with steam generatortube corrosion experience[C]//ANS. Proc.5th Int. Symp. on environmentaldegradation of Mats. in Nucl. power systems-water reactors. La Grange Park, Illinois,USA: ANS,1992:609-612.
    [62] Bulischeck TS, van Rooyen D. Experimental investigation of the SCC of inconel600and a predictive model for evaluating service performance[R]. NUREG/CR1675.Upton, NY Brookhaven National Laboratory,1980.
    [63] Bulischeck TS, van Rooyen D. Effect of environmental variables on the stresscorrosion cracking of inconel600steam generator tubing[J]. Nucl. Technol.,1981,55:383-393.
    [64] Webb GL. Environmental degradation of alloy600and welded filler metal EN82in anelevated-temperature aqueous environment[C]//Gold RE, Simonen EP. Proc.6th Int.Symp. on environmental degradation of Mats. in Nucl. power systems: water reactors.Warrendale, PA, USA: TMS,1993:687-695.
    [65] McIlree AR, Olberg T, Nestell J. Primary side stress corrosion cracking, steamgenerator reference book, EPRI-SGOG, Chapter7, EPRI, Palo Alto, CA,1985:14.
    [66] Garud YS, McIlree AR. Intergranular stress corrosion cracking damage model: anapproach and its development for alloy600in high purity water[J]. Corrosion,1986,42:99-105.
    [67] Kerrec O, Gardey S, Noel D, et al. Study of the mechanisms of stress corrosioncracking of alloy600and690in primary water reactor conditions[C]//ECF. Eurocorr96. Nice: European Corrosion Congress,1996.
    [68] Lumsden JB, Stocker PJ, McIlree A R. In sight of local chemistry from examination oftubes[C]//Staehle R. Control of corrosion on the secondary side of steam generators.Houston: NACE,1996:473.
    [69] Bjmrnkvist L, Norring K, Nyborg L. Comparative study of water chemistry and surfaceoxide composition on alloy600steam generator tubing[C]//Gold R E, Simonen E P.Proc.6th Int. Symp. on environmental degradation of Mats. in Nucl. power systems:water reactors. Warrendale, PA, USA: TMS,1993:207-213.
    [70] Cayla O, Combrade P, Slama G. About some possible causes of IGA of alloy600tubesin hot caustic solutions[C]//ANS. Proc.2nd Int. Symp. on environmental degradationof Mats. in Nucl. power systems-water reactors. La Grange Park, Illinois, USA: ANS,1986:464-471.
    [71] Combrade P, Cayla O, Foucault M, et al. About the role of surface films on alloy600corrosion in high-temperature deaerated environments[C]//Theus GJ, Weeks JR. Proc.3rd Int. Symp. on environmental degradation of Mats. in Nucl. power systems-waterreactors. Warrendale, PA, USA: TMS,1988:525-533.
    [72] McIntyre NS, Zetaruk DG, Owen D. X-ray photoelectron studies of the aqueousoxidation of inconel600alloy[J]. J. Electrochem. Soc.,1979,126(5):750-760.
    [73] Staehle RW. Occurrence of modes and submodes of SCC[C]//Improving theunderstanding and control of corrosion on the secondary side of steam generators.Houston: NACE,1996:135-208.
    [74] Szklarska-Smialowska Z, Rebak RB. Stress corrosion cracking of alloy600inhigh-temperature aqueous solutions: influencing factors, mechanisms and models[C]//Improving the understanding and control of corrosion on the secondary side of steamgenerators. Houston: NACE,1996:223-257.
    [75] Takamatsu H, Matsueda K, Onimura K, et al. IGA/IGSCC propagation behaviors ofalloy600[C]//Cubicciotti D. Proc.4th Int. Symp. on environmental degradation ofMats. in Nucl. Power Systems-Water Reactors. Houston: NACE:1989:7-29to7-44.
    [76] Paine JPN, Pathania RS, Shoemaker CE. Effect of caustic environment on intergranularattack and stress corrosion cracking of alloy600[C]//Theus GJ, Weeks JR. Proc.3rdInt. Symp. on environmental degradation of Mats. in Nucl. power systems-waterreactors. Warrendale, PA, USA: TMS,1988:501-509.
    [77] Taylor DF. Crevice corrosion of alloy600in high-temperature aqueousenvironments[J]. Corrosion,1979,35:550-559.
    [78] Rebak RB, Xia Z, Szklarska-Smialowska Z. Effects of carbides on susceptibility ofalloy600to stress corrosion cracking in high-temperature water[J]. Corrosion,1993,49:867-876.
    [79] Lai WK, Szklarska-Smialowska Z. Effect of heat treatment on the behavior of alloy600in lithiated water containing dissolved hydrogen at25to350℃[J] Corrosion,1991,47:40-47.
    [80] Cooper KR, Kelly RG. Crack tip chemistry and electrochemistry of environmentalcracks in AA7050[J]. Corros. Sci.,2007,49(6):2636–2662.
    [81] Cooper KR, Kelly, RG. Using capillary electrophoresis to study the chemical conditionswithin cracks in aluminum alloys[J]. J. Chromatogr. A,1999,850(1/2):381-389.
    [82] Cooper KR, Kelly RG. Measurement and modeling of crack conditions during theenvironment-assisted cracking of an Al-Zn-Mg-Cu alloy[C]//Shipilov S A.Environmentally induced cracking of materials II. Elsevier,2007:335–344.
    [83]牛林,张长桥,林海潮.金属应变电化学研究进展[J].化学通报,2003,(11):748-754.
    [84] Brown BF, Fujii CT, Dahlberg EP. Methods for studying solution chemistry withinstress corrosion cracks[J]. J. Electrochem. Soc.,1969,116(2):218-219.
    [85] Smith JA, Peterson MH, Brown BF. Electrochemical conditions at the tip of anadvancing stress corrosion crack in AISI4340Steel[J]. Corrosion,1970,26(12):539-542.
    [86] Pourbaix M. The Theory of Stress Corrosion Cracking in Alloys[M]. Brussels: NATO,1971:17-63.
    [87] Kolman DG, Scully JR. An assessment of the crack tip potential of β-titanium alloysduring hydrogen environmentally assisted crack propagation based on crack tip andpassive surface electrochemical measurements[J]. Corros. Sci.,2000,42(11):1863-1879.
    [88] Uchida H, Yamashita M, Inoue S, et al. In-situ observations of crack nucleation andgrowth during stress corrosion by scanning vibrating electrode technique[J]. Mater. Sci.Eng. A,2001,319-321:496-500.
    [89] Arioka K, Yamada T, Terachi T, et al. Intergranular stress corrosion cracking behaviorof austenitic stainless steels in hydrogenated high-temperature water[J]. Corrosion,2006,62(1):74-83.
    [90] Lozano-Perez S, Titchmarsh JM. TEM investigations of intergranular stress corrosioncracking in austenitic alloys in PWR environmental conditions[J]. Mater. High Temp.,2003,20(4):573-579.
    [91] Newman RC. Developments in the slip-dissolution model of stress corrosioncracking[J]. Corrosion,1994,50(9):682-686.
    [92] Satoh T, Nakazato T, et al. Quantitative prediction of environmentally assisted crackingbased on a theoretical model and computer simulation[J]. J. Nucl. Mater.,1998,258-263:2054-2058.
    [93] Sharland SM. A review of the theoretical modelling of crevice and pitting corrosion[J].Corros. Sci.,1987,27(3):289-323.
    [94] Watson MK, Postlewaite J. Numerical simulation of crevice corrosion of stainlesssteels and nickel alloys in chloride solutions[J]. Corrosion,1990,46:522–530.
    [95] Sharland SM. A mathematical model of the initiation of crevice corrosion in metals[J].Corros. Sci.,1992,33(2);183-201.
    [96] TurnBull A. Modelling of crack chemistry in sensitized stainless steel in boiling waterreactor environments[J]. Corros. Sci.,1997,39(4):789-805.
    [97] Blondel P, Girardin G. Introduction to the modelling of crevice corrosion withFemlab[C]//Proceedings of the COMSOL Multiphysics users conference, Paris,2005.
    [98] Proust A, Girardin G, et al. Characterization of the influence of the different parameterscontrolling the propagation of crevice corrosion by numerical modeling[C]//Proceedings of the COMSOL users conference, Paris,2006.
    [99] Stroe M, Oltra R. Propagation of localised corrosion FEM approach[C]//Proceedingsof the COMSOL users conference, Grenoble,2007.
    [100] COMSOL Multiphysics4.3Tutorial Models. Crevice corrosion of iron in an aceticacid/sodium acetate solution[DB/OL].2012.
    [101] Gutman EM. Mechanochemistry of Solid Surfaces[M]. Singapore: Word ScientificPublishing Co. Pte. Ltd.,1994.
    [102] Lu BT, Luo JL, Norton PR, et al. Effects of dissolved hydrogen and elastic and plasticdeformation on active dissolution of pipeline steel in anaerobic groundwater ofnear-neutral pH[J]. Acta Mater.,2009,57(1):41-49.
    [103] Xu LY, Cheng YF. An experimental investigation of corrosion of X100pipeline steelunder uniaxial elastic stress in a near-neutral pH solution[J]. Corros. Sci.,2012,59:103-109.
    [104] Xu LY, Cheng YF. Corrosion of X100pipeline steel under plastic strain in a neutral pHbicarbonate solution[J]. Corros. Sci.,2012,64:145-152.
    [105] Zhao WM, Xin RF, He ZR, et al. Contribution of anodic dissolution to the corrosionfatigue crack propagation of X80steel in3.5wt.%NaCl solution[J]. Corros. Sci.,2012,63:387-392.
    [106] Zhua YY, Li L, Wang C, et al, Effects of elastic deformation on the anodic dissolutionof X70carbon steel in sulfuric acid solution[J]. Eletcrochim. Acta,2012,78:609-614.
    [107] Sahal M, Creus J, Sabot R, et al. Consequences of plastic strain on the dissolutionprocess of polycrystalline nickel in H2SO4solution[J]. Scr. Mater.,2004,51(9):869-873.
    [108] Ben-Hamu G, Eliezer A, Gutman E M. Electrochemical behavior of magnesium alloysstrained in buffer solutions[J]. Eletcrochim. Acta,2006,52(1):304-313.
    [109] Sahal M, Creus J, Sabot R, et al. The effects of dislocation patterns on the dissolutionprocess of polycrystalline nickel[J]. Acta Mater.,2006,54(8):2157-2167.
    [110] Huang YH, Xuan FZ, Tu ST, et al. Effects of hydrogen and surface dislocation onactive dissolution of deformed304austenitic stainless steel in acid chloride solution[J].Mater. Sci. Eng., A,2011,528(3):1882-1888.
    [111] Hou J, Wang JQ, Ke W, et al. Effect of mono-tension and biaxial tension onmicrostructure and stress corrosion cracking of Alloy690TT[J]. Mater. Sci. Eng., A,2009,518(1/2):19-26.
    [112] Wang YX, Zhao WM, Ai H, et al. Effects of strain on the corrosion behavior of X80steel[J]. Corros. Sci.,2011,53(9):2761-2766.
    [113] Meng FJ, Han EH, Wang JQ, et al. Localized corrosion behavior of scratches onnickel-base Alloy690TT[J]. Eletcrochim. Acta,2011,56(4):1787-1785.
    [114] Peguet L, Malki B, Baroux B. Influence of cold working on the pitting corrosionresistance of stainless steels[J]. Corros. Sci.,2007,49(4):1933-1948.
    [115] Lu BT, Chen ZK, Luo JL, et al. Pitting and stress corrosion cracking behavior inwelded austenitic stainless steel[J]. Eletcrochim. Acta,2005,50(6):1391-1403.
    [116] Liu XF, Zhan J, Liu QJ. The influence of tensile stress on electrochemical noise fromaluminum alloy in chloride media[J]. Corros. Sci.,2009,51(6):1460-1466.
    [117] Gao K, Li D, Pang X, et al. Corrosion behaviour of low-carbon bainitic steel under aconstant elastic load[J]. Corros. Sci.,2010,52(10):3428-3434.
    [118] Oltra R, Vignal V. Recent advances in local probe techniques in corrosion research:Analysis of the role of stress on pitting sensitivity[J]. Corros. Sci.,2007,49(1):158-165.
    [119] Vankeerberghen M, Weyns G, Gavrilov S, et al. Crack propagation rate modeling for316SS exposed to PWR-relevant conditions[J]. J. Nucl. Mater.,2009,384(3):274-285.
    [120] Wang WF, Briant CL, Kumar KS, et al. Effect of anodic dissolution and hydrogenabsorption on plastic zone at fatigue crack tip in structural steel[J]. Mater. Trans., JIM,1998,39(3):365-369.
    [121] Huang YL. The synergy between deformation and anodic dissolution of an austeniticstainless steel in acidic chloride solution[J]. Mater. Corros.,2004,55(2):102-105.
    [122] Raja KS, Namjosh SA, Jones DA. Corrosion-creep interaction of stainless alloys inacid chloride solutions[J]. Metall. Mater. Trans. A,2005,36(5):1107-1120.
    [123] Xie JH, Alpas AT, Northwood DO. Mechano-electrochemical effect between erosionand corrosion[J]. J. Mater. Sci.,2003,38(24):4849-4856.
    [124] Unigovski Ya, Keren Z, Eliezer A, et al. Creep behavior of pure magnesium and Mg-Alalloys in active environments[J]. Mater. Sci. Eng. A,2005,398(1/2):188-197.
    [125] Guo HX, Lu BT, Luo JL. Interaction of mechanical and electrochemical factors inerosion-corrosion of carbon steel[J]. Eletcrochim. Acta,2005,51(2):315-323.
    [126] Gu B, Chu WY, Qiao LJ, et al. The effect of anodic polarization on the ambient creepof brass[J]. Corros. Sci.,1994,36(8):1437-1445.
    [127] Revie RW, Uhlig HH. Effect of applied potential and surface dissolution on the creepbehavior of copper [J]. Acta Metall.,1974,22(5):619-627.
    [128] Guo HX, Lu BT, Luo JL. Response of surface mechanical properties to electrochemicaldissolution determined by in situ nanoindentation technique[J]. Electrochem. Commu.,2006,8(7):1092-1098.
    [129] Lu BT, Luo JL, Norton PR. Environmentally assisted cracking mechanism of pipelinesteel in near-neutral pH groundwater[J]. Corros. Sci.,2010,52(5):1787-1795.
    [130] Magnin T, Chambreuil A, Bayle B. Corrosion-enhanced plasticity model for stresscorrosion cracking in ductile fcc alloys[J]. Acta Mater.,1996,44(4):1457-1470.
    [131] Gutman GM. Mechanochemistry of Materials[M]. London: International SciencePublishing,1998.
    [132] Magnin T, Lepinoux J. Metallurgical aspects of the brittle SCC in austenitic stainlesssteels[C]//Bruemmer SM, Meletis EI, Jones RH, et al. Parkins symposium onfundamental aspects of stress-corrosion cracking. Warrendale, PA, USA: TMS,1992.
    [133] Jones DA. A unified mechanism of stress corrosion and corrosion fatigue cracking[J].Mater. Trans. A,1985,16(6):1133-1141.
    [134] Lynch SP. Environmentally assisted cracking: overview of evidence for anadsorption-induced localized slip process[J]. Acta Mater.,1988,36:2639-2661.
    [135] Ford FP, Andresen PL. Development and use of a predictive model of crackpropagation in304/316L, A533B/A508, and inconel600/182alloys in288°C water[C]//Theus GJ, Weeks J R. Proc.3rd Int. Symp. on environmental degradation of Mats. inNucl. power systems-water reactors. Warrendale, PA, USA: TMS,1988:789-800.
    [136] Ford FP, Andresen PL, Solomon H, et al. Application of water chemistry control,on-Line monitoring and crack growth rate models for improved BWR materialperformance[C]//Cubicciotti D. Proc.4th Int. Symp. on environmental degradation ofMats. in Nucl. Power Systems-Water Reactors. Houston: NACE,1989:4-26to4-50.
    [137] Angeliu TM, Andresen PL, Ford FP. Applying slip-oxidation to the SCC of austeniticmaterials in BWR/PWR environments[C]//Corrosion98. Houston: NACE,1998:262.
    [138] Ford FP. Quantitative prediction of environmentally assisted cracking[J]. Corrosion,1996,52:375-395.
    [139] Andresen PL. SCC mitigation strategies in hot water[C]//Corrosion97. Houston:NACE,1997: Paper No.102.
    [140] Congleton J, Parkins RN. Stress corrosion cracking of steel in high temperaturewater[J]. Corrosion,1988,44:290-298.
    [141] Ruther WE, Soppet WK, Kassner TF. Effect of temperature and ionic impurities at verylow concentrations on stress corrosion cracking of type304stainless steel[J]. Corrosion,1988,44:791-799.
    [142] Shoji T, Suzuki S, Ballinger RG. Theoretical prediction of SCC growthbehavior-threshold and plateau growth rate[C]//Airey G, Andresen PL, et al. Proc.7thInt. Symp. on environmental degradation of Mats. in Nucl. power systems-waterreactors. Houston: NACE,1995:881-889.
    [143] Gao YC, Hwang KC. Elastic-plastic fields in steady crack growth in a strain hardeningmaterial[C]//Proc. ICF5. Cannes, France,1981:669-682.
    [144] Macdonald DD. Clarification of issues raised by P.L andresen and F.P. Ford in theirresponse to “On the modeling of stress corrosion cracking of iron and nickel basealloys in high temperature environments”[J]. Corros. Sci.,1997,39:1487-1490.
    [145] Tumbull A, Psaila-Dombrowski M. A review of electrochemistry of relevance toenvironment-assisted cracking in light water reactors[J]. Corros. Sci.,1992,32:1925-1966.
    [146] Tumbull A. Modelling of environment assisted cracking[J]. Corros. Sci.,1993,34:921-960.
    [147] Sieradzki K, Friedersdorf FJ. Notes on the surface mobility mechanism of stresscorrosion cracking[J]. Corros. Sci.,1994,36:669-675.
    [148] Persson B, Lagerstrom J. The effect of varying loads and degree of subcooling onPWSCC in alloy600[C]//EPRI TR-105406, Palo Alto, CA, Aug.1995.
    [149] M.M. Jr. Hall. Thermally activated dislocation creep model for primary water stresscorrosion cracking of NiCrFe alloys[C]//Proceeding of intenational symposium onplant aging and life prediction of corrodible structures, Sapporo, Japan, Sept.1997.
    [150] Scott PM. An analysis of primary water stress corrosion cracking in PWR steamgenerators[C]//Proc. of the specialists meeting on operating experience with steamgenerators, Brussels, Belgium, Sept.1991:5.6-1to16.
    [151] McIlree AR, Rebak RB, Smialowska S. Relationship of stress intensity to crack growthrate of alloy600in primary water[C]//Int. Symp. on contribution of materialsinvestigation to the resolution of problems encountered in PWR Plants. Fontevraud,1990,1:258-267.
    [152] Bandy R, van Rooyen D. Mechanisms of intergranular failures in alloy600inhigh-Temperature environments[R]. BNL-NUREG-34270. USA: Brookhaven NationalLab.,1984.
    [153] Gorman JA, Stavropoulos KD, McIlree AR. Guidelines for prediction of PWSCC insteam generator tubes[C]//Int. Symp. on contribution of materials investigation to theresolution of problems encountered in PWRs. Fontevraud III,1994,1:311-318.
    [154] Hemalsteen P. A predictive model for steam generator degradation through PWSCC inroll transitions[C]//Transactions of the10th international conference onSMIRT-Volume D, Los Angeles,1989:183-188.
    [155] Eason ED, Nelson EE. A model of caustic stress corrosion crack initiation and growthin alloy600[R]. EPRI TR-104073. Palo Alto, CA: EPRI,1994.
    [156] Gao YC. Exponential stress and strain singularity at tip of mode I growing crack inpower hardening plastic material[J]. Theoretical and Applied Fracture Mechanics,1996,25(2):103-111.
    [157] Gutman EM. An inconsistency in “film rupture model” of stress corrosion cracking[J].Corros. Sci.,2007,49(5):2289-2302.
    [158] Andresen PL, Angeliu TM. Evaluation of the role of hydrogen in SCC in hot water[C]//Corrosion97. Houston: NACE,1997:Paper No.195.
    [159] Andresen PL, Ford FP. Fundamental quantification of crack advance for life predictionin energy systems[C]//Corrosion97. Houston: NACE,1996:51-99.
    [160] Xue H, Shoji T. Quantitative prediction of EAC crack growth rate of sensitized type304stainless steel in boiling water reactor environments based on EPFEM[J]. J. Press.Vess.-T. ASME,2007,129(3):460-467.
    [161] Hua FH, Rebak RB. The role of hydrogen and creep in intergranular stress corrosioncracking of Alloy600and Alloy690in PWR primary water environments-a review[J].Environment-Induced Cracking of Materials,2008,2:123-141.
    [162] Vaillant F, Mithieux JD, de Bouvier O, et al. Influence of chromium content andmicrostructure on creep and PWSCC resistance of nickel base alloys[C]//Bruemmer S,Ford FP, et al. Proc.9th Int. Symp. on environmental degradation of Mats. in Nucl.Power Systems-Water Reactors. Houston: NACE,1999:251-258.
    [163] Kennedy AJ. Processes of creep and fatigue in metals[M]. Mississauga, Ontario,Canada: John Wiley&Sons Canada, Ltd.,1963.
    [164] Norton FH. The creep of steel at high temperatures. London: McGraw-Hill,1929.
    [165] Dorn JE. Some fundamental experiments on high temperature creep[J]. Journal of theMechanics and Physics of Solids,1955,(3)2:85-88,IN1-IN2,89-104,IN3-IN4,105-116.
    [166] Garofalo F. Fundamentals of creep and creep-rupture in metals[M]. New York:Macmillan,1965.
    [167] McVetty PG. Working stresses for high temperature service[J]. Mech. Eng.,1934,56:149-154.
    [168] McVetty PG. Creep of metals at elevated temperatures-the hyperbolic sine relationbetween stress and creep rate[J] Trans. ASME,1943,65:761.
    [169] Dassault Systèmes Simulia Corp. Abaqus analysis user's manual6.12[EB/CD],2012.
    [170] Rieth M, Falkenstein A, Graf P, et al. Creep of austenitic steel aisi316L(N)experiments and models[R]. Report FZKA-7065. Germany: ForschungszentrumKarlsruhe,2004.
    [171] Yang FQ, Xue H, Zhao LY, et al. Calculations and modeling of material constants inhyperbolic-sine creep model for316stainless steels[C]//Applied Mechanics andMaterials,2014,457-458:185-190.
    [172] Tada H, Paris P, Irwin G. The stress analysis of cracks handbook[M].3rh ed. NewYork:ASME Press,2000.
    [173] Scott Fogler H. Elements of chemical reaction engineering[M].3rh ed. New Nelhi:Prentice-Hall of India Private Limited,2004
    [174] Walton JC, Kalandros SK. Twitch-a model for transient diffusion, electromigration,and chemical reaction in one dimension[R]. San Antonio, Texas: Center for NuclearWaste Regulatory Analyses,1992.
    [175]傅献彩等编.物理化学(下册)[M].第5版.北京:高等教育出版社,2006.
    [176]印永嘉等编.物理化学简明教程[M].第3版.北京:高等教育出版社,1992.
    [177] ASTM E139-001. Standard test methods for conducting creep, creep-rupture, andstress-rupture eests of metallic materials[S]. USA: ASTM International.2000.
    [178]中华人民共和国国家标准GB/T2039-1997.金属拉伸蠕变及持久实验方法[S].北京:中国标准出版社,1997.
    [179] ASTM Standard E399-90. Standard test method for plane-strain fracture toughness ofmetallic materials[S]. USA: ASTM International,2002.
    [180] Aki Toivonen. Stress corrosion crack growth rate measurement in high temperaturewater using small precracked bend specimens[M]. Espoo: VTT Publications,2004.
    [181] Chopra OK, Gruber EE, Shack WJ. Fracture toughness and crack growth rates ofirradiated austenitic sstainless steels[R]. NUREG/CR–6826. Washington, DC:NRC,2003.
    [182]傅列东,许金泉,郭乙木.不同硬化指数的幂次硬化结合材料的界面端奇异性分析[J].力学季刊,2000,21(4):503-507.
    [183] Kim JR Rasmussen. Full-range stress-strain curves for stainless steel alloys[R].Research report R811. Sydney: The University of Sydney, November2001.
    [184] ASTM E1681-2003. Standard test method for determining a threshold stress intensityfactor for environment-assisted cracking of metallic materials[S]. USA: ASTMInternational.2002.
    [185] Peng QJ, Kwon J, Shoji T. Development of a fundamental crack tip strain rate equationand its application to quantitative prediction of stress corrosion cracking of stainlesssteels in high temperature oxygenated water[J]. J. Nucl. Mater.,2004,324:52-61.
    [186] Chopra OK, Rao AS. A review of irradiation effects on LWR core internal materials-IASCC susceptibility and crack growth rates of austenitic stainless steels[J]. J. Nucl.Mater.,2011,409:235-256.
    [187] Shoji T, Lu ZP, Das NK. Modeling stress corrosion cracking growth rates based uponthe effect of stress/strain on crack tip interface degradation and oxidation reactionkinetics[C]//ASME2009pressure vessels and piping conference, Prague, CzechRepublic, July26-30,2009. ASME,2009.
    [188] Xue H, Ogawa K, Shoji T. Effect of welded mechanical heterogeneity of local stressand strain ahead of stationary and growing crack tips[J]. Nucl. Eng. Des.,2009,239(4):628-640.
    [189] Bamford WH, Foster J, Hsu KR, et al. Alloy182weld crack growth and its impact onservice-induced cracking in operating PWR plant piping[EB/CD]//Proc.10th Int.Symp. on environmental degradation of Mats. in Nucl. power systems-water reactors.Houston: NACE,2001.
    [190] Kim YJ, Schwalbe KH. Numerical analyses of strength mismatch effect on localstresses for ideally plastic materials[J]. Engineering Fracture Mechanics,2004,71(7):1197-1219.
    [191] Xue H, Shi YW. Effects of mechanical heterogeneity on plastic zones of weldedthree-point bend specimens[J]. Int. J. Pres. Ves. Pip.,1998,75(7):575-580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700