新型有机聚合物毛细管整体柱的制备及其电色谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机聚合物整体柱由于其简单的合成步骤,可靠的色谱性能,广泛可供选择的基质和单体,方便控制表面化学性质和电渗流方向,而且pH值应用范围宽,生物兼容性好等特点,是毛细管电色谱(CEC)发展领域里的一个重要课题。目前整体柱主要应用于反相毛细管电色谱模式,但对于极性、强极性化合物和碱性物质的分离仍是需要解决的难题。本文制备了多种新型的有机聚合物毛细管电色谱整体柱,系统阐述了它们各自的分离机理,为极性化合物和碱性物质的分离提供了新的方法。
     在本论文中,主要包括以下内容:
     1.针对极性化合物分离困难的问题,制备了一种新型的极性有机聚合物整体柱,首次应用于亲水作用毛细管电色谱(HI-CEC)模式。该整体柱含有丰富的极性基团,在高乙腈比例条件下以亲水作用模式成功分离了极性的中性和带电化合物。详细讨论了极性化合物在该整体柱上的分离机理,对于极性的带电化合物,其分离机理主要以亲水作用为主,同时还有静电相斥作用和电泳作用的影响;而对于中性化合物,亲水作用则是其主要的保留机理。
     2.通过热共聚合带羟基基团的甲基丙烯酸-2-羟基乙酯(HEMA)单体和季戊四醇三丙烯酸酯(PETA)交联剂,首次制备了一种新型极性的中性聚甲基丙烯酸酯类整体柱,制得的整体柱固定相包含丰富的极性基团,可以产生较强的电渗流,并应用作为HI-CEC固定相。由于该固定相表面不带电,避免了与碱性物质之间的静电吸附,从而有效地分离核苷和碱基,并且没有峰拖尾现象,分离机理是一种典型的HI保留机理,柱效达140000plates/m。该研究有效地解决了极性和碱性物质的分离问题。
     3.一步原位聚合3-[N,N-二甲基-[2-(2-甲基丙-2-烯酰氧基)乙基]铵]丙烷-1-磺酸内盐(SPE)、乙烯基磺酸(VS)单体和PETA交联剂,制备了一种新型的基于sulfoalkylbetaine两性基质整体柱。在聚合反应液中引入带电单体VS,可以提供大且稳定的EOF,从而首次应用于CEC模式。中性和碱性的极性物质在整体柱上得到很好分离,且无峰拖尾现象。在加压毛细管电色谱模式下进行表征,对于中性物质硫脲的柱效达145000plates/m,碱性胞苷的柱效达132000plates/m。
     4.制备了一种新型的亲水作用和强阴离子交换混合模式整体柱。采用的含有丰富极性基团的SPE功能单体提供极性位点,季铵单体被用于产生电渗流和提供阴离子交换作用。详细讨论了极性化合物在该整体柱上的毛细管电色谱分离机理。有效地分离了苯酚类、苯甲酸衍生物、碱性的核苷和碱基、核苷酸等极性物质,并成功应用于结构相似多肽的分离。
     5.首次采用一步聚合的方法制备了基于苯乙烯基质的反相/强阴离子交换混合模式毛细管电色谱整体柱。研究表明,该整体柱采用N,N,N-三甲基乙烯基苯甲氯化铵为功能单体,能够产生稳定的电渗流并提供强阴离子交换位点。详细探讨了溶质与固定相之间可能的保留机理,有效分离了烷基苯同系物、环境雌激素、苯胺和氟喹诺酮类药物。
The polymer-based monoliths are highly favorable and widely adoptedattribute to some advantages such as chemical stability over the entire pH range,fast and simple preparation, flexible modification of the supports, and goodreproducibility. The polymerization mixture may also be prepared using a widevariety of monomers, allowing a nearly unlimited choice of both matrix andsurface chemistry. Thus far, the vast majority of CEC separations haveconcentrated mainly on the separation of non-polar and neutral analytes in areversed-phase (RP) mode. The separation of polar solutes and basic compoundsis still a difficult work in RP mode. To achieve highly efficient separation of polarsolutes and basic compounds, several capillary electrochromatography monolithswere prepared in this thesis. The separation mechanisms of these monoliths werealso discussed in detail. Main points of this thesis are listed as following:
     1. To separate the polar compounds, a hydrophilic interaction-capillaryelectrochromatography (HI-CEC) monolith was firstly prepared. The separationmechanism of the monolithic column was discussed in detail. It was found thatthe separation mechanism of charged solutes could be attributed to a mixedmode of HI and weak electrostatic interaction, as well as the effect ofelectrophoresis, while the separation of neutral solutes was based on thehydrophilic interaction at high ACN content.
     2. A polar and neutral polymethacrylate-based monolithic column wasprepared by in situ copolymerization of a neutral monomer2-hydroxyethylmethacrylate (HEMA) and a polar cross-linker pentaerythritol triacrylate(PETA). A typical HI-CEC mechanism was observed on the neutral stationary phase. The absence of fixed charges on the surface of the neutral monolithallowed the efficient separation of basic nucleic acid bases and nucleoside, andwith column efficiency greater than140000theoretical plates/m.
     3. A novel monolithic column with covalently bonded zwitterionicfunctional groups was prepared by in situ copolymerization ofN,N-dimethyl-N-methacryloxyethyl N-(3-sulfopropyl) ammonium betaine(SPE), vinylsulfonic acid (VS) and PETA. The VS enabled the production of anelectroosmotic flow (EOF), thus the monolith can be firstly used as a stationaryphase in CEC mode. The column efficiencies greater than145000theoreticalplates/m for thiourea and132000theoretical plates/m for cytidine wereobtained. The separation mechanism of charged polar solutes was attributed to amixed mode of HI and electrostatic interaction, as well as electrophoresis.
     4. A capillary electrochromatography monolith with mixed mode of HI andstrong anion-exchange was prepared. While SPE functioned as the polar ligandprovider,(3-acrylamidopropyl)trimethylammonium chloride (APTA) wasemployed to generate EOF. The APTA served at the same time as theanion-exchange sites of the monolith. Diverse series of neutral and ionicsamples, such as phenols, benzoic acid derivatives, basic nucleosides and bases,nucleotides and peptides were well separated on this monolith.
     5. A novel cationic polystyrene-based monolithic column was prepared by asingle polymerization step. Vinylbenzyl trimethyl ammonium chloride (VBTA),which was firstly used in CEC, provided an EOF under the wide pH range. Theacidic, neutral and basic analytes were successfully separated on the novelmonolithic column. The separation mechanism of charged solutes was attributedto a mixed mode of RP and strong anion-exchange, as well as electrophoresis.
引文
[1] Wanders, B. J., Van De Goor A. A. A. M., Everaerts, F. M., Methods for on-linedetermination and control of electroendosmosis in capillary electrochromatography andelectrophoresis. J. Chromatogr.1989,490,89-93.
    [2] Kiso, Y., Topics surrounding Zone Electrophoresis-Ionic Processes Though Matrics,Nankodo, Tokyo,1972(Chapter2).
    [3]邓延卓,何金兰,高效毛细管电泳.北京:科学出版社,2000. p24.
    [4] Ye, M., Zou, H., Ni, J., Separation of acidic compounds by strong anion-exchangecapillary electrochromatography, J.Chromatogr. A.2000,887,223-231.
    [5]王俊德,商振华,郁蕴璐,高效液相色谱法.北京,中国石化出版社,1992年, p12.
    [6]邹汉法,刘震,叶明亮,等.毛细管电色谱及其应用.北京,科学出版社,2001年,p75.
    [7] Wu, J., Huang, P., Li, M., et al. Protein Digest Analysis by Pressurized CapillaryElectrochromatography Using an Ion Trap Storage/Reflectron Time-of-Flight MassDetector. Anal. Chem.1997,69,2908-2913.
    [8] Knox, J. H, Grant, I. H. Miniaturization in pressure and electroendosmotically drivenliquid chromatography: some theoretical considerations. Chromatographia,1987,24,135-143.
    [9] Josic, D., Clifton, J. G., Use of monolithic supports in proteomics technology. J.Chromatogr. A2007,1144,2-13.
    [10] Nú ez, O., Nakanishi, K., Tanaka, N., Preparation of monolithic silica columns forhigh-performance liquid chromatography. J. Chromatogr. A2008,1191,231-252.
    [11] Buchmeiser, M. R., Polymeric monolithic materials: Syntheses, properties,functionalization and applications. Polymer2007,48,2187-2198.
    [12] Svec, F., CEC: Selected developments that caught my eye since the year2000,Electrophoresis2009,30, S68–S82.
    [13] Ou, J., Dong, J., Dong, X., et al. Recent progress in polar stationary phases for CEC.Electrophoresis2007,28,148-163.
    [14] Wu, R., Hu, L., Wang, F., et al. Recent development of monolithic stationary phases withemphasis on microscale chromatographic separation. J. Chromatogr. A2008,1184,369-392.
    [15] Smith, N. W., Jiang, Z., Developments in the use and fabrication of organic monolithicphases for use with high-performance liquid chromatography and capillaryelectrochromatography. J. Chromatogr. A2008,1184,416-440.
    [16] Guiochon, G., Monolithic columns in high-performance liquid chromatography. J.Chromatogr. A2007,1168,101-168.
    [17] Li, W., Fries, D. P., Malik, A., Sol–gel stationary phases for capillaryelectrochromatography. J. Chromatogr. A2004,1044,23-52.
    [18] Allen, D., El Rassi, Z., Silica-based monoliths for capillary electrochromatography:Methods of fabrication and their applications in analytical separations Electrophoresis2003,24,3962-3976.
    [19] Svec. F., Recent developments in the field of monolithic stationary phases for capillaryelectrochromatography J. Sep. Sci.2005,28,729–745.
    [20] Dong, X., Wu, R., Dong, J., et al. Recent progress of polar stationary phases in CEC andcapillary liquid chromatography. Electrophoresis2009,30,141–154.
    [21] Flook, K. J., Cameron, N. R., Wren, S. A. C., Polymerised bicontinuous microemulsionsas stationary phases for capillary electrochromatography: Effect of pore size onchromatographic performance. J. Chromatogr. A2004,1044,245-252.
    [22] Quigley, C. L., Marlin, N. D., Melin, V., et al. Advances in capillaryelectrochromatography and micro-high performance liquid chromatography monolithiccolumns for separation science. Electrophoresis2003,24,917–944.
    [23]袁瑞娟,王怀锋,刘丹宁,等.毛细管电色谱技术研究进展.化学进展,2006,18,1181-1187.
    [24]王霞,李永民,陈立仁,毛细管电色谱整体柱制备新进展.化学研究,2005,16,108-112.
    [25]谷雪,瞿其曙,阎超,毛细管电色谱柱及其固定相制备技术的进展,色谱,2007,25,157-162.
    [26]尤慧艳,平贵臣,张丽华,等.毛细管电色谱柱制备技术的进展.色谱,2005,23,464-469.
    [27]施治国,冯钰锜,达世禄,液相色谱和毛细管电色谱连续床固定相技术.分析科学学报,2003,19,270-276.
    [28] Fujimoto, C., Fujise, Y, Matsuzawa, E., Fritless packed columns for capillaryelectrochromatography: separation of uncharged compounds on hydrophobic hydrogels.Anal. Chem.1996,68,2753-2757.
    [29] Fujimoto, C., Kino, J., Sawada, H., Capillary electrochromatography of small moleculesin polyacrylamide gels with electroosmotic flow. J. Chromatogr. A1995,716,107-113.
    [30] Fujimoto, C., Charged polyacrylamide gels for capillary electrochromatographicseparations of uncharged, low molecular weight compounds. Anal. Chem.1995,67,2050-2053.
    [31] Mohammad, J., Zeerak, A., Hjertén, S., Dye-ligand affinity-chromatographyoncontinuous beds. Biomed. Chromatogr.1995,9,80-84.
    [32] Liao, J. L., Chen, N., Ericson, C., et al. Preparation of continuous beds derivatized withone-step alkyl and sulfonate groups for capillary electrochromatography. Anal. Chem.1996,68,3468-3472.
    [33] Palm, A., Novotny, M. V., Macroporous polyacrylamide poly(ethylene glycol) matrixesas stationary phases in capillary electrochromatography. Anal. Chem.1997,69,4499-4507.
    [34] Que, A. H., Palm, A., Baker, A. G., et al. Steroid profiles determined by capillaryelectrochromatography, laser-induced fluorescence detection and electrospray–massspectrometry. J. Chromatogr. A2000,887,379-391.
    [35] Que, A., Konse, T., Baker, A. D., et al. Analysis of Bile Acids and Their Conjugates byCapillary Electrochromatography/Electrospray Ion Trap Mass Spectrometry. Anal. Chem.2000,72,2703-2710.
    [36] Dong, J., Ou, J., Dong, X., et al. Preparation and evaluation of rigid porouspolyacrylamide-based strong cation-exchange monolithic columns for capillaryelectrochromatography. J. Sep. Sci.2007,30,2986-2992.
    [37] Unger, K. K., Huber, M., Walhagen, K., et al. A Critical Appraisal of CapillaryElectrochromatography. Anal. Chem.2002,74,200A-207A.
    [38] Alpert, A. J., Hydrophilic-interaction chromatography for the separation of peptides,nucleic acids and other polar compounds. J. Chromatogr.1990,499,177-196.
    [39] Que, A., Novotny, M. V., Separation of Neutral Saccharide Mixtures with CapillaryElectrochromatography Using Hydrophilic Monolithic Columns. Anal. Chem.2002,74,5184-5191.
    [40] Que, A. H., Mechref, Y., Huang, Y., et al. Coupling Capillary Electrochromatographywith Electrospray Fourier Transform Mass Spectrometry for Characterizing ComplexOligosaccharide Pools. Anal. Chem.2003,75,1684-1690.
    [41] Tegeler, T., Mechref, Y., Boraas, K., et al. Microdeposition Device Interfacing CapillaryElectrochromatography and Microcolumn Liquid Chromatography with Matrix-AssistedLaser Desorption/Ionization Mass Spectrometry. Anal. Chem.2004,76,6698-6706.
    [42] Gury a, V., Mechref, Y., Palm, A. K., et al. Porous polyacrylamide monoliths inhydrophilic interaction capillary electrochromatography of oligosaccharides. J. Biochem.Biophys. Methods2007,70,3-13.
    [43] Hoegger, D., Freitag, R., Acrylamide-based monoliths as robust stationary phases forcapillary electrochromatography. J. Chromatogr. A2001,914,211-222.
    [44] Viklund, C., Sjogren, A., Irgum, K., et al. Chromatographic interactions betweenproteins and sulfoalkylbetaine-based zwitterionic copolymers in fully aqueous low-saltbuffers. Anal. Chem.2001,73,444-452.
    [45] Hoegger, D., Freitag, R., Investigation of mixed-mode monolithic stationary phases forthe analysis of charged amino acids and peptides by capillary electrochromatography. J.Chromatogr. A2003,1004,195-208.
    [46] Wahl, A., Schnell, I., Pyell, U., Capillary electrochromatography with polymericcontinuous beds synthesized via free radical polymerization in aqueous media usingderivatized cyclodextrins as solubilizing agents. J. Chromatogr. A2004,1044,211-222.
    [47] Al-Rimawi, F., Pyell, U., The use of derivatized cyclodextrins as solubilizing agents inthe preparation of macroporous polymers employed as amphiphilic continuous beds incapillary electrochromatography. J. Sep. Sci.2006,29,2816-2826.
    [48] Svec, F., Tennikova, T. B., Deyl, Z., Monolithic Materials: Preparation, Properties, andApplications, Elsevier, Amsterdam (2003) p.173.
    [49] Svec, F., Huber, C. G., Monolithic materials: Promises, challenges, achievements. Anal.Chem.2006,78,2100-2107.
    [50] Tholey, A., Toll, H., Huber, C. G., Separation and Detection of Phosphorylated andNonphosphorylated Peptides in Liquid Chromatography Mass Spectrometry UsingMonolithic Columns and Acidic or Alkaline Mobile Phases. Anal. Chem.2005,77,4618-4625.
    [51] Toll, H., Wintringer, R., Schweiger-Hufnagel, U., et al. Comparing monolithic andmicroparticular capillary columns for the separation and analysis of peptide mixtures byliquid chromatography-mass spectrometry. J. Sep. Sci.2005,28,1666-1674.
    [52] H lzl, G., Oberacher, H., Pitsch, S., et al. Analysis of Biological and SyntheticRibonucleic Acids by Liquid Chromatography Mass Spectrometry Using MonolithicCapillary Columns. Anal. Chem.2005,77,673-680.
    [53] Walcher, W., Toll, H., Ingendoh, A., et al. Operational variables in high-performanceliquid chromatography–electrospray ionization mass spectrometry of peptides andproteins using poly(styrene–divinylbenzene) monoliths. J. Chromatogr. A2004,1053,107-117.
    [54] Svec, F., Csaba Horváth's contribution to the theory and practice of capillaryelectrochromatography. J. Sep. Sci.2004,27,1255-1272.
    [55] Xiong, B., Zhang, L., Zou, H., et al. Capillary electrochromatography with monolithicpoly(styrene-co-divinylbenzene-co-methacrylic acid) as the stationary phase. J. High.Resol. Chromatogr.2000,23,67-72.
    [56] Jin, W., Fu, H., Zou, H., et al. Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillaryelectrochromatography. Electrophoresis2003,24,3172-3180.
    [57] Gusev, I., Huang, X., Horváth, C. Capillary columns with in situ formed porousmonolithic packing for micro high-performance liquid chromatography and capillaryelectrochromatography. J. Chromatogr. A1999,855,273-290.
    [58] Huang, X., Zhang, J., Horváth, C. Capillary electrochromatography of proteins andpeptides with porous-layer open-tubular columns. J. Chromatogr. A1999,858,91-101.
    [59] Huang, H.-Y., Lin, H.Y. Lin, S.-P., CEC with monolithic poly(styrene-divinylbenzene-vinylsulfonic acid) as the stationary phase. Electrophoresis2006,27,4674-4681.
    [60] Huang, H.-Y., Liu, Y.-C., Cheng, Y.-J., Development of capillary electrochromatographywith poly(styrene-divinylbenzene-vinylbenzenesulfonic acid) monolith as the stationaryphase. J. Chromatogr. A2008,1190,263-270.
    [61] Zhang, Y. P., Ye, X. W., Tian, M. K., et al. Novel method to prepare polystyrene-basedmonolithic columns for chromatographic and electrophoretic separations by microwaveirradiation. J. Chromatogr. A2008,1188,43-49.
    [62] Jakschitz, T. A., Huck, C. W., Lubbad, S., et al. Monolithic poly[(trimethylsilyl-4-methylstyrene)-co-bis(4-vinylbenzyl)dimethylsilane] stationary phases for the fastseparation of proteins and oligonucleotides. J. Chromatogr. A2007,1147,53-58.
    [63] Trojer, L., Lubbad, S. H., Bisjak, C. P., et al. Monolithic poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane) capillary columns as novel styrene stationary phasesfor biopolymer separation. J. Chromatogr. A2006,1117,56-66.
    [64] Trojer, L., Wieder, W., Bonn, G. K., et al. Comparison between monolithic conventionalsize, microbore and capillary poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane)high-performance liquid chromatography columns: Synthesis, application, long-termstability and reproducibility. J. Chromatogr. A2007,1146,216-224.
    [65] Li, Y., Horváth, C., Wilkins, J. A., et al. Incorporation of single-wall carbon nanotubesinto an organic polymer monolithic stationary phase for μ-HPLC and capillaryelectrochromatography. Anal. Chem.2005,77,1398-1406.
    [66] Svec F, Fréchet, J. M. J., New designs of macroporous polymers and supports: Fromseparation to biocatalysis. Science1996,273,205-211
    [67] Svec F, Fréchet, J. M. J., Molded rigid monolithic porous polymers: An inexpensive,efficient, and versatile alternative to beads for the design of materials for numerousapplications. Ind. Eng. Chem. Res.1999,38,34-48
    [68] Peters, E. C, Petro, M, Svec, F, et al. Molded rigid polymer monoliths as separationmedia for capillary electrochromatography. Anal. Chem.1997,69,3646-3649.
    [69] Peters, E. C., Petro, M., Svec, F., et al. Molded rigid polymer monoliths as separationmedia for capillary electrochromatography.2. Effect of chromatographic conditions onthe separation.Anal. Chem.1998,70,2296-2302.
    [70] Peters, E. C., Petro, M., Svec, F., et al. Molded rigid polymer monoliths as separationmedia for capillary electrochromatography.1. Fine control of porous properties andsurface chemistry. Anal. Chem.1998,70,2288-2295.
    [71] L mmerhofer, M., Peters, E. C., Yu, C., et al. Chiral monolithic columns forenantioselective capillary electrochromatography prepared by copolymerization of amonomer with quinidine functionality.1. Optimization of polymerization conditions,porous properties, and chemistry of the stationary phase, Anal. Chem.2000,72,4614-4622.
    [72] L mmerhofer, M., Svec, F., Fréchet, J. M. J., Chiral monolithic columns foreaantioselective capillary electrochromatography prepared by copolymerization of amonomer with quinidine functionality.2. Effect of chromatographic conditions on thechiral separations, Anal. Chem.2000,72,4623-4628.
    [73] Hold vendová, P., Suchánková, J., Bun ek, M., et al. Hydroxymethyl methacrylate-basedmonolithic columns designed for separation of oligonucleotides inhydrophilic-interaction capillary liquid chromatography. J. Biochem. Biophys. Methods2007,70,23-29.
    [74] L mmerhofer, M., Svec, F., Fréchet, J. M. J., et al. Monolithic stationary phases forenantioselective capillary electrochromatography. J. Microcol. Sep.2000,12,597-602.
    [75] Lee, D., Svec, F., Fréchet, J. M. J., Photopolymerized monolithic capillary columns forrapid micro high-performance liquid chromatographic separation of proteins. J.Chromatogr. A2004,1051,53-60.
    [76] Guerrouache, M., Carbonnier, B., Vidal-Madjar, C., et al. In situ functionalization ofN-acryloxysuccinimide-based monolith for reversed-phase electrochromatography. J.Chromatogr. A2007,1149,368-376.
    [77] Wu, R., Zou, H., Ye, M., et al. Capillary electrochromatography for separation ofpeptides driven with electrophoretic mobility on monolithic column. Anal. Chem.2001,73,4918-4923.
    [78] Pruim, P., hman, M., Huo, Y., et al. Methacrylate monolithic capillary columns forgradient peptide separations. J. Chromatogr. A2008,1208,109-115.
    [79] Yan, W., Zhang, Z., Yan, C., et al. Short and highly-linked polymer based monolithcolumn for capillary electrochromatography. J. Liq. Chromatogr. Relat. Technol.2002,25,2965-2976.
    [80] Huang, X., Wang, Q., Yan, H., et al. Octyl-type monolithic columns of530μm i.d. forcapillary liquid chromatography. J. Chromatogr. A2005,1062,183-188.
    [81] Umemura, T., Ueki, Y., Tsunoda, K., et al. Preparation and characterization ofmethacrylate-based semi-micro monoliths for high-throughput bioanalysis. Anal.Bioanal. Chem.2006,386,566-571.
    [82] Dong, J., Xie, C., Zou, H., et al. Capillary electrochromatography with a neutralmonolithic column for classification of analytes and determination of basic drugs inhuman serum. Electrophoresis2005,26,3452-3459.
    [83] Bisjak, C., Lubbad, S., Trojer, L., et al. Novel monolithic poly(phenylacrylate-co-1,4-phenylene diacrylate) capillary columns for biopolymer chromatography.J. Chromatogr. A2007,1147,46-52.
    [84] Okanda, F. M., El Rassi, Z., Capillary electrochromatography with monolithic stationaryphases.4. Preparation of neutral stearyl-acrylate monoliths and their evaluation incapillary electrochromatography of neutral and charged small species as well as peptidesand proteins. Electrophoresis2005,26,1988-1995.
    [85] Bedair, M., El Rassi, Z. Capillary electrochromatography with monolithic stationaryphases: II. Preparation of cationic stearyl-acrylate monoliths and theirelectrochromatographic characterization. J. Chromatogr. A2003,1013,35-45.
    [86] Maru ka, A., Rocco, A., Korny ova, O., et al. Synthesis and evaluation of polymericcontinuous bed (monolithic) reversed-phase gradient stationary phases for capillaryliquid chromatography and capillary electrochromatography. J. Biochem. Biophys.Methods2007,70,47-55.
    [87] Dong, X., Dong, J., Zhu, Y., et al. Capillary electrochromatography with zwitterionicstationary phase on the lysine-bonded poly(glycidyl methacrylate-co-ethylenedimethacrylate) monolithic capillary column. Electrophoresis2006,27,2518-2525.
    [88] Fu, H., Xie, C., Zou, H., et al. Monolithic columns with mixed modes of reversed-phaseand anion-exchange stationary phase for capillary electrochromatography. J. Chromatogr.A2004,1044,237-244.
    [89] Gu, B., Chen, Z., Thulin, C. D., et al. Efficient coolymer monolith for strongcation-exchange capillary liquid chromatography of peptides. Anal. Chem.2006,78,3509-3518.
    [90] Gu, B., Li, Y., Li, M. L., Polymer monoliths with low hydrophobicity for strongcation-exchange capillary liquid chromatography of peptides and proteins. Anal. Chem.2007,79,5848-5855.
    [91] L mmerhofer, M., Svec, F., Fréchet, J. M. J., et al. Capillary electrochromatography inanion-exchange and normal-phase mode using monolithic stationary phases. J.Chromatogr. A2001,925,265-277.
    [92] Wang, X, Lü, H., Lin, X., et al. Electrochromatographic characterization ofmethacrylate-based monolith with mixed mode of hydrophilic and weak electrostaticinteractions by pressurized capillary electrochromatography. J. Chromatogr. A2008,1190,365-371.
    [93] Wang, X., Lin, X., Xie, Z., et al. Preparation and evaluation of a neutralmethacrylate-based monolithic column for hydrophilic interaction stationary phase bypressurized capillary electrochromatography. J. Chromatogr. A2009,1216,4611-4617.
    [94] Fu, H., Xie, C., Zou, H., et al. Monolithic column with zwitterionic stationary phase forcapillary electrochromatography. Anal. Chem.2004,76,4866-4874.
    [95] Jiang, Z., Smith, N. W., Ferguson, P. D., et al. Hydrophilic interaction chromatographyusing methacrylate-based monolithic capillary column for the separation of polaranalytes. Anal. Chem.2007,79,1243-1250.
    [96] Wang, X., Lin, X., Xie, Z., Preparation and evaluation of a sulfoalkylbetaine-basedzwitterionic monolithic column for capillary electrochromatography of polar analytes.Electrophoresis2009,30,2702-2710.
    [97] Wu, R., Zou, H., Fu, H., et al. Separation of peptides on mixed mode of reversed-phaseand ion-exchange capillary electrochromatography with a monolithic column.Electrophoresis2002,23,1239-1245.
    [98] Lin, J., Huang, G., Lin, X., et al. Methacrylate-based monolithic column withmixed-mode hydrophilic interaction/strong cation-exchange stationary phase forcapillary liquid chromatography and pressure-assisted capillary electrochromatography.Electrophoresis2008,29,4055-4065.
    [99] Wang, J., Lü, H., Lin, X., et al. Monolithic column with double mixed-modes ofhydrophilic interaction/cation-exchange and reverse-phase/cation-exchange stationaryphase for pressurized capillary electrochromatography. Electrophoresis2008,29,928-935.
    [100] Svec, F., Fréchet, J. M. J., Continuous rods of macroporous polymer as highperformance liquid chromatography separation media. Anal. Chem.1992,64,820-822.
    [101] Hjertén, S., Liao, J. L., Zhang, R., High-performance adsorption chromatography ofproteins on deformed non-porous agarose beads coated with insoluble metal compounds:I. Coating: ferric oxyhydroxide with stoichiometrically bound phosphate. J. Chromatogr.1989,481,175-186.
    [102] Xie, S., Svec, F., Fréchet, J. M. J., Rigid porous polyacrylamide-based monolithiccolumns containing butyl methacrylate as a separation medium for the rapidhydrophobic interaction chromatography of proteins. J. Chromatogr. A1997,775,65-72.
    [103] Sinner, F. M., Buchmeiser, M. R., Ring-opening metathesis polymerization: Access to anew class of functionalized, monolithic stationary phases for liquid chromatography.Angew. Chem. Int. Ed. Engl.2000,39,1433-1436.
    [104] Mayr, B., Tessadri, T. R., Post, E., et al. Metathesis-based monoliths: Influence ofpolymerization conditions on the separation of biomolecules. Anal. Chem.2001,73,4071-4078.
    [105] Lubbad, S., Mayr, B., Huber, C. G., et al. Micropreparative fractionation of DNAfragments on metathesis-based monoliths: influence of stoichiometry on separation. J.Chromatogr. A2002,959,121-129.
    [106] Mayr, B., Holzl, G., Huber, C. G., et al. Hydrophobic, pellicular, monolithic capillarycolumns based on cross-linked polynorbornene for biopolymer separations. Anal. Chem.2002,74,6080-6087.
    [107] Schlemmer, B., Gatschelhofer, C., Pieber, T., et al. Poly(cyclooctene)-based monolithiccolumns for capillary high performance liquid chromatography prepared viaring-opening metathesis polymerization. J. Chromatogr. A2006,1132,124-131.
    [108] Boue, J., Audebert, R., Quivoron, C., Direct resolution of a-amino acid enantiomers byligand exchange: stereoselection mechanism on silica packings coated with achiral polymer, J. Chromatogr.1981,204,185-193.
    [109] Schmid, M. G., Grobuschek, N., Lecnik, O., et al. Chiral ligand-exchange capillaryelectrophoresis, J. Biochem. Biophys. Methods2001,48,143-154.
    [110] Sun, X., Chai, Z., Urea-formaldehyde resin monolith as a new packing material foraffnity chromatography. J. Chromatogr. A2002,943,209-218.
    [111] Flückiger, R., Woodtli, T., Berger, W., Quantitation of glycosylated hemoglobin byboronate affinity chromatography. Diabetes1984,33,73-76.
    [112] Hawkins, C. J., Lavin, M. F., Parry, D. L., et al. Isolation of3,4-dihydroxyphenylalanine-containing proteins using boronate affinity chromatography.Anal. Biochem.1986,159,187-190.
    [113] Hjertén, S., Li, J. P., High-performance liquid chromatography of proteins on deformednon-porous agarose beads: fast boronate affinity chromatography of haemoglobin atneutral pH. J. Chromatogr.1990,500,543-553.
    [114] Liu, X. C., Scouten, W. H., Boronate Affinity Chromatography. Methods Mol. Biol.2000,147,119-128.
    [115] Roberts, W. L., Hemoglobin Constant Spring Can Interfere with Glycated HemoglobinMeasurements by Boronate Affinity Chromatography. Clin. Chem.2007,53,142-143.
    [116] Ren, L., Liu, Z., Dong, M., et al. Synthesis and characterization of a new boronateaffinity monolithic capillary for specific capture of cis-diol-containing compounds. J.Chromatogr. A2009,1216,4768-4774.
    [117] Ren, L., Liu, Z., Liu, Y, et al. Ring-opening polymerization with synergisticco-monomers: Access to a boronate-functionalized polymeric monolith for the specificcapture of cis-diol-containing biomolecules under neutral conditions. Angew. Chem. Int.Ed.2009,48,6704-6707.
    [118] Peters, E. C., Svec, F., Fréchet, J. M. J., et al. Control of porous properties and surfacechemistry in “molded” porous polymer monoliths prepared by polymerization in thepresence of TEMPO. Macromolecules2005,32,6377-6379.
    [119] Hosoya, K., Hira, N., Yamamoto, K., et al. High-performance polymer-basedmonolithic capillary column. Anal. Chem.2006,78,5729-5735;
    [120] Hosoya, K., Sakamoto, M., Akai, K., et al. A novel chip device based on wired capillarypacked with high performance polymer-based monolith for HPLC: Reproducibility inpreparation processes to obtain long column. Anal. Sci.2008,24,149-154.
    [121] Tsujioka, N., Hira, N., Aoki, S., et al. A new preparation method for well-controlled3Dskeletal epoxy resin-based polymer monoliths. Macromolecules2005,38,9901-9903.
    [122] Luo, Q., Zou, H., Xiao, X., et al. Chromatographic separation of proteins on metalimmobilized iminodiacetic acid-bound molded monolithic rods of macroporouspoly(glycidyl methacrylate-co-ethylene dimethacrylate). J. Chromatogr. A2001,926,255-264.
    [123] Okanda, F. M., El Rassi Z., Affinity monolithic capillary columns forglycomics/proteomics:1. Polymethacrylate monoliths with immobilized lectins forglycoprotein separation by affinity capillary electrochromatography and affinitynano-liquid chromatography in either a single column or columns coupled in series.Electrophoresis2006,27,1020-1030.
    [124] Xie, S., Svec, F., Fréchet, J. M. J., Design of reactive porous polymer supports for highthroughput bioreactors: poly (2-vinyl-4,4-dimethylazlactone-co-acrylamide-co-ethylene dimethacrylate) monoliths. Biotechnol. Bioeng.1999,62,30-35.
    [125] Li, Y., Zhang, J., Xiang, R., et al. Preparation and characterization of alkylatedpolymethacrylate monolithic columns for micro-HPLC of proteins. J. Sep. Sci.2004,27,1467-1474.
    [126] Preinerstorfer, B., Lindner, W., L mmerhofer, M., Polymethacrylate-type monolithsfunctionalized with chiral amino phosphonic acid-derived strong cation exchangemoieties for enantioselective nonaqueous capillary electrochromatography andinvestigation of the chemical composition of the monolithic polymer. Electrophoresis2005,26,2005-2018.
    [127] Savina, I. N., Galaev, I. Y., Mattiasson, B., Ion-exchange macroporous hydrophilic gelmonolith with grafted polymer brushes. J. Mol. Recognit.2006,19,313-321.
    [128] Rohr, T., Hilder, E. F., Donovan, J. J., et al. Photografting and the control of surfacechemistry in three-dimensional porous polymer monoliths. Macromolecules2003,36,1677-1684.
    [129] Hilder, E. F., Svec, F., Fréchet, J. M. J., Shielded stationary phases based on porouspolymer monoliths for the capillary electrochromatography of highly basic biomolecules.Anal. Chem.2004,76,3887-3892.
    [130] Pucci, V., Raggi, M. A., Svec, F., et al. Monolithic columns with a gradient offunctionalities prepared via photoinitiated grafting for separations using capillaryelectrochromatography. J. Sep. Sci.2004,27,779-788.
    [131] Hutchinson, J., Hilder, E., Shellie, R., et al. Towards high capacity latex-coated porouspolymer monoliths as ion-exchange stationary phases. Analyst2006,131,215-221.
    [132] Breadmore, M., Macka, M., Avdalovic, N., et al. On-capillary ion-exchangepreconcentration of inorganic anions in open-tubular capillary electrochromatographywith elution using transient-isotachophoretic gradients. II. Characterisation of theisotachophoretic gradient. Anal. Chem.2001,73,820-828.
    [133] Hutchinson, J. P., Macka, M., Avdalovic, N., et al. Use of coupled open-tubularcapillaries for in-line ion-exchange preconcentration of anions by capillaryelectrochromatography with elution by a transient isotachophoretic gradient. J.Chromatogr. A2004,1039,187-192.
    [134] Breadmore, M., Palmer, A., Curran, M., et al. On-column ion-exchangepreconcentration of inorganic anions in open-tubular capillary electrochromatographywith elution using transient-isotachophoretic gradients. III: Implementation and methoddevelopment. Anal. Chem.2002,74,2112-2118.
    [135] Hutchinson, J. P., Hilder, E. F., Macka, M., et al. Preparation and characterisation ofanion-exchange latex-coated silica monoliths for capillary electrochromatography. J.Chromatogr. A2006,1109,10-18.
    [136] Hilder, E. F., Svec, F., Fréchet, J. M. J., Latex-functionalized monolithic columns forthe separation of carbohydrates by micro anion-exchange chromatography. J.Chromatogr. A2004,1053,101-106.
    [137] Hutchinson, J. P., Zakaria, P., Bowie, A. R., et al. Latex-coated polymeric monolithicion-exchange stationary phases.1. Anion-exchange capillary electrochromatography andin-line sample preconcentration in capillary electrophoresis. Anal. Chem.2005,77,407-416.
    [138] Zakaria, P., Hutchinson, J. P., Avdalovic, N., et al. Latex-coated polymeric monolithicion-exchange stationary phases.2. Micro-ion chromatography. Anal. Chem.2005,77,417-423.
    [139] Nilsson, C., Birnbaum, S., Nilsson, S., Use of nanoparticles in capillary and microchipelectrochromatography. J. Chromatogr. A2007,1168,212–224.
    [140] O’Mahony, T., Owens, V. P., Murrihy, J. P., et al. Alkylthiol gold nanoparticles inopen-tubular capillary electrochromatography. J. Chromatogr. A2003,1004,181–193.
    [141] Qu, Q., Zhang, X., Shen, M., et al., Open-tubular capillary electrochromatographyusing a capillary coated with octadecylamine-capped gold nanoparticles. Electrophoresis2008,29,901–909.
    [142] Yang, L., Guihen, E., Glennon, J. D., Alkylthiol gold nanoparticles in sol-gel-basedopen tubular capillary electrochromatography. J. Sep. Sci.2005,28,757–766.
    [143] Yang, L., Guihen, E., Holmes, J., et al. Gold nanoparticle-modified etched capillariesfor open-tubular capillary electrochromatography. Anal. Chem.2005,77,1840–1846.
    [144] Ishizuka, N., Minakuchi, H., Nakanishi, K., et al. Chromatographic properties ofminiaturized silica rod columns J. High Resol. Chromatogr.1998,21,477–479.
    [145] Tanaka, N., Nogayam, H., Kobayashi, H., et al. Monolithic silica columns for HPLC,Micro-HPLC, and CEC. J. High Resol. Chromatogr.2000,23,111-116.
    [146] Ishizuka N, Minakuchi H, Nakanishi K, et al. Performance of a monolithic silicacolumn in a capillary under pressure-driven and electrodriven conditions. Anal Chem.2000,72,1275-1280.
    [147] Motokawa, M., Kobayashi, H., Ishizuka, N., et al. Monolithic silica columns withvarious skeleton sizes and through-pore sizes for capillary liquid chromatography. JChromatogr A2002,961,53-63.
    [148] Ishizuka, N., Kobayashi, H., Minakuchi H, et al. Monolithic silica columns forhigh-efficiency separation by high-performance liquid chromatography. J Chromatogr A2002,960,85-96.
    [149] Kobayashi, H., Smith, C., Hosoya, K., et al. Capillary electrochromatography onmonolithic silica columns. Anal. Sci.2002,18,89-92.
    [150] Xu, L., Feng, Y. Q., Shi, Z. G., et al. Preparation of a sulfonated fused-silica capillaryand its application in capillary electrophoresis and electrochromatography. J.Chromatogra. A.2004,1033,161–166.
    [151] Allen, D., El Rassi, Z., Capillary electrochromatography with monolithic-silicacolumns:II. Preparation of amphiphilic silica monoliths having surface-bound cationicoctadecyl moieties and their chromatographic characterization and application to theseparation of proteins and other neutral and charged species. Analyst2003,128,1249-1256.
    [152] Allen, D., El Rassi, Z., Capillary electrochromatography with monolithic silica columns:I. Preparation of silica monoliths having surface-bound octadecyl moieties and theirchromatographic charcaterization and applications to the separation of neutral andcharged species. Electrophoresis2003,24,408-420.
    [153] Allen, D., El Rassi, Z., Capillary electrochromatography with monolithic silica columnsIII. Preparation of hydrophilic silica monoliths having surface-bound cyano groups:chromatographic characterization and application to the separation of carbohydrates,nucleosides, nucleic acid bases and other neutral polar species. J. Chromatogra. A2004,1029,239-247.
    [154] Hayes, J. D., Malik, A., Sol-gel monolithic columns with reversed electroosmotic flowfor capillary electrochromatography. Anal. Chem.2000,72,4090-4099.
    [155] Yan, L. J., Zhang, Q. H., Zhang, J., et al. Hybrid organic–inorganic monolithicstationary phase for acidic compounds separation by capillary electrochromatography J.Chromatogra. A2004,1046,255–261.
    [156] Yan, L., Zhang, Q., Zhang, W., et al. Hybrid organic–inorganic phenyl monolithiccolumn for capillary electrochromatography. Electrophoresis2005,26,2935-2941.
    [157] Ding, G., Da, Z., Yuan, R., et al. Reversed-phase and weak anion-exchangemixed-mode silica-based monolithic column for capillary electrochromatography.Electrophoresis2006,27,3363-3372.
    [158] Shi, Z., Feng, Y., Xu, L., et al. Preparation and evaluation of zirconia-coated silicamonolith for capillary electrochromatography. Talanta2004,63,593-598.
    [159] Qu, Q., Tang, X., Wang, C. et al. Preparation of particle-fixed silica monoliths used incapillary electrochromatography. J. Sep. Sci.2006,29,2098-2102.
    [160] Chirica, G., Remcho, V. T., Silicate entrapped columns-new columns designed forcapillary electrochromatography. Electrophoresis1999,20,50-56.
    [161] Asiaie, R., Huang, X., Farnan, D., et al. Stintered octadecylsilica as monolithic columnpacking in capillary electrochromatography. J. Chromatogr. A1998,806,251-263.
    [162] Bakry, R., St ggl, W. M., Hochleitner, E. O., et al. Silica particles encapsulatedpoly(styrene-divinylbenzene) monolithic stationary phases for μ-high performanceliquid chromatography. J. Chromatogr. A2006,1132,183-189.
    [163] Kato, M., Dulay, M. T., Bennett, B., et al. Enantiomeric separation of amino acids andnonprotein amino acids using a particle-loaded monolithic column. Electrophoresis2000,21,3145-3151.
    [164] Schmid, M. G., Koidl, J., Freigassner, C., et al. New particle-loaded monoliths for chiralcapillary electrochromatographic separation. Electrophoresis2004,25,3195-3203.
    [165] Gatschelhofer, C., Schmid, M. G., Schreiner, K., et al. Enantioseparation ofglycyl-dipeptides by CEC using particle-loaded monoliths prepared by ring-openingmetathesis polymerization (ROMP). J. Biochem. Biophys. Methods2006,69,67-77.
    [166] Schweitz, L., Andersson, L., Nilsson, S., Capillary electrochromatography withpredetermined selectivity obtained through molecular imprinting. Anal. Chem.1997,69,1179-1183.
    [167] Lin, C., Wang, G., Liu, C., A novel monolithic column for capillaryelectrochromatographic separation of oligopeptides. Anal. Chim. Acta2006,572,197-204.
    [168] Deng, Q., Lun, Z., Gao, R., et al.(S)-Ibuprofen-imprinted polymers incorporatingγ-methacryloxypropyl-trimethoxysilane for CEC separation of ibuprofen enantiomers.Electrophoresis2006,27,4351-4358.
    [169] Ou, J., Li, X., Feng, S., et al. Preparation and evaluation of a molecularly imprintedpolymer derivatized silica monolithic column for capillary electrochromatography andcapillary liquid chromatography. Anal. Chem.2007,79,639-646.
    [170] Jiang, T., Jiskra, J., Claessens, H. A., et al. Preparation and characterization ofmonolithic polymer columns for capillary electrochromatography. J. Chromatogr. A2001,923,215-227.
    [171] Bristow, P. A., Knox, J. H., Standardization of test conditions for high performanceliquid chromatography columns. Chromatographia1977,10,279-289.
    [172] Schweitz, L., Andersson, L. I., Nilsson, S., Rapid electrochromatographic enantiomerseparations on short molecularly imprinted polymer monoliths. Anal. Chim. Acta2001,435,43-47.
    [173] Zhang, S., Zhang, J., Horváth, C., Rapid separation of peptides and proteins by isocraticcapillary electrochromatography at elevated temperature. J. Chromatogr. A2001,914,189-200.
    [174] Bedair, M., El Rassi, Z., Capillary electrochromatography with monolithic stationaryphases:1. Preparation of sulfonated stearyl acrylate monoliths and theirelectrochromatographic characterization with neutral and charged solutes.Electrophoresis2002,23,2938-2948.
    [175] Throckmorton, D. J., Shepodd, T. J., Singh, A. K., Electrochromatography inmicrochips: Reversed-phase separation of peptides and amino acids usingphotopatterned rigid polymer monoliths. Anal. Chem.2002,74,784-789.
    [176] Zhong, H., El Rassi, Z., Capillary electrochromatography with monolithic silicacolumns. V. Study of the electrochromatographic behaviors of polar compounds onmonolithic silica having surface bound cyano functionalities. J. Sep. Sci.2006,29,2023-2030.
    [177] Lin, X., Wang, J., Li, L., et al. Separation and determination of five major opiumalkaloids with mixed mode of hydrophilic/cation-exchange monolith by pressurizedcapillary electrochromatography. J. Sep. Sci.2007,30,3011-3017.
    [178] Ou, J., Dong, J., Zou, H., et al. Enantioseparation of tetrahydropalmatine and Tr ger'sbase by molecularly imprinted monolith in capillary electrochromatography. J. Biochem.Biophys. Methods2007,70,71-76.
    [179] Huang, X., Qin, F., Zou, H., et al. Short columns with molecularly imprinted monolithicstationary phases for rapid separation of diastereomers and enantiomers. J. Chromatogr.B2004,804,13-18.
    [180] Liu, Z. S., Xu, Y. L., Yan, C., et al. Preparation and characterization of molecularlyimprinted monolithic column based on4-hydroxybenzoic acid for the molecularrecognition in capillary electrochromatography. Anal. Chim. Acta2004,523,243-250.
    [181] Schweitz, L., Andersson, L. I., Nilsson, S., Capillary electrochromatography withmolecular imprintbased selectivity for enantiomer separationof local anaesthetics. J.Chromatogr. A1997,792,401-409.
    [182] Chen, Z. L., Hobo, Toshiyuki., Chemically L-phenylalaninamide-modified monolithicsilica column prepared by a sol-gel process for enantioseparation of dansyl amino acidsby ligang excahange capillary electrochromatography. Anal.Chem.2001,73,3348-3357.
    [183] Branovic K., Buchacher A, Barut, M., et al. Application of semi-industrial monolithiccolumns for downstream processing of clotting factor IX. J. Chromatogr. B2003,790,175-182.
    [184] Wu. R., Zou, H., Ye, M., et al. Separation of basic, acidic and neutral compounds bycapillary electrochromatography using uncharged monolithic capillary columnsmodified with anionic and cationic surfactants. Electrophoresis2001,22,544-551.
    [185] Chen, Z., Uchiyama, K., Hobo, T., Chemically modified chiral monolithic silicacolumn prepared by a sol–gel process for enantiomeric separation by microhigh-performance liquid chromatography. J. Chromatogr. A2002,942,83-91.
    [186] Ericson, C., Hjertén, S., Reversed-phase electrochromatography of proteins onmodified continuous beds using normal-flow and counterflow gradients: theroetical andpractical considerations. Anal. Chem.1999,71,1621-1627.
    [187] Podgornik, A., Barut, M., Jancar, J., et al. Isocratic separations on thin glycidylmethacrylate–ethylenedimethacrylate monoliths. J Chromatogr A1999,848,51-60.
    [188] Sykora, D., Svec, F., Fréchet, J. M. J., Separation of oligonucleotides on novelmonolithic columns with ion-exchange functional surfaces. J. Chromatogr. A1999,852,297-304.
    [189] Leona, K., Zdenek, G., Hana, S., et al. Application of capillary electrochromatographyusing macroporous polyacrylamide columns for the analysis of lignans from seeds ofSchisandra chinensis. J. Chromatogr. A2001,916,265-271.
    [190] Bedair, M, El Rassi, Z., Affinity chromatography with monolithic capillary columns I.Polymethacrylate monoliths with immobilized mannan for the separation ofmannose-binding proteins by capillary electrochromatography and nano-scale liquidchromatography. J. Chromatogr. A2004,1044,177-186.
    [191] Hemstr m, P., Nordborg, A., Irgum, K., et al. Polymer-based monolithic microcolumnsfor hydrophobic interaction chromatography of proteins. J. Sep. Sci.2006,29,25-32.
    [192] Ericson, C., Holm, J., Ericson, T., et al. Electroosmosis-and pressure-drivenchromatography in chips using continuous beds. Anal. Chem.2000,72,81-87.
    [193] Yu, C., Svec, F., Fréchet, J. M. J., Towards stationary phases for chromatography on amicrochip: Molded porous polymer monoliths prepared in capillaries by photoinitiatedin situ polymerization as separation media for electrochromatography. Electrophoresis2000,21,120-127.
    [194] Rohr, T., Svec, F., Fréchet, J. M. J., et al. Porous polymer monoliths: Simple andefficient mixers prepared by direct polymerization in the channels of microfluidic chips.Electrophoresis2001,22,3959-3967.
    [195] Yu, C., Davey, M. H., Svec, F., et al. Monolithic porous polymer for on-chipsolid-phase extraction and preconcentration prepared by photoinitiated in situpolymerization within a microfluidic device. Anal. Chem.2001,73,5088-5096.
    [196] Yu, C., Xu, M. C., Svec, F.,et al. Preparation of monolithic polymers with controlledporous properties for microfluidic chip applications using photoinitiated free-radicalpolymerization. J. Polym. Sci. Part A: Polym. Chem.2002,40,755-769.
    [197] Stachowiak, T. B., Rohr, T., Hilder, E. F., et al., Fabrication of porous polymermonoliths covalently attached to the walls of channels in plastic microdevices.Electrophoresis2003,24,3689-3693.
    [198] Ro, K. W., Liu, J., Knapp, D. R., Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns.J. Chromatogr. A2006,1111,40-47.
    [199] Liu, J., Ro, K. W., Nayak, R. D., et al. Monolithic column plastic microfluidic devicefor peptide analysis using electrospray from a channel opening on the edge of the device.Int. J. Mass Spectrom.2007,259,65-72.
    [200] Bhattacharyya, A., Klapperich, C. M., Thermoplastic Microfluidic device for on-chippurification of nucleic acids for disposable diagnostics. Anal. Chem.2006,78,788-792.
    [201] Breadmore, M. C., Shrinivasan, S., Wolfe, K. A., et al. Towards a microchip-basedchromatographic platform. Part1: Evaluation of sol-gel phases for capillaryelectrochromatography. Electrophoresis2002,23,3487-3495.
    [202] Ishida, A., Yoshikawa, T., Natsume, M., et al. Reversed-phase liquid chromatographyon a microchip with sample injector and monolithic silica column. J. Chromatogr. A2006,1132,90-98.
    [203] Arthur, C. L., Pawliszyn, J., Solid phase microextraction with thermal desorption usingfused silica optical fibers. Anal Chem.1990,62,2145-2148.
    [204] Eisert, R., Pawliszyn, J., Automated In-Tube Solid-Phase Microextraction Coupled toHigh-Performance Liquid Chromatography. Anal Chem.1997,69,3140-3147.
    [205] Fan, Y., Feng, Y., Da, S., et al. Poly (methacrylic acid–ethylene glycol dimethacrylate)monolithic capillary for in-tube solid phase microextraction coupled to highperformance liquid chromatography and its application to determination of basic drugsin human serum. Anal. Chim. Acta2004,523,251-258.
    [206] Zhang, H., Huang, J., Wang, H., et al. Determination of low-aliphatic aldehydederivatizatives in human saliva using polymer monolith microextraction coupled tohigh-performance liquid chromatography. Anal. Chim. Acta2006,565,129-135.
    [207] Huang, J., Zhang, H., Lin, B., et al. Multiresidue analysis of β-agonists in pork bycoupling polymer monolith microextraction to electrospray quadrupole time-of-flightmass spectrometry. Rapid Commun. Mass Spectrom.2007,21,2895-2904.
    [208] Zhang, H., Huang, J., Lin, B., Polymer monolith microextraction with in situderivatization and its application to high-performance liquid chromatographydetermination of hexanal and heptanal in plasma. J. Chromatogr A2007,1160,114-119.
    [209] Nie, J., Zhao, Q., Huang, J., et al. Determination of telmisartan in rat tissues by in-tubesolid-phase microextraction coupled to high performance liquid chromatography. J SepSci.2006,29,650-655.
    [210] Zheng, M., Ruan, G., Feng, Y., Hybrid organic–inorganic silica monolith withhydrophobic/strong cation-exchange functional groups as a sorbent for micro-solidphase extraction. J. Chromatogr A2009,1216,7739-7746.
    [211] Baltussen, E., Sandra, P., David, F., et al. Stir bar sorptive extraction (SBSE), a novelextraction technique for aqueous samples: Theory and principles. J. Microcol. Sep.1999,11,737-747.
    [212] David, F., Sandra, P., Stir bar sorptive extraction for trace analysis. J. Chromatogr. A2007,1152,54-69.
    [213] Guerrero, E. D., Marín, R. N., Mejías, R. C., et al. Optimisation of stir bar sorptiveextraction applied to the determination of volatile compounds in vinegars. J. Chromatogr.A2006,1104,47-53.
    [214] Liu, W., Wang, H., Guan, Y., Preparation of stir bars for sorptive extraction usingsol–gel technology. J. Chromatogr. A2004,1045,15-22.
    [215] Huang, X., Qiu, N., Yuan, D., et al. Sensitive determination of strongly polar aromaticamines in water samples by stir bar sorptive extraction based on poly(vinylimidazole-divinylbenzene) monolithic material and liquid chromatographic analysis. J. ChromatogrA2009,1216,4354-4360.
    [216] Zhang, M. El Rassi, Z., Two-dimensional microcolumn separation platform forproteomics consisting of on-line coupled capillary isoelectric focusing and capillaryelectrochromatography.1. Evaluation of the capillary-based two-dimensional platformwith proteins, peptides, and human serum. J. Proteome Res.2006,5,2001-2008.
    [217] Pretorius, V., Hopkins, B. J., Schieke, J. D., Electro-osmosis: A new concept forhigh-speed liquid chromatography. J. Chromatogr.1974,99,23-30.
    [218] Jorgenson, J. W., Lukacs, K. D., High-resolution separations based on electrophoresisand electroosmosis. J.Chromatogr.1981,218,209-216.
    [219] Reid, T. S., Henry, R. A., Compatibility of C18HPLC columns with pure aqueousmobile phase. Am. Lab.1999,31,24-28.
    [220] Snyder, L. R., Glajch, J. L., Kirkland, J. J., Practical HPLC method development. Wiley,New York,1988,114-120.
    [221] Snyder, L. R., Kirkland, J. J., Introduction to Modern Liquid Chromatography, Wiley,New York,2nd ed.,1979, Chapter8.
    [222] Alpert. A. J., Cation-exchange chromatography of peptides on poly(2-sulfoethylaspartamide)-silica. J. Chromatogr.1988,443,85-96.
    [223] Alpert, A. J., Shukla, M., Shukla, A. K.., et al. Hydrophilic-interaction chromatographyof complex carbohydrates. J. Chromatogr. A1994,676,191-202.
    [224] Churms, S. C., Recent progress in carbohydrate separation by high-performance liquidchromatography based on hydrophilic interaction. J. Chromatogr. A1996,720,75-91.
    [225] Wei, W., Luo, G., G. Hua, et al. Capillary electrochromatographic separation of basiccompounds with bare silica as stationary phase. J. Chromatogr. A1998,817,65-74.
    [226] Maru ka, A., Pyell, U., Capillary electrochromatography: Normal-phase mode usingsilica gel and cellulose-based packing materials. J. Chromatogr. A1997,782,167-174.
    [227] Lai, E. P. C., Dabek-Zlotorzynska, E. Separation of theophylline, caffeine and relateddrugs by normal-phase capillary electrochromatography. Electrophoresis1999,20,2366-2372.
    [228] Xie, C., Hu, J., Xiao, H., et al. Electrochromatographic evaluation of a silica monolithcapillary column for separation of basic pharmaceuticals. Electrophoresis2005,26,790-797.
    [229] Fu, H., Jin, W., Xiao, H., et al. Determination of basic pharmaceuticals in human serumby hydrophilic interaction capillary electrochromatography. Electrophoresis2004,25,600-606.
    [230] Zhong, H., El Rassi, Z., Capillary electrochromatography with monolithic silicacolumns. IV. Electrochromatographic characterization of polar bonded monolithicstationary phases having surface-bound cyano functionalities. J. Sep. Sci.2006,29,2031-2037.
    [231] Ye, F., Xie, Z.., Wong, K., Monolithic silica columns with mixed mode of hydrophilicinteraction and weak anion-exchange stationary phase for pressurized capillaryelectrochromatography. Electrophoresis2006,27,3373-3380.
    [232] Dittmann, M. M., Masuch, K., Rozing, G. P., Separation of basic solutes byreversed-phase capillary electrochromatography. J. Chromatogr. A2000,887,209-221.
    [233] Svec, F., Peters, E. C., Sykora, D., et al. Design of the monolithic polymers used incapillary electrochromatography columns.J. Chromatogr. A2000,887,3-29.
    [234] Xie, C., Fu, H., Hu, J., et al. Polar stationary phases for capillaryelectrochromatography. Electrophoresis2004,25,4095-4109.
    [235] Xiang, R., Horváth, C., Fundamentals of capillary electrochromatography: Migrationbehavior of ionized sample components. Anal. Chem.2002,74,762-770.
    [236] Freitag, R., Comparison of the chromatographic behavior of monolithic capillarycolumns in capillary electrochromatography and nano-high-performance liquidchromatography. J. Chromatogr. A2004,1033,267-273.
    [237] Ueki, Y., Umemura, T., Iwashita, Y., et al. Preparation of low flow-resistantmethacrylate-based monolithic stationary phases of different hydrophobicity and theapplication to rapid reversed-phase liquid chromatographic separation of alkylbenzenesat high flow rate and elevated temperature. J. Chromatogr. A2006,1106,106-111.
    [238] Lin, J., Wu, X., Lin, X., et al. Preparation of polymethacrylate monolithic stationaryphases having bonded octadecyl ligands and sulfonate groups: electrochromatographiccharacterization and application to the separation of polar solutes for pressurizedcapillary electrochromatography. J. Chromatogr. A2007,1169,220-227.
    [239] Ye, M., Zou, H., Wu, R., et al. Modeling and optimization for separation of ionicsolutes in pressurized flow capillary electrochromatography. J. Sep. Sci.2002,25,416-426.
    [240] Gfr rer, P., Tseng, L.-H., Rapp, E., et al. Influence of Pressure upon CouplingPressurized Capillary Electrochromatography with Nuclear Magnetic ResonanceSpectroscopy. Anal. Chem.2001,73,3234-3239.
    [241] Ru, Q. H., Luo, G. A., Fu, Y. R., Effect of various modes of pressurization on theseparation in capillary electrochromatography. J. Chromatogr. A2001,924,331-336.
    [242] Ohyama, K., Fujimoto, E., Wada, M. et al. Investigation of a novel mixed-modestationary phase for capillary electrochromatography. Part III: Separation of nucleosidesand nucleic acid bases on sulfonated naphthalimido-modified silyl silica gel.J. Sep. Sci.2005,28,767-773.
    [243] Zhang, M., El Rassi, Z., Capillary electrochromatography with novel stationary phases:II. Studies of the retention behavior of nucleosides and bases on capillaries packed withoctadecyl-sulfonated-silica microparticles.Electrophoresis1999,20,31-36.
    [244] Mesa, M., Sierra, K., Lopez, B., et al. Preparation of micron-sized spherical particles ofmesoporous silica from a triblock copolymer surfactant, usable as a stationary phase forliquid chromatography. Solid State Sci.2003,5,1303-1308.
    [245] Tian, R. J., Sun, J. M., Zhang, H., et al. Large-pore mesoporous SBA-15silica particleswith submicrometer size as stationary phases for high-speed CEC separation.Electrophoresis2006,27,742-748.
    [246] Ohyama, K., Shirasawa, Y., Wada, M., et al. Investigation of the novel mixed-modestationary phase for capillary electrochromatography. II. Separation of amino acids andpeptides on sulfonated naphthalimido-modified silyl silica gel. Electrophoresis2004,25,3224-3230.
    [247] Nakashima, R., Kitagawa, S., Yoshida, T., et al. Study of flow rate in pressurizedgradient capillary electrochromatography using splitter and separation of peptides usingan Amide stationary phase. J. Chromatogr. A2004,1044,305-309.
    [248] Zhang, X., Colon, L. A., Evaluation of poly{-N-isopropylacrylamide-co-
    [3-(methacryloylamino) propyl] trimethylammonium} as a stationary phase for capillaryelectrochromatography. Electrophoresis2006,27,1060-1068.
    [249] Puy, G., Demesmay, C., Rocca, J., et al. Electrochromatographic behavior of silicamonolithic capillaries of different skeleton sizes synthesized with a simplified andshortened sol-gel procedure. Electrophoresis2006,27,3971-3980.
    [250] Guo, Y., Gaiki, S., Retention behavior of small polar compounds on polar stationaryphases in hydrophilic interaction chromatography. J. Chromatogr. A2005,1074,71-80.
    [251] Dell’Aversan, C., Eagleham, G. K., Quilliam, M. A., Analysis of cyanobacterial toxinsby hydrophilic interaction liquid chromatography–mass spectrometry. J. Chromatogr. A2004,1028,155-164.
    [252] Jiang, W., Irgum, K., Covalently bonded polymeric zwitterionic stationary phase forsimultaneous separation of inorganic cations and anions. Anal. Chem.1999,71,333-344.
    [253] Jiang, W., Irgum, K., Tentacle-type zwitterionic stationary phase prepared bysurface-initiated graft polymerization of3-[N,N-dimethyl-N-(methacryloyloxyethyl)-ammonium] propanesulfonate through peroxide groups tethered on porous silica. Anal.Chem.2002,74,4682-4687.
    [254] Chen, X., Zou, H., Ye, M., et al. Separation of enantiomers by nanoliquidchromatography and capillary electrochromatography using a bonded cellulosetrisphenylcarbamate stationary phase. Electrophoresis2002,23,1246-1254.
    [255] Wode, H., Seidel, W., Precise viscosity measurements of binary liquid mixtures ofacetonitrile-water and1,3-dimethyl-2-imidazolidinone-water. Ber. Bunsen. Phys. Chem.2004,98,927-934.
    [256] Alpert, A. J., Electrostatic repulsion hydrophilic interaction chromatography forisocratic sparation of charged solutes and selective isolation of phosphopeptides. Anal.Chem.2008,80,62-76.
    [257] Tolstikov, V. V., Lommen, A., Nakanishi, K., et al. Monolithic silica-based capillaryreversed-phase liquid chromatography/electrospray mass spectrometry for plantmetabolomics. Anal. Chem.2003,75,6737-6740.
    [258] Ou, J., Kong, L., Pan, C., et al. Determination of dl-tetrahydropalmatine in Corydalisyanhusuo by l-tetrahydropalmatine imprinted monolithic column coupling withreversed-phase high performance liquid chromatography. J. Chromatogr. A2006,1117,163-169.
    [259] Zhang, J., Wu, S., Kim, J., et al. Ultratrace liquid chromatography/mass spectrometryanalysis of large peptides with post-translational modifications using narrow-borepoly(styrene-divinylbenzene) monolithic columns and extended range proteomicanalysis. J. Chromatogr. A2007,1154,295-307.
    [260] Bisjak, C. P., Bakry, R., Huck, C. W., et al. Amino-functionalized monolithicpoly(glycidyl methacrylate-co-divinylbenzene) ion-exchange stationary phases for theseparation of oligonucleotides. Chromatographia2005,62, S31-S36.
    [261] Wieder, W., Bisjak, C. P., Huck, C. W., et al. Monolithic poly(glycidyl methacrylate-co-divinylbenzene) capillary columns functionalized to strong anion exchangers fornucleotide and oligonucleotide separation. J. Sep. Sci.2006,29,2478-2484.
    [262] Korny va, O., Maru ka, A., Owens, P. K., et al. Non-particulate (continuous bed ormonolithic) acrylate-based capillary columns for reversed-phase liquid chromatographyand electrochromatography. J. Chromatogr. A2005,1071,171-178.
    [263] Huo, Y., Schoenmakers, P. J., Kok, W. T., Efficiency of methacrylate monolithiccolumns in reversed-phase liquid chromatographic separations. J. Chromatogr. A2007,1175,81-88.
    [264] Horie, K., Ikegami, T., Tanaka, N., et al. Highly efficient monolithic silica capillarycolumns modified with poly(acrylic acid) for hydrophilic interaction chromatography. J.Chromatogr. A2007,1164,198-205.
    [265] Strege, M. A., Hydrophilic interaction chromatography electrospray mass spectrometryanalysis of polar compounds for natural product drug discovery. Anal. Chem.1998,70,2439-2445.
    [266] Oyler, A. R., Armstrong, B. L., Burnisky, D. J., et al. Hydrophilic interactionchromatography on amino-silica phases complements reversed-phase high-performanceliquid chromatography and capillary electrophoresis for peptide analysis. J. Chromatogr.A1996,724,378-383.
    [267] Tolstikov, V. V., Fiehn, O., Analysis of highly polar compounds of plant origin:Combination of hydrophilic interaction chromatography and electrospray ion trap massspectrometry. Anal. Biochem.2002,301,298-307.
    [268] Guo, Y., Huang, A., A HILIC method for the analysis of tromethamine as the counterion in an investigational pharmaceutical salt. J. Pharm. Biomed. Anal.2003,31,1191-1201.
    [269] Olsen, B. A., Hydrophilic interaction chromatography using amino and silica columnsfor the determination of polar pharmaceuticals and impurities. J. Chromatogr. A2001,913,113-122.
    [270] Tanaka, H., Zhou, X., Masayoshi, O., Characterization of a novel diol column forhigh-performance liquid chromatography. J. Chromatogr. A2003,987,119-125.
    [271] Weng, N., Shou, W., Chen, Y. L., et al. Novel liquid chromatographic–tandem massspectrometric methods using silica columns and aqueous–organic mobile phases forquantitative analysis of polar ionic analytes in biological fluids. J. Chromatogr. B2001,754,387-399.
    [272] Grumbach, E. S., Wagrowski-Diehl, D. M., Mazzeo, J. R., et al. Hydrophilic interactionchromatography using silica columns for the retention of polar analytes and enhancedESI-MS sensitivity. LC-GC North America2004,22,1010-1023.
    [273] Weng, N., Shou, W. Z., Jiang, X., et al. Liquid chromatography/tandem massspectrometric bioanalysis using normal-phase columns with aqueous/organic mobilephases-a novel approach of eliminating evaporation and reconstitution steps in96-wellSPE. Rapid Commun. Mass Spectrom.2002,16,1965-1975.
    [274] Jiang, Z., Reilly, J., Everatt, B., et al. Novel zwitterionic polyphosphorylcholinemonolithic column for hydrophilic interaction chromatography. Journal ofChromatography A2009,1216,2439-2448.
    [275] Yoshida, T., Peptide separation by hydrophilic-interaction chromatography: a review. J.Biochem. Biophys. Methods2004,60,265-280.
    [276] Yoshida, T., Peptide separation in normal phase liquid chromatography. Anal. Chem.1997,69,3038-3043.
    [277] Minakuchi, H., Nakanishi, K., Soga, N., et al. Octadecylsilylated porous silica rods asseparation media for reversed-phase liquid chromatography. Anal. Chem.1996,68,3498-3501.
    [278] Pyell, U., Advances in column technology and instrumentation in capillaryelectrochromatography. J. Chromatogr. A2000,892,257-278.
    [279] Zou, H., Huang, X., Ye, M., et al. Monolithic stationary phases for liquidchromatography and capillary electrochromatography. J. Chromatogr. A2002,954,5-32.
    [280] Tang, Q. L., Lee, M. L., Column technology for capillary electrochromatography.Trends Anal. Chem.2000,19,648-663.
    [281] Colon, L., Burgos, G., Rodriguez, R. L., Recent progress in capillaryelectrochromatography. Electrophoresis2000,21,3965-3993.
    [282] Barceló-Barrachina, E., Moyano, E., Puignou, L., et al. CEC separation of heterocyclicamines using methacrylate monolithic columns. Electrophoresis2007,28,1704-1713.
    [283] Huang, X., Zhang, S., Schultz, G. A., et al. Surface-alkylated polystyrene monolithiccolumns for peptide analysis in capillary liquid chromatography-electrospray ionizationmass spectrometry. Anal. Chem.2002,74,2336-2344.
    [284] Premstaller, A., Oberacher, H., Huber, C. G., High-performance liquid chromatography-electrospray ionization mass spectrometry of single-and double-stranded nucleic acidsusing monolithic capillary columns. Anal. Chem.2000,72,4386-4393.
    [285] Karger, B. L., Gant, J. R., Martkopf, A., et al. Hydrophobic effects in reversed-phaseliquid chromatography. J. Chromatogr.1976,128,65-78.
    [286] Vigh, G., Varga-Puchony, Z., Influence of temperature on the retention behaviour ofmembers of homologous series in reversed-phase high-performance liquidchromatography. J. Chromatogr.1980,196,1-9.
    [287] Mueller, S. O., Xenoestrogens: mechanisms of action and detection methods. Anal.Bioanal. Chem.2004,378,582-587.
    [288] Fang, H., Tong, W., Shi, L. M., et al. Structure-activity relationships for a large diverseset of natural, synthetic, and environmental estro-gens. Chem. Res. Toxical.2001,14,280-294.
    [289] Peng, X. Z., Wang, Z. D., Yang, C., et al. Simultaneous determination ofendocrine-disrupting phenols and steroid estrogens in sediment by gaschromatography–mass spectrometry. J. Chromatogr. A2006,1116,51-56.
    [290] Pórcel, J. L., Parre o, M. M., Soriano, E. M., et al. Analysis of chlorophenols,bisphenol-A,4-tert-octylphenol and4-nonylphenols in soil by means of ultrasonicsolvent extraction and stir bar sorptive extraction with in situ derivatisation. J.Chromatogr. A2009,1216,5955-5961.
    [291] Stuart, J. D., Capulong, C. P., Launer, K. D., et al. Analyses of phenolic endocrinedisrupting chemicals in marine samples by both gas and liquid chromatography–massspectrometry. J. Chromatogr. A2005,1079,136-145.
    [292] Kennedy, D. G., Cannavan, A., McCracken, R. J., Regulatory problems caused bycontamination, a frequently overlooked cause of veterinary drug residues. J. Chromatogr.A2000,882,37–52.
    [293] Anadón, A., Martínez-Larra aga, M. R., Residues of antimicrobial drugs and feedadditives in animal products: regulatory aspects. Livest. Prod. Sci.1999,59,183-198.
    [294] Belal, F., Al-Majed, A. A., Al-Obaid, A. M., Methods of analysis of4-quinoloneantibacterials. Talanta1999,50,765-786.
    [295] Hernández-Arteseros, J. A., Barbosa, J., Compa ó, R., et al. Analysis of quinoloneresidues in edible animal products. J. Chromatogr. A2002,945,1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700