低磷胁迫下雷公藤响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷作为植物生长发育的必需元素之一,在人类赖以生存的生态系统中起着不可替代的作用,但磷素不足已成为限制目前世界农林业产量的重要因素。通过挖掘和利用植物自身营养性状的遗传特异性,运用生理生化指标的研究手段,改良和筛选耐低磷的植物品种以适应不利的环境条件,是一条高产高效的新途径。迄今为止,对于雷公藤(Tripterygium wilfordii Hook.F.)的研究更多地集中在其成分结构、药理作用等医药方面,而对雷公藤人工栽培技术、生理、生态机理研究,以及影响雷公藤生长发育的主要立地因子等报道较少。
     本文通过土培途径,设计不同的磷素胁迫试验,在磷素胁迫条件下测定雷公藤的形态学和生理学指标,比较雷公藤对不同程度的磷素胁迫的形态学和生理学响应,揭示雷公藤通过形态学和生理学特性的改变来调节自身养分吸收的机理,以及雷公藤不同部位有效物质的浓度和含量的变化,求出施磷肥的投入产出效益最大化需磷量,为雷公藤的合理经营提供依据。
     (1)不同年龄的雷公藤的生长均受低磷胁迫的显著影响,但不同年龄雷公藤对低磷胁迫响应不同。一年生雷公藤对低磷胁迫反应十分敏感,随着胁迫程度的加重,各项指标迅速下降,不适合在低磷土壤中生长;三年生雷公藤能够通过自身的调整,一定程度上适应低磷环境。
     (2)雷公藤对缺磷环境有较强的调节适应能力,在低磷水平的林地上可保持一定的叶绿素含量,从而保证植株光合作用和有机物质的形成。低磷胁迫条件下,雷公藤光合作用受阻,表现为:蒸腾速率下降,叶绿素含量降低,光合速率下降。光合作用强弱反映了植株磷营养状况,光合作用可以作为植物磷状况的一个生理指标。
     (3)磷胁迫严重影响了不同年龄雷公藤的形态指标:低磷胁迫条件下,雷公藤的地径、最长枝、株高生长受阻,干物质累积量减少,根冠比增加。
     (4)低磷胁迫条件下,植物体内SOD、CAT、POD等保护酶活性以及MDA含量、脯氨酸含量会发生相应变化:不同年龄的雷公藤在低磷条件胁迫下,SOD活性、MDA含量均大幅度提高;CAT、POD活性下降。不同年龄的雷公藤脯氨酸含量变化不同:一年生雷公藤叶片脯氨酸含量上升的同时,三年生雷公藤叶片脯氨酸含量下降。同一处理条件下,10月份和7月份相比脯氨酸含量、SOD酶活性、MDA含量,POD活性上升;CAT活性下降。这些变化可以反映植物在逆境条件下的生理变化情况,对研究植物的逆境伤害和抗逆机制具有重要的意义。
     (5)土壤酶活性可以反映土壤肥力的总水平,通常土壤酶活性高说明养分有效性高。在低磷胁迫条件下,不同年龄雷公藤根际土壤的过氧化氢酶活性、蔗糖酶活性、脲酶活性下降。10月份和7月份相比,过氧化氢酶活性、蔗糖酶活性、脲酶活性下降。
     (6)在低磷胁迫条件下,不同年龄的雷公藤根部、枝干雷公藤甲素含量均下降,且随着胁迫程度加重,下降幅度增大。随着雷公藤的生长,枝干和根部的雷公藤甲素含量均上升,但磷胁迫影响了甲素的积累。
     (7)雷公藤生理指标的季节变化,还表现出对高温、高光照强度的适应性。如通过气孔会关闭,使蒸腾减弱,伴随着绿素含量的降低。
Phosphorus is a key element for plant growth, it plays an irreplaceable role on the ecosystem that human survives in. However, the problem of insufficient phosphorus has become the main factor that influences the production of agricultural and forestry. The research of low-phosphorus stress adaptation Tripterygium wilfordii physiological and biochemical mechanism is of great practical significance.
     Up to date, the research of Tripterygium wilfordii is mostly on the structure of its constituents, Pharmacological effects, such as medicine, while the report about its artificial cultivation technology, physiological and ecological mechanism, and the factors that effect the growth of Tripterygium wilfordii is relative few. By the soil culture, the design of low- phosphorus stress test, the morphological and physiological response of Tripterygium wilfordii to different levels of low-phosphorus stress, this paper revealed the mechanism of its regulation to the absorption of phosphorus through the morphological and physiological changes, as well as the changes of concentration of Tripterygium wilfordii wilfordii Hook.F. in different parts of triptolide, providing the basis for its rational management.
     1) Low-phosphorus stress significantly affected the growth of triptreygium with different ages, and the response of Tripterygium wilfordii with different ages to low-phosphorus stress was different. One-year Tripterygium wilfordii was very sensitive to low-Phosphorus stress, as the degree of stress increased, the parameters declined rapidly, and it was not suitable for it to grow in low phosphorus soil. To some extent, three-years Tripterygium wilfordii can adjust itself to adapt to low phosphorus environment.
     2) Tripterygium wilfordii has a strong ability to adapt the environment with insufficient phosphorus, it can maintain a certain content of chlorophyll in the forest with low phosphorus, this can ensure the photosynthesis of plant and the formation of organic substance. Under the conditions of low-phosphorus stress, the photosynthesis of Tripterygium wilfordii was blocked, it can be showed as: the transpiration rate was reduced, the content of chlorophyll was down and the rate of phosphorus was declined. The degree of photosynthetic reflected the nutritional status of the plant, thus it can be used as a physiological indicator of phosphorus.
     3) Phosphorus stress seriously affected the morphological index of Tripterygium wilfordii with different ages: In order to grow better under the conditions of low-Phosphorus stress, the growth of Tripterygium wilfordii’s diameter, the longest branches, and height was hindered. As the severity of phosphorus was increased, the content of dry matter of Tripterygium wilfordii with different ages was reduced and the root-shoot ratio was increased. The patterns indicators are the important judge for the nutritional status of plant.
     4) Under the low-Phosphorus stress, the activities of protective enzyme like SOD, CAI and POD, the content of MAD of proline in the plant would change correspondingly: both of the activity of SOD and the content of MDA increased apparently, and the activity of CAT ANT and POD decreased. The changes of the content of proline were different in the Tripterygium wilfordii with different ages: while the content of proline in the leave of one-year Tripterygium wilfordii was increased, the content of proline in the leave of three-years Tripterygium wilfordii was decreased. Under the same processing condition, compared to July , the content of proline and MDA , the activity of SOD and POD were increased , and the activity of CAT was decreased in October. This can reflect the physiological changes of plant in the adverse condition, and is significant to research of plant’s stress injury and the resistance mechanism.
     5) The activity of soli enzyme may reflect the general level of soil fertility, usually the high activity of soli enzyme shows the high nutrient of soli.Under low-Phosphorus stress, the activity of catalase, sucrose and urease in the athe of Tripterygium wilfordii with different ages were decreased. Compared to July, the activity of catalase, sucrose and urease were decreased in October.
     6) Under the low-Phosphorus stress, the content of triptolide in the root and branches of Tripterygium wilfordii with different ages was decreased, and it would be decreased more apparently as the degree of the low-Phosphorus stress was streng then. As the growth of Tripterygium wilfordii, the content of triptolide in branches and roots were both increased, but the low-Phosphorus stress affected the accumulation of triptolide.
     7) The seasonal changes of physiological indicators in Tripterygium wilfordii also appeared in the adaptation to the high temperature and high light intensity. For instance, as the stomata closed,the transpiration would be decreased, and the content of chlorophyll would be reduced.
引文
[1]Neumann G,Martinoia E.Cluster roots an underground adaptation for survival in extreme environments[J].Trends in Plant Science,2002,7:162~167.
    [2]李志洪,陈丹,曹国军等.磷胁迫不同基因型大豆根系生长和吸磷动力学反应[J].吉林农业大学学报,1995,17(2):54~57
    [3]张恩和,张新慧,王惠珍.不同基因型春蚕豆对磷胁迫的适应性反应[J].生态学报,2004,24(8):1589~1593
    [4] King JS,Albaugh TJ,Allen HL ,Buford M, Strain BR,Dougherty P . Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist,2002.154:389~398
    [5]谢钰容,周志春.低P胁迫对马尾松不同种源根系形态和干物质分配的影响[J].林业科学研究.2004,17(3):272~278.
    [6]Gaarcia M,Ascfncio J. Root morphology and acid phosphprus activity in tomato plants during development and recovery from phosphorus stress[J].Plant Nutri,1992,15(11):2491~2530.
    [7]左仲武,刘彦超,刘志龙.水分胁迫下水杨酸对油松幼苗叶片膜脂过氧化作用的影响.西北林学院学报,2003,18(4):24~25
    [8]梁霞,刘爱琴等.磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J].植物生态学报,2005,29(1):54~59
    [9]杨逢建,庞海河.光胁迫对南方红豆杉叶片中叶绿体色素和紫杉醇含量的影响[J].植物研究,2007,27(5):556~558
    [10]Leon VK,Owen AH Miguel AP. How do crop plants tolerate acid solis? Mechanisms of aluminum tolerace and phosphorous efficiency[J].Annual Review of Plant Biology, 2004, 55:459~493.
    [11]严小龙,张福锁,植物营养遗传学[M].中国农业出版社,1997:240~275
    [12]刘慧,刘景福,刘武定.不同磷营养油菜品种根系形态及生理特性差异研究[J].植物营养与肥料学报.1999,5 (1):32~39.
    [13]廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及其基因型差异[J ].植物学报, 2000,42(2):158~163
    [14]孙海国,张福锁.小麦根系生长对缺磷胁迫的反应[J].植物学报,2000,42 (9):913~919
    [15]王剑,周志春等.不同磷效率马褂木种源对磷胁迫的生理反应[J].林业科学研究,2006,19(4):527~531
    [16]周志春,谢钰容.马尾松磷效率及相关性状的家系遗传和变异[J].北京林业大学学报,2004,26(6):1~5
    [17]梁霞,刘爱琴等.不同杉木无性系磷素特性的比较[J].植物生态学报,2006,3 (6):1005~1011
    [18]俞元春,余健等.缺磷胁迫下马尾松和杉木苗根系有机酸的分泌[J]南京林业大学学报.2007,31(2):9~12.
    [19]张莹,许信玲,叶功富等.不同木麻黄无性系对低磷胁迫的形态学适应[J].海峡科学,2008,10:57~59
    [20]陈永亮,李修岭,周晓燕等.低磷胁迫对落叶松幼苗生长及根系酸性磷酸酶活性的影响[J].北京林业大学学报,2006,28(6):46~49
    [21]戴开结,何方,沈有信等.低磷胁迫下云南松幼苗的生物量及其分配[J].广西植物,2006, 26(2):183~186
    [22]吴楚,范志强,王政权等.磷胁迫对水曲柳幼苗叶绿素合成、光合作用和生物量分配格局的影响[J].应用生态学报,2004,15(6):935~940
    [23]白尚斌,王懿祥,左显东等.磷胁迫条件下北美红杉幼苗生长的适应性反应[J].生态环境. 2005,14(4):488~492
    [24]王保莉,杨春,曲东.环境因素对小麦苗期SOD、MDA及可溶性蛋白的影响[J].西北农业大学学报.2000,28 (6):72~77
    [25]张莹,叶功富,徐俊森.低磷胁迫对木麻黄无性系SOD活性的影响[J].海峡科学,2008,10:66~67
    [26]叶功富,张莹,徐俊森.低磷胁迫下木麻黄无性系的生理生化特性[J].海峡科学,2008,10:63~70
    [27]战秀梅,韩晓日,杨劲峰.不同施肥处理对玉米生育后期叶片保护酶活性及膜脂过氧化作用的影响[J].玉米科学,2007,15(1):123~127
    [28]张建恒,李宾兴,王斌不同磷效率小麦品种光合碳同化和物质生产特性研究[J]中国农业科学,2006,39(17):23~27
    [29]刘建福.磷胁迫对澳洲坚果幼苗叶片光合作用的影响[J]西南师范大学学报(自然科学版),2007(02):45~48
    [30]谢建国,李嘉瑞,赵江.猕猴桃若干光合特性研究[J].北方园艺,1999,02:22~25
    [31]王振磊,林敏娟,陈海江.三个梨品种净光合速率变化及其影响因子的研究[J].塔里木大学学报,2008,(04):14~17
    [32]刘福德,王中生,张明.海南岛热带山地雨林幼苗幼树光合与叶氮、叶磷及比叶面积的关系[J].生态学报,2007,27(11):4651~4661
    [33]郭盛磊,阎秀峰,白冰.落叶松幼苗光合特性对氮和磷缺乏的响应[J] .应用生态学报,2005,04:89~06
    [34]冯玉龙,李继武,王文章等.用净光合速率评价森林立地质量的可行性[J].东北林业大学学报,1996,24(06):14~19
    [35]冯世鑫,胡东南,陈乾平.中药黄藤GAP基地环境质量评价[J]现代中药研究与实践, 2007,1:25~26
    [36]王渭玲,梁宗锁,孙群.不同氮磷施用量对丹参产量及有效成份的影响[J]中国农学通报, 2005,03:318~221
    [37]杜玮炜,姚小洪,黄宏文.环境胁迫对雷公藤中雷公藤红素含量的影响[J]植物生态学报, 2009,01:180~185
    [38]李树殿.栽培技术对药用植物有效成分含量的影响[J]中药材,1980,01:43~47
    [39]Burns R G.Enzyme activity in soil:Location and a possible role in microbial activity[J].Soil Biol & Bicohem,1982,14:423~4271.
    [40]关松荫.土壤酶及其研究[M].北京:农业出版社,1983,320~323.
    [41]周礼恺.土壤酶与植物营养以及与农药的相互作用[J].土壤学进展,1981,9(6):18~27.
    [42]和文祥,姚敏杰,孙丽娜等.呋喃丹对土壤酶活性的影响[J].应用生态学报,2007,(8):1921~1924
    [43]曹光球,苏小青,林思祖等.不同植物种水浸液对杉木幼苗各器官铝积累的化感效应[J].西南林学院学报,2007,27(03):41~44
    [44]李文革,刘志坚,谭周进等.土壤酶功能的研究进展.西南林学院学报,2006,27(03):24~36
    [45]杨春璐,孙铁珩,文祥等.农药对土壤脲酶活性的影响[J].应用生态学报,2006,(7):1354~1356
    [46]郭明,张小萍,曹玉.3种杀虫剂对土壤磷酸酶活性的影响[J].西北农林科技大学学报(自然科学版),2001,(2):69~72 [47 ] Guo LB,Sims REH. Litter production and nutrient return in New Zealand eucalypt short rotation forests :implications forland management [J ].A gric Ecosyst Envi ron,1999,73(1): 93~100
    [48]杨丽娟,须晖,邱忠祥.菜田土壤酶活性与黄瓜产量的关系[J].植物营养与肥料学报,2000,01:113~116
    [49]邱莉萍,刘军,王益权.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,03:277~280
    [50]高瑞,吕家珑.长期定位施肥土壤酶活性及其肥力变化研究[J].中国农业生态学报,2005,08:143~145
    [51]Eivazi F.Tabatabai M A . Factors affecting glucosidases and galactosidases in soils [J]. Soil Biology and Biochemistry ,1990,20(5):601~606
    [52]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    [53]章家恩.生态学常用实验研究方法与技术[M].化学工业出版社,2007
    [54]Jacob J,Lawlor DW .Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower,maize and wheat palnts[J].Journal ofExperimental Botany,1991,42:1003~1011
    [55]林启美,黄德明.应用酸性磷酸酶进行番茄磷素诊断[J].华北农学报,1995,6(2):78~93.
    [56]朱隆静,喻景权.不同供磷水平对番茄生长和光合作用的影响[J].浙江农业学报,2005,17(3):120~122
    [57]徐向华,丁贵杰.马尾松适应低磷胁迫的生理生化相应[J].林业科学,2006,42(9):25~28
    [58]梁霞,刘爱琴,马祥庆.胁迫对不同杉木无性系酸性磷酸酶活性的影响[J].植物生态学报,2005,01:54~59
    [59]冯丽贞,黄勇,马祥庆.磷胁迫对不同桉树品种酸性磷酸酶活性的影响[J].热带作物学报,2008,02:131~135
    [60]李玉京,刘建中,李滨等.高等植物对磷饥饿自我拯救的分子生物学机制[J].生物技术通报,1999,3:1~8
    [61]陶俊,陈鹏.银杏光合特性的研究[J].园艺学报,1999,26(3):157~160
    [62]杨建民,黄文玉.李幼树光合特性的研[J].园艺学报,1997,24(4):381~382
    [63]王春清,祖容.葡萄幼树若干光合特性的研究[J].园艺学报,1989,16(4):279~285
    [64]潘晓华,刘水英,李锋,等.低磷胁迫对不同水稻品种叶片膜脂过氧化及保护酶活性的影响.中国水稻科学,200317(1):57~60
    [65]王文杰,张京教,赵长琦.环境条件对伊贝母生物碱含量的影响[J].中药材.1989,12(2):3~5
    [66]Gilroy S,Jones DL.Through form to function:root hair development and nutrient uptake[J].Trends in plant Science,2000,5:56~60
    [67]Liao H,Rubio G,Yan X,et al.Effect of phosphorus availability on basal root shallowness incommon bean[J].Plant and Soil,2001,237:225~237
    [68]Lynch JP,Brown KM.Topsoil foragingan and architectural adaptation of plants to low phosphorus[J].Plant and Soil,2001,237:225~237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700