用户名: 密码: 验证码:
南四湖浮游藻类种群特征及营养状态评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浮游藻类的种群结构与其生活水域的水质状况密切相关,是评价水体质量的
     一项重要生物指标。南四湖是南水北调东线工程的调蓄湖泊和输水线路的重要组成部分,研究湖内水体浮游藻类种群构成特征及分布规律,可为评估水体质量,预防控制湖泊富营养化,保障调水水质安全提供科学依据。本文对南四湖水体浮游藻类种群构成特征及水体营养状态进行了调查研究。本文主要研究内容如下:
     2008年6月~2009年5月在南四湖设置5个监测点,每月采样一次,对浮游藻类种群构成特征及季节变化进行了为期一年的调查研究。南四湖共检出浮游藻类8门59属117种;其中绿藻种类最多,共57种,占浮游藻类总种数的48.7%;硅藻次之,共28种,占浮游藻类总种数的23.9%;浮游藻类种数夏秋季节多,冬春季节少。各监测点浮游藻类密度和叶绿素口浓度变化范围分别为5×104~5500×104 cells/L、2.14-158.36mg/m3,浮游藻类密度季节变化表现为夏季>秋季>春季>冬季。浮游藻类优势种的优势度指数不高,变化范围为0.04~0.35,优势种种数较多,包括小球藻(Chlorella vulgar is)、二形栅藻(Scenedesmus dimorphus)、颗粒直链藻(Aulacoseira granulata)等23种。南四湖浮游藻类多样性指数和均匀度指数变化范围分别为1.56~2.36、0.59~0.84;多样性和均匀度较好,表明南四湖水体中浮游藻类群落结构较复杂,且群落种类组成的稳定程度和数量分布均匀程度较高。
     南四湖水体检出蓝藻10属19种,占藻类总种数的16.2%;各监测点蓝藻细胞密度变化范围为0-1120×104 cells/L,月均值为92.9×104cells/L;蓝藻种数及密度夏秋季节高,冬春季节低;蓝藻种群中的优势种是平裂藻属的种类,水华常见藻类如微囊藻属和鱼腥藻属的种类等占比例小或未检出。浮游藻类优势种不是易引发水华的蓝藻种类,气象气候、水流流态等环境条件不利于水华的形成,是南四湖未发生明显水华的重要原因。
     采用修正的卡森营养状态指数法(TSIM)、《地表水资源质量评价技术规程》(SL395-2007)规定的指数法、生物指标评价法评价了南四湖水体营养状态,评价结果为富营养。南四湖检出的浮游藻类多为淡水湖泊水体常见种类,部分种类为富营养化指示藻类。
     南水北调东线工程的实施,促进了南四湖汇水区的环境保护,湖水水质明显提高。为预防发生蓝藻水华,保障湖体水质达到调水水质要求,还应进一步采取建设人工湿地、中水回用、面源污染治理等水质改善措施,同时加强水环境质量监控预警体系建设。
Phytoplankton community is closely related to the water quality and thus to be an important biological indicator for water quality assessment. Nansi Lake has been employed in the east route of the South-to-North Water Diversion Project for accommodating water storage and part of the water channel. Investigations of phytoplankton community are an important aspect in studying water quality, preventing and controlling eutrophication of lakes, and ensuring diversion water quality. This paper focused on the phytoplankton community characteristics and the assessment of water trophic status in Nansi Lake. The main researches included as follows:
     The composition characteristics and seasonal variations of phytoplankton in Nansi Lake were studied from June 2008 to May 2009.8 phyla,59 genera and 117 species have been identified from 5 monitoring stations based on a monthly sampling. The dominated Chlorophyta has 57 species, accounting for 48.7% of the total phytoplankton species, and Bacillariophyta has 28 species, accounting for 23.9% of the total phytoplankton speices. There were much more species in summer and autumn than that in winter and spring. The phytoplankton densities and chlorophyll a concentrations of each sampling station ranged from 5×104 to 5500×104 cells/L, and 2.14 to 158.36mg/m3, respectively. The quantity of phytoplankton in the order from large to small was:summer>autumn>spring>winter. The predominant indices were not high, ranging from 0.04 to 0.35, and there were 23 predominant species including Chlorella vulgaris, Scenedesmus dimorphus, Aulacoseira granulate, etc. The phytoplankton diversity and evenness indices varied from 1.56 to 2.36, and 0.59 to 0.84, respectively. It can be concluded that the phytoplankton community structure in Nansi Lake was complex, and the stability of the phytoplankton community composition and quantitative distribution showed a high degree in Nansi Lake.
     The species composition of cyanobacteria community revealed 10 genera,19 species, which accounted for 16.2% of the total number of phytoplankton species observed in Nansi Lake. The cyanobacteria densities of each monitoring station ranged from 0 to 1120×104 cells/L, with an average of 92.9×104 cells/L. The cyanobacteria species number and cell densities had the same variation trends during the year, with higher values in summer and autumn and lower values in spring and winter. The dominant species of cyanobaceria community were the species of Merismopedia, not the bloom-forming algae such as Microcystis, Anabaena, etc. The dominant species of phytoplankton community were not the species of cyanobacteria causing water bloom, and environmental conditions such as climate, hydrology were not suitable for the excessive propagation of cyanobacteria, which are the important reasons for that the water bloom has never occurred in Nansi Lake.
     The trophic state of Nansi Lake was investigated using the methods of modified trophic state index (TSIM), index defined by the "Evaluation of surface water quality technical specification (SL395-2007)" and biological indicators. According to the majority of the investigated parameters and indices derived from water quality and phytoplankton, Nansi Lake was eutrophic. Most of the detected phytoplankton speices were common genus in freshwater lakes and some species indicated eutrophication.
     The construction of the east route of South-to-North Water Diversion Project promoted the environmental protection in Nansi Lake watershed and the lake water quality has been meliorated significantly. To prevent water bloom occurring in Nansi Lake and achieve the required water quality for water diversion, it is still need to improve water environmental monitoring, control, emergency system and implement the water pollution control measures such as constructing the wetlands system, wastewater reuse, non point source pollution control, etc.
引文
[1]胡鸿钧,李尧英,魏印心等.中国淡水藻类[M].上海:上海科学技术出版社,1980,5-6.
    [2]周群英,高廷耀.环境工程微生物学(第二版)[M].北京:高等教育出版社,2000,62.
    [3]胡宝忠,胡国宣.植物学[M].北京:中国农业出版社,2002.
    [4]Behrenfeld M J, Boss E, Siegel D A, Shea D M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical,2005, Cycles 19, GB1006.
    [5]陈剑虹.环境工程微生物学[M].武汉:武汉理工大学出版社,2003.
    [6]任洪涛,张光勤.浅谈浮游植物与水华的关系[J].中国水产,2007,10:72-73.
    [7]奚旦立,孙裕生,刘秀英.环境监测(第三版)[M].北京:高等教育出版社,2004.
    [8]Sedwick P, Blain S, Queguiner B. Resource limitation of phytoplankton growth in the Crozet Basin, Subantarctic Southern Ocean [J]. Deep-Sea Research,2002,49:3327-3349.
    [9]Quiblier C, Leboulanger C, Sane S. Phytoplankton growth control and risk of cyanobacterial blooms in the lower Senegal River delta region [J]. Water Research,2008,42:1023-1034.
    [10]黄振芳,刘昌明,刘波,崔丽风.铁锰微量元素对淡水藻类的生长影响研究[J].北京师范大学学报(自然科学版),2009,45(5/6):607-611.
    [11]McCarthy M J, James R T, Chen Y. Nutrient ratios and phytoplankton community structure in the large, shallow, eutrophic, subtropical Lakes Okeechobee (Florida, USA) and Taihu (China) [J]. Limnology,2009,10:215-227.
    [12]Redfield B C. The biology control of chemical factors in the environment [J]. American Scientist,1958,46:205-221.
    [13]Li R, Zhu M, Chen S, Lu R, Li B. Responses of phytoplankton on phosphate enrichment in mesocosms [J]. Acta Ecologica Sinica,2001,21(4):603-607.
    [14]孙凌,金相灿,钟远,张冬梅,朱琳,戴树桂,庄源益.不同氮磷比条件下浮游藻类群落变化[J].应用生态学报,2006,17(7):1218-1223.
    [15]Cuvin-Aralar M L, Focken U, Becker K, Aralar E V. Effects of low nitrogen-phosphorus ratios in the phytop lankton community in Laguna de Bay, a shallow eutrophic lake in the Philippines [J]. Aquatic Ecology,2004,38:387~401.
    [16]Baumert H Z, Petzoldt T. The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light-dark acclimation in phytoplankton [J]. Limnologica, 2008,38:313-326.
    [17]Gunnel A. Phosphorus as growth-regulating factor relative to other environmental factors in cultured algae [J]. Hydrobiologia,1988,170:191-210.
    [18]Nutrents B A, Stevenson R, Bothwell L, Lowe L. Algal Ecology Freshwater Benthic Ecosystems [M]. London:Academic Press Incorporated,1996.184-227.
    [19]王丽燕,张永春,蔡金傍.水动力条件对藻华的影响[J].水科学与程技术,2008年增刊, 61-62.
    [20]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    [21]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [22]Sarkar R R, Chattopadhayay J. Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism—mathematical models and experimental observations [J]. Journal of Theoretical Biology,2003,224:501-516.
    [23]Jickells T. External inputs as a contributor to eutrophication problems[J]. Journal of Sea Research,2005,54:58-69.
    [24]Heisler J, Glibert P, Burkholder J. Eutrophication and harmful algal blooms:A scientific consensus [J]. Harmful Algae,2008,8:3-13.
    [25]张宁红,黎刚,郁建桥,丁铭,徐亮.太湖蓝藻水华暴发主要特征初析[J].中国环境监测,2009,25(1):71-74.
    [26]Boyer J N, Kelble C R, Ortner P B, Rudnick D T. Phytoplankton bloom status:Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA [J]. Ecological Indicators,2009,9S:S56-S67.
    [27]Fleming L E, Rivero C, Burns J, Williams C, Bean J A, Kathleen A, Shea J S. Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida [J]. Harmful Algae,2002,1:157-168.
    [28]Dillon P J, Miller M, Fallowfield H, Hutson J. The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers [J]. Journal of Hydrology,2002,266:209-221.
    [29]Donald K N. Evaluating treatment processs with the Ames mutagenicity assay [J]. AWWA, 1987,79(12):58.
    [30]余冉,吕锡武,费治文.富营养化水体中藻类和藻毒素处理研究[J].环境导报,2001,4:14-16.
    [31]由昭今.湖泊富营养化的成因、防治及处理[J].城镇供水,2000,4:6-8.
    [32]肖兴富,李文奇,刘娜,杨旭光.富营养化水体中蓝藻毒素的危害及其控制[J].中国水利水电科学研究院学报,2005,3(2):116-123.
    [33]张祖陆,沈吉,孙庆义,彭利民.南四湖的形成及水环境演变[J].海洋与湖沼,2002,33(3):314-321.
    [34]邱红,曹冬云,李飞.南四湖现状及治理规划探讨[J].山东水利,2003,11:6-8.
    [35]张新民,温海深,乔福州,张保彦.南水北调东线工程对南四湖区渔业的影响研究[J].中国渔业经济,2006,6:13-16.
    [36]Zhao Q. Strategies for water environment problem of Nansi Lake [J]. Environmental Science Trends,2005,1:29-31.
    [37]罗辉,周建仁,郭忠.南水北调对南四湖水环境影响分析与评估[J].河海大学学报,2005,33(1):63-67.
    [38]武周虎,乔海涛,付莎莎,周玉华.南水北调东线工程对南四湖环境的影响及对策[J].青岛理工大学学报,2006,27(1):1-2.
    [39]陈磊,裴海燕,解军.改善南四湖水质的关键问题分析[J].中国给水排水,2007,23(20):6-10.
    [40]Shan F, Li L, Duan Z. Assessing the impacts of South-to-North Water Transfer Project with decision support systems [J]. Decision support systems,2007,42:1989-2003.
    [41]Wang C, Wang Y, Wang P. Water quality modeling and pollution control for the eastern route of south to north water transfer project in China [J]. Journal of Hydrodynamics,2006, 18:253-261.
    [42]陈朋,胡文容,裴海燕.一株反硝化细菌LZ214的筛选及其脱氮特性[J].山东大学学报:工学版,2009,39(5):133-138.
    [43]Ptacnik R, Lepisto L, Willen E, Brettum P, Andersen T, Rekolainen S, Solheim A L, Carvalho L. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe [J]. Aquatic Ecology,2008,42:227-236.
    [44]刘顺湖,尹春光,孔万英,等.南四湖浮游藻类植物资源现状调查[J].济宁师专学报,1997,18(3):50-53.
    [45]帅莉,王本华,杨永亮.山东南四湖浮游动植物的调查研究[J].青岛大学学报(工程技术版),2006,21(4):19-25.
    [46]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002,649-653.
    [47]Reynolds C S. Phytoplankton assemblages and their periodicity in stratifying lake systems [J]. Holarctic Ecology,1980,3:141-159.
    [48]Gao X, Song J. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, China [J]. Marine Pollution Bulletin,2005,50:327-335.
    [49]Perdrozo F, Temporetti P, Beamud G. Volcanic nutrient inputs and trophic state of Lake Caviahue, Patagonia, Argentina [J]. Journal of Volcanology and Geothermal Research,2008, 178:205-212.
    [50]Peeters T H M, Franken J M, Jeppesen E. Assessing ecological quality of shallow lakes:Does knowledge of transparency suffice? [J]. Basic and Applied Ecology,2009,10:89-96.
    [51]Ishikawa T, Tanaka M. Diurnal stratification and its effectss on wind-induced currents and water qualities in Lake Kasumigaura, Japan [J]. Journal of Hydraulic Research,1993,31: 307-322.
    [52]Torremorell A, Bustigorry J, Escaray R. Seasonal dynamics of a large, shallow lake, laguna Chascomus:The role of light limitation and other physical variables [J]. Limnologica,2007, 37:100-108.
    [53]Mullholand P, Houser J, Maloney, O. Stream diurnal dissolved oxygen profiles as indicators of in-stream metabolism and disturbance effects:fort Benning as a case study [J]. Ecological Indicators,2005,5:243-252.
    [54]Sanchez E, Folmenarejo M, Vicente J, Rubio A, Garcia M, Travieso L, Borja R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution
    [J]. Ecological Indicators,2007,7:315-328.
    [55]Vahala J K, Hartikainen H, Tallberg P. Phosphorus mobilization from various sediment pools in response to increased pH and silicate concentration [J]. Journal of Environmental Quality, 2001,30:546-552.
    [56]Kisand A. Distribution of sediment phosphorus fractions in hypertrophic strongly stratified Lake Verevi [J]. Hydrobiologia,2005,547:33-39.
    [57]金相灿.中国湖泊环境(第二册)[M].北京:海洋出版社,1995,281-300.
    [58]韩茂森,束蕴芳.中国淡水生物图谱[M].北京:海洋出版社,1995.
    [59]Gregor J, Marsalek B. Freshwater phytoplankton quantification by chlorophyll a:a comparative study of in vitro, in vivo and in situ methods [J]. Water Research,2004,38: 517-522.
    [60]Aponasenko A D, Shchur L A, Lopatin V N. Relationship of the Chlorophyll Content with the Biomass and Disperse Structure of Phytoplankton [J]. Doklady Biological Sciences,2007, 412:61-63.
    [61]王志刚,刘文清,张玉钧,司马伟昌,刘建国.基于激发荧光光谱的浮游植物分类测量方法[J].中国环境科学,2008,28(4):329-333.
    [62]孙晓庆,董树刚.沙埕港春季浮游植物群落结构的初步研究[J].南方水产,2008,4(3):48-57.
    [63]Cleber C F, Giani A. Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir [J]. Hydrobiologia,2001,445:165-174.
    [64]杨丽原,王晓军,刘恩峰.南四湖表层沉积物营养元素分布特征[J].海洋湖沼通报,2007,(2):40-44.
    [65]Berger W H, Parker F L. Diversity of planktonic foraminifera in deep-sea sediments [J]. Science,1970,168:1345-1347.
    [66]何青,孙军.长江口及其邻近水域网采浮游植物群落[J].生态学报,2009,29(7):3928-3939.
    [67]柳丽华,左涛,陈瑞盛,王俊.2004年秋季长江口海域浮游植物的群落结构和多样性[J].海洋水产研究,2007,28(3):112-119.
    [68]Danilov R, Ekelund N G A. The efficiency of seven diversity and one similarity indices based on phytoplankton data for assessing the level of eutrophication in lakes in central Sweden [J]. The Science of the Total Environment,1999,234:15-23.
    [69]Shannon C E, Wiener W. The Mathematical Theory of Communication M]. Urbana: University of Illinois Press,1949,125.
    [70]Pielou E C. Species-diversity and pattern-diversity in the study of ecological succession [J]. Journal of Theoretical Biology,1966,10:370-383.
    [71]宋辞,于洪贤.镜泊湖浮游植物多样性分析及水质评价[J].东北林业大学学报,2009,37(4):40-42.
    [72]Karydis M, Tsirtsis G. Ecological indices:a biometric approach for assessing eutrophication levels in the marine environment [J]. Science of the Total Environment,1996,186:209-219.
    [73]Kitsiou D, Karydis M. Categorical mapping of marine eutrophication based on ecological indices [J]. Science of the Total Environment,255:113-127.
    [74]张婷,李林,宋立荣.熊河水库浮游植物群落结构的周年变化[J].生态学报.2009,29(6):2971-2979.
    [75]Shanthala M, Hosmani S, Hosetti B. Diversity of phytoplanktons in a waste stabilization pond at Shimoga Town, Karnataka State, India [J]. Environmental Monitoring and Assessment,2009,151:437-443.
    [76]李秋华,何伟添,陈橡.澳门湿地浮游植物群落特征[J].植物生态学报,2009,33(4):689-697.
    [77]Stirling G, Wilsey B. Empirical Relationships between Species Richness, Evenness, and Proportional Diversity [J]. American Naturalist,2001,158:286-299.
    [78]Ricotta C, Avena G. On the relationship between Pielou's evenness and landscape dominance within the context of Hill's diversity profiles [J]. Ecological Indicators,2003,2:361-365.
    [79]Venables H J, Pollard R T, Popova E E. Physical conditions controlling the development of a regular phytoplankton bloom north of the Crozet Plateau, Southern Ocean [J]. Deep-Sea Research,2007,54:1949-1965.
    [80]Fang H, Tang S. Comparative study of hydrographic conditions for algal bloom formation in the coastal waters of east and west of Hong Kong during 1998 [J]. Chinese Journal of Oceanology and Limnology,2009,27:13-21.
    [81]Ebert U, Ebert Arrayas M, Temme N, Sommeijer B. Critical Conditions for Phytoplankton Blooms [J]. Bulletin of Mathematical Biology,2001,63:1095-1124.
    [82]李原,张梅,王若南.滇池的水华蓝藻的时空变化[J].云南大学学报(自然科学版),2005.27(3):272-276.
    [83]张涛,汪中华,李吉学,颜立,冯文献,汪国华,李金海.济宁水文特性[J].海洋湖沼通报,2007,3:13-22.
    [84]宋宪国,李媛.南四湖富营养化评价指标的优选[J].山东环境,1998,4:25.
    [85]Asaeda T, Trung V K, Manatunge J, Truong V B. Modelling macrophyte-nutrient-phytoplankton interactions in shallow eutrophic lakes and the evaluation of environmental impacts [J]. Ecological Engineering,2001,16:341-357.
    [86]Mulderij G, Nes E H N, Donk E V. Macrophyte phytoplankton interactions:The relative importance of allelopathy versus other factors [J]. Ecological Modelling,2007,204:85-92.
    [87]Aizaki M, Iwakuma T, Takamura N. Application of modified Carlson's trophic state index to Japanese lakes and its relationship to other parameters related to trophic state [J]. Research Report from the National Institute for Environmental Studies,1981,23:13-31.
    [88]Duan H, Zhang Y, Zhang B, Song K, Wang Z. Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data [J]. Environmental Monitoring and Assessment,2007,129:295-308.
    [89]Carlson R E. Discussion on'Using differences among Carlson's trophic state index values in regional water quality assessment', by Richard A. Osgood [J]. Water Resources Bulletin, 1983,19:307-309.
    [90]Reynolds C S. The ecological basis for the successful biomanipulation of aquatic communities [J]. Archiv fur Hydrobiologie,1984,130:1-33.
    [91]Tremel B. Determination of the trophic state by qualitative and quantitative phytoplankton analysis in two gravel pit lakes [J]. Hydrobiologia,1996,323:97-105.
    [92]Chen Y, Fan C, Teubner K. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China:an 8-year investigation [J]. Hydrobiologia,2003,506-509: 273-279.
    [93]Vollenweider R A. The scientific basis of lake and strean eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors [J]. Technical Report of the OECD, Paris,1968, DAS/CSI/68:27.
    [94]Hakanson L, Boulion V V. The Lake Foodweb [M]. Leiden:Backhuys Publishers,2002.
    [95]Lepisto L, Rosenstrom U. The most typical phytoplankton taxa in four types of boreal lakes [J]. Hydrobiologia,1998,369/370:89-97.
    [96]Jarnefelt H. Plankton als Indikator der Trophiegruppen der Seen [J]. Annales Academiae Scientiarum Fennicae,1952,18:1-29.
    [97]Mantere R, Heinonen P. The quantity and composition of phytoplankton, particularly chlorophyta, in lakes of different trophy levels [J]. Water Resources Institute,1983,49: 58-63.
    [98]况琪军,马沛明,胡征宇.周广杰.湖泊富营养化的藻类生物学评价与治理研究进展[J].安全与环境学报,2005,5(2):87-91.
    [99]Wilhm J L. Range of diversity index in benthic macroinvertebrate populations [J]. Journal of the Water Pollution Control Federation,1970,42:221-224.
    [100]Komarkova J. Fish stock as a variable modifying trophic pattern of phytoplankton [J]. Hydrobiologia,1998,369/370:139-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700