基于随机过程理论的舰船结构可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船体结构的自然损伤包括腐蚀和疲劳,舰船的环境载荷也是引起船体结构强度问题的主要因素。在分析船体结构可靠性时,不但要考虑载荷的时变性,而且还要考虑船体强度随时间的退化,即与传统的可靠性分析采用极值理论相比,加入了时间因素,相应的可靠性分析即为基于随机过程的船体结构时变可靠性分析。近年来,舰船结构的时变可靠性的研究开始引起了很多学者的关注。
     在通常情况下,船舶结构由于周边环境及波浪载荷的反复作用,将不可避免的产生疲劳和腐蚀,这将贯穿整个船舶的使用过程。结构强度由于其所处的环境及所受的载荷,将会出现腐蚀和疲劳的情况,而导致其强度随时间而变化,故必须处理为随机过程。疲劳裂纹的扩展以及舰船构件厚度的降低将导致船体梁有效截面模量减小,最终使其总纵抗弯强度减小,使舰船的可靠性随时间而降低。
     针对疲劳和腐蚀对舰船结构强度的影响,本文提出一种舰船结构时变可靠性的分析方法。根据舰船在服役期间的载荷环境特点,采用断裂力学及一般腐蚀原理,研究了在疲劳和腐蚀作用下总纵强度随时间的变化规律,基于随机过程理论,建立了船体梁截面模量的随机时变模型。然后应用上穿率分析,结合并联系统的可靠性分析方法对舰船结构的时变可靠性进行了分析计算。这种分析方法既能反映疲劳和腐蚀因素导致的船体梁结构可靠性随时间的连续变化情况,又避免了繁琐的数值积分,简单可行。通过算例与年度瞬时可靠性进行比较,表明该方法能更精确地预测在役舰船的时变可靠度,从而为服役舰船的可靠性、维修性、保障性决策提供参考。
     当船舶在航行期间遭遇恶劣海况时,将产生严重的砰击现象。砰击诱导的动态载荷效应具有同低频波浪载荷效应相当的数值,它会导致船舶整体颤振和局部损伤。基于随机过程理论,建立了船体梁在砰击、波浪及静水载荷联合作用下功能函数的随机过程模型,考虑波浪载荷和砰击载荷幅值的相关性,采用上穿率及并联系统可靠性分析方法求解此随机过程的可靠性。通过算例分析了舰船结构的阻尼率、砰击率及相关系数对可靠性的影响,并计算了舰船结构各种可能的失效模式及相应的可靠性。分析表明,结构的阻尼率对砰击载荷作用下的结构可靠性起着决定性的的影响,即阻尼率较小时,砰击载荷对结构的可靠性影响很大,且舰船结构的受压屈曲破坏是结构的主要失效模式。
     舰船甲板结构的动力屈曲是在砰击、波浪等载荷联合作用下引起的,其舯部一旦发生屈曲破坏,随后的载荷将引起屈曲变形在船舯部位的增长进而引起整个船体梁失效。因此,研究舰船甲板的可靠性具有重要意义。考虑舰船甲板受压屈曲破坏的三种主要失效模式,采用随机过程理论和并联系统可靠性分析方法对其进行分析计算,发现甲板结构的侧屈失效是最易发生的。虽然这只是局部的破损,但也会降低舰船整体结构的强度,可能导致在下次恶劣海浪中发生整体破坏。因此,适当加强舰船舯部的加筋或对已屈曲加筋及时加固,可有效地提高甲板整体结构的可靠性,为舰船的可靠性、维修性、保障性提供参考。
     舰船整体失稳即舰船倾覆是造成人员及财产重大损失的严重事件,历来受到造船界与航运界的极大重视。舰船倾覆因涉及到舰船外载荷的随机性和大幅度横摇的强非线性而使问题十分复杂。波浪载荷和风载荷都具有随机性,这就导致舰船倾覆是具有一定概率的随机事件。确定该随机事件的发生概率,对工程实际具有一定的参考价值。
     以路径积分法为基础,采用Gauss-Legendre公式探讨了随机风浪作用下舰船的运动及其倾覆概率计算。考虑阻尼力矩、复原力矩的非线性及风浪的随机性,建立了随机风浪中舰船运动的非线性微分方程,应用路径积分法给出白噪声随机扰动和定常风倾力矩作用时横摇角概率密度函数随时间的演变,按照现有的倾覆准则给出舰船整体失稳即倾覆概率的表达式。通过算例,验证了路径积分法的准确性,分析了各个参数对横摇角概率密度的影响,计算得出了不同风速、不同航速下的倾覆概率,以及倾覆概率随时间的变化。研究表明,此方法简便可行,并能在数量上预报舰船在随机风浪下的倾覆概率。
The environmental loads and the damage of ship structure included corrosion and fatigue fractures were the primary factors of the ship strength problem. In this case, the time variability of the loads was considered, so was the degradation of the ship strength. Namely, compared with the traditional method which adopted the extremum theory, the method presented in this paper considered the factor of time, so the corresponding reliability analysis was the time-dependant reliability analysis for ship structure based on random theory. Recently, many scholars have paid much attention to the study of time-dependant reliability of ship.
     Generally, the fatigue and corrosion would inevitably happen to the ship due to the repeat effect of environment and wave loads, which would be all over the ship life. Based on above instance, the ship strength would change with time, so it must be treated as a random process. The expanding of fatigue crack and the reducing of component thickness would induced the decreasing of effective section module, finally the vertical bending strength reduced, which would have impact on the time-dependant reliability.
     A method for time-dependent reliability assessment of the strength of a degraded ship hull girder in the presence of fatigue and corrosion was developed. According to the characteristics of loading environment for existing ship structures, the variation of strength with time due to fatigue and corrosion was studied by applying fracture mechanics and general corrosion theory, then the time-variant model of ship hull modulus was formulated using the random process theory. The time-dependent reliability of ship was analyzed with up-crossing analysis and the reliability method of parallel system. This analysis can not only exhibit continuous decrease of reliability of the ship under fatigue and corrosion but also avoid numerical integration, which was easy to compute. Furthermore, the time-dependent reliability and annual instantaneous reliability was compared through an example, which indicates the time-dependent reliability of ship structures could be predicted using the proposed method in a more reliable way, and it could provide some references to the decision of the reliability, maintenance and safeguard.
     When the atrocious sea happened in the sailing period of ship, the serious slamming would happen. And the slamming induced dynamic loads effect was equal to the effect of low wave loads, which would induced the whole flutter failure and local damage of ship. Based on the random process theory, the random process model of performance function of the ship hull girder subjected to slamming, wave-induced and stillwater loads was set up. According to the real condition, the correlation of the peak value of slamming and wave-induced load was considered. The reliability analysis was done by means of up-crossing analysis and parallel system reliability method. Finally, the influences of damping ratio, slamming rate and coefficient of correlation on the reliability were analyzed, and the reliability of all failure modes were also calculated. It was indicated that the damping ratio dominated the influence of slamming load on the reliability. Namely, when the damping ratio was little, the influence was great. The results also show the buckling failure was the primary one.
     The buckling of ship deck structure was induced by the combined of slamming and wave loads, once the middle section was destroy, then the ship hull girder would be failure when it subjected to the loads. So the reliability analysis of the ship deck subjected to slamming load was significant to the design of ship. Considering the three primary buckling failure modes of ship deck, the reliability was studied by the random process theory and parallel system reliability method. The result showed that the stiffener tripping failure was the most dangerous, although it was partial destroy, which would reduced the ship strength and happened the whole failure at the next serious sea. Thereby, reinforcing the stiffeners of middle ship or strengthening the buckled stiffeners properly would be enhancing the reliability of whole ship deck, which can provide some references to the ship design.
     The unstable of the whole ship, i.e., the capsizing of ship was the serious incident which made greatly losing of personnel and wealth, so more attention was paid on by shipbuilding circle and sailing circle. The ship capsizing study included the random of the loads and the nonlinear of great range rolling, which was complicated. Because of the random of the wave and wind load, the capsizing was a random event. The determination of this event probability could provide references to the engineering.
     The path integration method, based on Gauss-Legendre integration scheme, was applied to the motion of ship subjected to random wind and beam seas. Considering the nonlinear damping moment, restoring moment and random wind and seas, the nonlinear differential equation for ship's rolling motion was established. The rolling angle probability density was analyzed using the path integration method, when the ship was subjected to white noise disturb and a stationary wind moment, then capsizing probability was also calculated according to the presented rules. The presented method was capable of producing accurate results, which could be proved through the example. At the same time, the influence of each parameter on the probability density was analyzed. Furthermore, the capsizing probability at different velocity of wind and sailing was calculated, and the probability with time was also computed. It could be seen that this method was easy to achieve. Thus the rolling capsizing probability of warship in random wind and beam seas could be predicted quantitatively by the proposed method.
引文
[1]刘西拉.结构工程学科的现状与展望.北京:人民交通出版社,1997:125-127页
    [2]Dan M F,Liu M.Maintenance and management of civil infrastructure based on condition,safety,optimization,and life-cycle cost.In:Cheung M S,Chang C C ed.Proc.of The International Workshop on Integrated Life-cycle Management of Infrastructures.Hong Kong:Hong Kong University of Science and Technology,2004:26-34P
    [3]Wood J G M,Crerar J.Tay Road Bridge:Analysis of Chloride Ingress Variability & Prediction of Long Term Deterioration.Construction and Building Materials.1997,11(4):249-254P
    [4]Martin Perez B,Zibara H,Hooton R D,et al.A Study of the Effect of Chloride Binding on Service Life Predictions.Cement and Concrete Research.2000,30(8):1215-1223P
    [5]Khor E H,Rosowsky D V,Stewart M G.Probabilistic analysis of time-dependent deflections of RC flexural members.Computers and Structures.2001,79:1461-1472P
    [6]帏光东,卢天帮,管昌生.钢筋混凝土结构随机时变强度和刚度的模型及结构抗力分析.武汉理工大学学报(交通科学与工程版).2001,25(1):56-59页
    [7]李桂青,李秋胜.工程结构时变可靠度理论及其应用.北京:科学出版社,2001:135-190页
    [8]管昌生,江智鹏.钢筋混凝土结构耐久性预测的时变可靠度方法.武汉理工大学学报.2003,25(6):31-35页
    [9]王光远.论时变结构力学.土木工程学报.2000,33(6):105-108页
    [10]张俊芝,李桂清.界限为随机过程的工程结构时变动力可靠度.工业建筑.2001,31(10):24-27页
    [11]谭文辉,裴永刚.边坡稳定性分析中的时变可靠性问题.有色金属(矿山部分).2004,56(6):32-34页
    [12]李刚,张大勇,岳前进.冰区海洋平台的时变疲劳可靠性分析.计算力学学报.2006,23(5):513-517页
    [13]索清辉,钱永久,段敬民.工程结构时变失效概率分析.中国铁道科学.2005,26(2):69-72页
    [14]石少卿,姜节胜.基于马尔可夫链的系统时变可靠性分析.机械强度.1998,20(3):189-192页
    [15]孙海虹,肖桃云,张圣坤.考虑腐蚀影响的船体梁极限承载能力时变可靠性分析.中国造船.2000,41(2):49-57页
    [16]唐利民,肖熙.结构强度随时间变化的平台结构可靠性分析.上海交通大学学报.1996,30(10),15-27页
    [17]秦圣平,崔维成,沈凯.船舶结构时变可靠性分析的一种非线性腐蚀模型.船舶力学.2003,7(1):94-103页
    [18]黄文波,张圣坤.船体时变可靠性分析.上海交通大学学报.2003,37(8):1151-1154页
    [19]寇雄,李亚,张晖.疲劳和腐蚀损伤下船体的瞬时与时变可靠性分析.中国海洋平台.2006,21(2):11-16页
    [20]Breitung K.Asymptotic approximations for the outcrossing rates of stationary vector processes.Stochast Process Appl.1988,13:195-207P
    [21]Schall G,Faber M H,Rackwitz R.The ergodicity assumption for sea states in the reliability estimation of offshore structures.J Offshore Mech Arctic Engng.1991,113:53-60P
    [22]Engelung S,Rackwitz R,Lange C.Approximations of first passage times for differentiable processes based on higher order threshold crossings.Probab Engng Mech. 1995, 10(1): 53-60P
    
    [23] Rackwitz R. Computational techniques in stationary and nonstationary load combination-a review and some extensions. J Struct Engng. 1998, 25(1):1-20P
    [24] Hagen O, Tvedt L. Vector process out-crossing as parallel system sensitivity measure. Journal of engineering mechanics. 1991, 117(10): 2201-2220P
    [25] Li C C, Der Kiureghian A. In: Cooke R, Mendel M, Vrijling H, editors. Mean out crossing of nonlinear response to stochastic input. Engineering probabilistic design and maintenance for flood protection. Dordrecht, The Netherland: Kluwer Academic Publishers, 1997, 173-176P
    [26] Vijalapura P, Cone J, Meghella M. In: Melchers R, Stewart M, editors.Time-variant reliability analysis of hysteretics SDOF systems with uncertain parameters and subjected to stochastic loading, ICASP8, Amsterdam:Balkema, 2000(1): 827-834P
    [27] Rina Derbyshire. The research, assessment and survey, the Naval Architect.The Royal Institution of Naval Architects. 1996: 44-48P
    [28] Melchers R E. Probabilistic modeling of marine immersion corrosion. In:Shiraishi N, Shinozuka M, Wen YK, editors. Structural safety and reliability.Rotterdam: Balkema, 1998(3): 1143-1149P
    
    [29] Melchers R E. Modeling of marine corrosion of steel specimens, corrosion testing in natural waters. In: Kain RM, Young WT, editors. Philadelphia:ASTM STP 1300,1997(3): 20-33P
    [30] Melchers R E. Corrosion uncertainty modeling for steel structures. J Construct Steel Res. 1999, 52(1): 3-20P
    
    [31] Melchers R E. Factors influencing the immersion corrosion of steels in marine waters. Proceedings of the 14th International Corrosion Congress,Cape Town, South Africa, September 1999, 98P
    [32] Gardiner C P, Melchers R E. Enclosed atmospheric corrosion in an unloaded bulk carrier cargo hold. Proceedings of the Corrosion and Prevention 99,Australasian Corrosion Association, Manly, Australia, 1999: 45P
    [33] Gardiner C P, Melchers R E. Corrosion analysis of bulk carriers, Part I:operational parameters influencing corrosion rates. Marine structures. 2003,16: 547-566P
    [34] Paik J K, Kim S K, Lee S K. Probabilistic corrosion rate estimation model for longitudinal strength members of bulk carriers. Ocean Eng. 1998, 25(10):837-860P
    [35] Paik J K, Thayamballi A K, Park Y I, Hwang J S. A time-dependent corrosion wastage model for bulk carrier structures. Int J Mari Eng. 2003, 145(4):61-88P
    [36] Paik J K, Hwang J S, park Y I. A time-variant corrosion model for the structures of single-and double hull tankers and FSOs and FPSOs. Mar Technol. 2003, 40(3): 201-217P
    [37] Soares C G, Garbatov Y. Reliability of mainiained, corrosion protected Plates subjected to nonlinear corrosion and compressive loads. Mar Struct. 1999,52: 93-115P
    [38] Qin S, Cui W. Effect of corrosion models on the time-dependent reliability of steel plated elements. Mar Struct. 2003, 16: 15-34P
    [39] Sun H H, Bai Y. Time-variant reliability assessment of FPSO hull girders. Marine Structures. 2003, 16: 219-253P
    [40] Jordan C R, Cochran C S. In-service performance of structural details.SSC-272, 1978
    [41] Jordan C R, Cochran C S. Further survey of in-service performance of structural details. SSC-294, 1980
    [42] Munse W H. Fatigue criteria for ship structure details. Presented at the SNAME meeting on Extreme Loads Response Symposium,Arlington,VA,Oct.19-20,1981:231-247P
    [43]Chen Y K et al.Validation of fatigue life prediction using containership hatch-corner strain measurements.SNAME Trans.1986,94:255-282P
    [44]Clarke J D.Prediction of fatigue cracking in warship hulls.PRADS'87,Trondheim,Norway,1987:718-728P
    [45]Clarke J D.Fatigue crack initiation and Propagation in warship hulls.In Smith C & Dow RS(eds),Advances in Marine Structures,Elsevier Science Publishers Ltd,1991:42-60P
    [46]Wirsching P H,Chen Y N.Consideration of Probability-based fatigue design for marine structures.Marine Structures.1988,1:23-45P
    [47]崔维成等.船舶结构疲劳校核研究现状及我国进展.船舶力学.1998,2(4):63-81页
    [48]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析.人民交通出版社出版,1996:1-5页
    [49]崔维成.用ISPUD程序来计算船舶结构的疲劳可靠性.船舶及工程结构疲劳断裂论文集.1993:175-178页
    [50]Cui W C.Deterministic fatigue strength assessment models for ship structures.Selected of the CSNAME,Supplement of Ship building of China,1995(10):81-90P
    [51]中国船级社.船体结构疲劳强度指南.人民交通出版社出版,2001
    [52]Garbatov Y,Rudan S,Soares C G.Fatigue damage of structural joints accounting for nonlinear corrosion.Journal of Ship Research.2002,46(4):289-298P
    [53]AkPan U,et al.Risk assessment of aging ship hull structures in the presence of corrosion and fatigue.Marine structures.2002,15:211-231P
    [54]陶智祥,戴仰山.外张砰击载荷.中国造船.1991,3:43-51页
    [55]Suhara T.Bow flare damage of large full ships due to wave impact.ISP.1976,23:156-170P
    [56]Tasai F.A study on the seakeeping qualities of full ships.Reports of Research Institute for Applied Mechanics.1968(1):55P
    [57]Ochi M.K.Prediction of Occurrence and Severity of ship slamming at sea.Fifth Symposium on naval Hydrodynamics.Office of Naval Research.ACR 112.1964
    [58]Hamoudi B,Varynai K S.Significant load and green water on deck of offshore unite/vessels.Ocean Engineering.1998,8:715-732P
    [59]He W,Dai Y,Xie N,Gao H.Statistical evaluation of green water occurrence.Selected paper of the Chinese.SNAME.1996
    [60]Rules for building and classing steel vessels.American bureau of shipping &affiliated companies.1997
    [61]钢制海船入级规范.挪威船级社.1998.1
    [62]船舶入级规范和规则.劳氏船级社上海代表处.1999.7
    [63]钢制海船入级与建造规范.中国船级社.1998
    [64]船舶结构强度直接计算法.中国船级社.1998.2
    [65]Froude W.On the roiling of ship.Trans.INA.1961,2
    [66]Kriloff A.A new theory of the pitching motions of ships on wave and of the stresses produced by this motion.Trans.INA.1996,37
    [67]Ursell F.On the heaving of a circular cylinder on the surface of a fluid.Quarterly Journal of Mechanics and Applied Mathematics.1949,2
    [68]Haskind M D.The hydrodynamic theory of ship oscillations in rolling and pitching.Engl.Transl.Tech.Res.Bull.No.1-12.1953:3-43P
    [69]Haskind M D.The oscillation of a ship in still water.Engl.Transl.Tech.Res.Bull.No.1-12.1953:45-60P
    [70]Korvin-Kroukovsky B V.Investigation of ship motions in regular waves. Trans.SNAME.1955,63:386-418P,429-435P
    [71]Korvin-Kroukovsky B V,Jacob W R.Pitching and heaving motions of a ship in regular waves.Trans.SNAME.1957,65
    [72]Block J J,Beukelman W.The high speed displacement ship systematic series of hull forms.Trans.SNAME.1984,92:125-150P
    [73]#12
    [74]Ogilvie T F,Tuck E O.A rational strip theory of ship motions.The Univ.of Michigan.Report No.013.1969
    [75]Salvesen N,Tuck E O,Faltinsen O.Ship motions and sea loads.Trans.SNAME.1970,78:250-287P
    [76]Faulkner D,Sadden J A.Toward a unified approach to ship structural safety.Trans.RINA.1979,121
    [77]桑国光,龚恢.船体梁抗弯能力计算.中国造船.1984,1:65-75页
    [78]桑国光.利用Monte-Carlo法计算船体梁的承载能力.船舶结构力学论文集.1980
    [79]任慧龙.非线形波浪载荷与船体极限强度.博士学位论文.哈尔滨工程大学.1990
    [80]Ochi M K,Motter L E.Prediction of slamming characteristics and hull response for ship design.SNAME.1973,81:144-176P
    [81]Ferro G,Mansour A E.Probabilistic analysis of the combined slamming and wave-induced responses.Journal of ship research.1985,29(3):170-188P
    [82]Jiao Guoyang.Probabilistic prediction of extreme stress and fatigue damage for ships in slamming conditions.Marine structures.1996,9:759-783P
    [83]黄文波,张圣坤.基于波浪和砰击诱导应力幅值相关性的随机组合.上海交通大学学报.2003,37(7):969-972页
    [84]Mansour A E,Wirsching P H.Sensitivity factors and their application to marine structures.Marine structures.1995,8:229-255P
    [85]Chen N Z,Soares C G.Reliability assessment for ultimate longitudinal strength of ship hulls in composite materials.Probabilistic engineering mechanics,probengmech.2007.05.001
    [86]Heller S R,Kammerer J T.Buckling of long slender ships due to wave-induced whipping in dynamic stability of structures.New York:Pergam Press,1966:129-156P
    [87]Akita Y.Reliability analysis of ship strength(4th report)-Ultimate longitudinal strength due to successive collapse of deck plates having initial deflection.J.Soc Naval Arch.Japan,1985,158:301-309P
    [88]张清杰,李世其,郑际加.轴向砰击杆的动力响应与屈曲.中国造船.1990,3:64-74页
    [89]李世其,张清杰,郑际加.矩形薄板流-固冲击屈曲与塑性失效的实验研究.力学学报.1993,25(2):249-255页
    [90]顾王明,唐文勇,陈铁云等.结构流-固冲击屈曲研究进展.力学进展.1996,26(1):56-67页
    [91]林吉如,沈进威,陈瑞章等.波浪砰击载荷.舰船力学情报.1994,1:52-63页
    [92]Cargo A,Franecscutto A,Nabergoj R.Utraharmonics and subharmonics in rolling motion of a ship:steady-state solution.ISP.1981,326(28):234-251P
    [93]Cargo A,Francescutto A,Nabergoj R.Subharmonics oscillation in nonlinear rolling.Ocean Engng.1984,11:663-669P
    [94]Nayfeh A H,Khdeir A A.Nonlinear rolling of ships in regular beam seas.ISP.1986,379(33):40-49P
    [95]Nayfeh A H,Oh I G.Nonlinear coupled pitch and roll motions in the presence of internal resonance:part Ⅰ,theory.ISP.1995,432(42):295-324P
    [96]Virgin L N.The nonlinear rolling response of a vessel including chaos motions leading to capsize in regular sea.Applied Ocean Research.1987,9(2):89-95P
    [97]Thompson J M T.Designing against capsize in beam seas:recent advances and new insight.Applied Mechanics Rev.1997,50:307-325P
    [98]沈栋,黄祥鹿.随机波浪作用下的船舶倾覆.船舶力学.1999,3(5):7-14页
    [99]纪刚,张纬康.船舶横摇的安全池研究.中国造船.2002,43(4):25-31页
    [100]Nayfeh A H,Sanchex N E.Stability and complicated rolling responses of ship in regular beam seas.ISP.1990,410(37):177-198P
    [101]董艳秋,纪凯,黄衍顺.纵浪上船舶的动稳性研究.中国造船.1998,4:1-6页
    [102]Rainey R C T,Thompson J M T.The transient capsize diagram-a new method of qualifying stability in wave.JSR.1991,35(1):58-62P
    [103]Taylan M.The effect of nonlinear damping and restoring in ship rolling.Ocean Engineering.2000,27(9):921-932P
    [104]Vassilopoulos L A.Ship rolling at zero speed in random beam seas.JSR.1971,15:189-294P
    [105]Roberts J B.A stochastic theory for nonlinear ship rolling in irregular seas.JSR.1982,26(4):229-245P
    [106]沈栋,黄祥鹿.随机波浪作用下船舶倾覆前持续时间的研究.中国造船.2000,3:14-22页
    [107]Roberts J B,Vasta M.Markov modeling and stochastic identification for nonlinear ship rolling in random waves.Phil Trans R Soc Lond.2000,358:1917-1941P
    [108]Changben Jiang,Armin W T,Steven W S.Highly nonlinear rolling motion of biased ships in random beam seas.Journal of ship research.1996,40(2): 125-135P
    [109]李远林.风暴中船舶安全池破损问题.中国造船.2004,45(1):14-19页
    [110]袁远,余音,金咸定.船舶在随机横浪中的奇异倾覆机理.船舶力学.2004,8(1):44-50页
    [111]黄祥鹿,朱新颖.应用路径积分法解船舶倾覆概率问题.船舶力学.2001,5(4):7-16页
    [112]何建.大型非对称浮体结构整体破坏分析.哈尔滨工程大学博士学位论文.2005
    [113]Wen Y K,Chen H C.On fast integration for time variant structural reliability.Probabilistic Engineering Mechanics.1987,2(3):156-162P
    [114]Hohenbichler M,Rackwitz R.Nonnormal dependent vectors in structural reliability.Journal of Engineering Mechanics Division,ASCE.1981,107:1227-1238P
    [115]Madsen H O,Krenk S,Lind N C.Methods of structural safety.Prentice-Hall,Englewood Cliffs,N.J.
    [116]Breitung K.Asymptotic approximations for the cross rate of stationary Gaussian vector process.Repor 1984-1.Dept.of Math.Statistic,Univ.of Lund,Lund,Sweden,1984
    [117]Pearce H T,Wen Y K.On linearization points for nonlinear combination of stochastic load processes.Structural safety.1985,2(2):169-176P
    [118]Ditlevsen O.On the choice of expansion point in FORM or SORM.Structural safety.1987,4(4):243-245P
    [119]Bjerager P,Krenk S.Sensitivity measures in structural reliability analysis.Proc.First IFIP Working Conf.on Reliability and Optimization of Structural Systems.P.Thoft-Christensen,ed.,International Federation for Information Processing.1987,459-470P
    [120] Grigoriu M. Crossing of non-Gaussian translation processes. Journal of engineering mechanics, ASCE. 1984, 110(4): 610-620P
    [121] Ditlevsen O. Structural reliability and the invariance problem. Research Report No. 22, Solid Mech. Div., Univ. of Waterloo, Waterloo, Canada,1973
    [122] Hasofer A M. The upcrossing rate of a class of stochastic processes. Studies in probability and statistics, E J Williams, ed., Jerusalem Academic Press, Jerusalm, Israel, 1974, 153-170P
    [123] Veneziano D, Grigoriu M, Cornell C A. Vector-process models for system reliability. Journal of Engineering Mechanics Div, ASCE. 1977, 103(3):441-460P
    [124] Plantec J Y, Rackwiz, R. Structural reliability under nonstationary Gaussian vector process loads. Proc. Eighth Int. Conf. on Offshore Mechanics and Arctic Engineering, The Hague 1989
    [125] Ditlevsen O. Gaussian outcrossings from safe convex polyhedrons. Journal of Engineering Mechanics. 1983, 109(1): 127-148P
    [126] Winterstein S. Non-normal responses and fatigue damage. Journal of Engineering Mechanics. 1985, 111(10): 1291-1295P
    [127] Winterstein S. Nonlinear vibration models for extremes and fatigue. Journal of Engineering Mechanics. 1988, 114: 1772-1790P
    [128] Shinozuka M. Probability of failure under random loading. Journal of Engineering Mechanics Division. 1964, 90(5): 147-171P
    [129] Wehner M F, Wolfer W G. Numerical evaluation of path-integral solution to Fokker-Planck equation. PhyRev(A). 1983, 27(5): 2663-2670P
    [130] Naess A, Johnsen J M. Response statistics of nonlinear, compliant offshore structures by the path integral solution method. Probabilistic Engineering Mechanics. 1993, 8: 91-106P
    [131] Yu J S, Cai G Q, Lin Y K. A new path integration procedure based on Gauss-Legendre scheme. International Journal of Non-Linear Mechanics.1997, 32(4): 759-768P
    [132] Naess A, Johnsen J M. Efficient path integration for nonlinear dynamic systems. Probabilistic Engineering Mechanics. 2000, 15: 221 -231P
    [133] Yu J S, Lin Y K. Numerical path integration of a non-homogeneous Markov process . International Journal of Non-Linear Mechanics. 2004 , 39 :1493-1500P
    [134] Mansour A E. An introduction to structural reliability theory. Ship Structure Committee, Report No.SSC-361, 1990
    [135] Fukuda J. Long-term predition of wave bending moment, Part II.J.Soc.Naval Arch of Japan. 1996, 120; 1968, 123
    [136] Hoffman D, Lewis E. Analysis and interpretation of full scale data on midship bending stress of dry ships. Ship Structure Committee, Report SSG196, June 1969
    [137] Soares C G, Moan T. Statistical analysis of still water load effects in ship structure. SNAME. 1988, 96: 129-156P
    [138] Soares C G, Dias. Probabilistic models of still water load effects in containers. Marine Struct. 1996, 9(3/4): 287-312P
    [139] Lewis E V, et al. Load criteria for ship structural design. Report No.SSC-224, Ship Structure Committee, Washington, DC, USA, 1973
    [140] Ivanov L, Madjarov H. The statistical estimation of SWBM(still water bending moment)for Cargo Ships. Shipping World Shipbuilder, 1975, 168:759-762P
    [141] Kaplan M, Benatar M, Bentson J et al. Analysis and assessment of major uncertainties associated with ship hull ultimate failure. Report No.SSC-322,Ship Structure Committee, Washington, DC, USA, 1984
    [142]Mansour A E.Reliability of Marine Structures,Draft Final Report,Contract No.DTCG23-86-C-20054.University of California,Berkeley,1986:8-86P
    [143]Moan T,Jiao G.Characteristic still-water load effects for Production ships.Report MK/R 104/88,The Norwegian Institute of Technology,Trondheim,Norway,1988
    [144]DNV,Hull structural design ships with length 100 metres and above,Rules for classification of ships.Part 3 Chapter 1,Det norske Veritas,Norway,1994
    [145]Gerritsma J,Beukelman W.The distribution of the hydrodynamic force on a heaving and pitching ship model in still water.Fifth Symposium on Naval Hydrodynamics.1964:219-251P
    [146]Standard wave data Proposal of recommendation.IACS WP/S Meeting,1991
    [147]Frieze P A,et al.Applied design.Report of Committee,in 11th Int.ship &of shore Structures Congress,China,1991
    [148]Soares C G,Ivanov L D.Time-dependent reliability of the Primary ship structure.Marine structures.1989,26:59-71P
    [149]Wang X Z,Moan T.Stochastic and Deterministic Combinations of Still Water and Wave Bending Moments in Ships.Marine structures.1996,9:787-810P
    [150]Turkstra C J.Theory structural design decisions.Solid Mechanics Study.No.2,University of Waterloo,Ontario,Canada,1972
    [151]孙海虹,肖桃云,吴秀恒.船舶静水弯矩和波浪弯矩组合因子的计算和分析.武汉交通科技大学学报.1998,22(6):588-592页
    [152]Munse W H,Wilber T W,Tellalian M L,et al.Fatigue characterization of fabricated ship details for design.SSC-318,1983
    [153]Guedes Soares C,Moan T.Model uncertainty in the long-term distribution of wave-induced bending moments for fatigue design of ship structures.Marine Structures.1991,4:295-315P
    [154]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析.人民交通出版社出版,1996:136-145页
    [155]王然章,彭文科,詹志鸽等.采用简化方法的船体结构疲劳强度校核.中国造船.1999,5:59-68页
    [156]Maddox S J.Fatigue crack propagation data obtained from parent plate,weld metal and HAZ im structural steels.Welding Research International.1974,4(1):36-60P
    [157]Shi W B.In-service Assessment of Ship Structure:Effects of General Corrosion on Ultimate Strength,Trans.RINA.1993,135:77-91P
    [158]Paik J K.Hull collapse of an aging bulk carrier under combined longitudinal bending and shearing force.Trans.RINA.1994,136:217-228P
    [159]Paik J K,et al.Ship Hull Ultimate Strength Reliability Considering Corrosion.Journal of Ship Research.1998,45:154-165P
    [160]Soares C G,Garbatov Y.Reliability of maintained ship hull subjected to corrosion.Journal of Ship Research.1996,40:235-243P
    [161]黄震球.船舶强度研究中的几个问题.武汉造船.1999,3:1-4页
    [162]Szebeheley V G,Todd M.A Ship slamming in head seas.David Taylor Model Basin Report 913,1955
    [163]Tick L J.Probability associated with bow submergence and ship slamming in irregular seas.Journal of ship research.1958,2(6):30-36P
    [164]Nikolaidis E,Kaplan P.Combination of slamming and wave induced motion:A simulation study.International conference on Offshore Mechanics and Arctic Engineering,OMAE-1992:351-358P
    [165]Mansour A E,Lozow J.Stochastic theory of the slamming response of marine vehicle in random seas.Journal of ship research.1982,26(4): 276-285P
    [166]Cramer E H,Hansen P F.Stochastic modelling of long term wave induced responses of ship structures.Marine structures.1994,70:537-566P
    [167]Rice S O.Mathematical analysis of random noise.Bell System Tech.J.1944a,23,282-332P
    [168]Rice S O.Mathematical analysis of random noise.Bell System Tech.J.1944b,24,146-156P
    [169]Vanmarcke E H.On the distribution of the first-passage time for normal stationary random processes.Journal of applied mechanics.1975,3:215-220P
    [170]Cramer H,Leadbeter M R.Stationary and related stochastic processes.New York,Wiley,1967
    [171]Ditlevsen O,Lindgren G.Empty envelope excursions in stationary Gaussian processes.Journal of sound and vibration.1988,122(3):571-587P
    [172]何水清,王善.结构可靠性分析与设计.北京:国防工业出版社,1993:60-78页
    [173]Mansour A E,Hovem L.Probability-based ship structural safety analysis.Journal of ship research.1994,38(4):329-339P
    [174]张相庭.结构风压和风振计算.同济大学出版社,1985:34-35页
    [175]Davenport A G.The spectrum of horizontal gustiness near the ground in high winds.J Royal Meteorol Soc.1961,87:194-211P
    [176]汤忠谷,韩久瑞.海船风压试验研究.中国造船.1981,2:31-38页
    [177]李积德.船舶耐波性.哈尔滨船舶工程学院出版社,1992:74-75页
    [178]黄祥鹿,范菊.船舶与海洋结构运动的随机理论.北京航空航天大学出版社,2005:15-16,24-29页
    [179]Vadim L,Belenky.Probabilistic qualities of nonlinear stochastic rolling.Ocean Engng.1998,25(1):1-25P
    [180]Feng G F,Wang B,Lu Y F.Path integral,functional method,and stochastic dynamical systems.Probabilistic Engineering Mechanics.1992,7:149-157P
    [181]Sun J Q,Hsu C S.The generalized cell mapping method in nonlinear random vibration based upon short-time Gaussian approximation.Journal of applied mechanics.1990,57:1018-1025P
    [182]方同.工程随机振动.北京:国防工业出版社,1995:330-337页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700