骤冷骨架Ni和纳米Pt/C催化芳环和硝基加氢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨架Ni是最常用的加氢催化剂之一,它与产品容易分离,且可重复使用;如何提高骨架Ni的活性和选择性,延长其寿命是国内外长期关注的热点问题。采用快速凝固技术制备的骤冷骨架Ni是高效的、环境友好的催化材料,具有比常规骨架Ni更高的催化活性。文献中关于骤冷骨架Ni在精细化工领域中的应用资料记载较少。本论文采用水冷法和快速骤冷法分别得到了两种NiMoAl前驱体合金,碱活化后制备了常规骨架Ni和骤冷骨架Ni催化剂。论文研究了常规骨架Ni和骤冷骨架Ni催化剂在芳环和硝基加氢中的应用。结果表明,骤冷骨架Ni催化剂具有更高的催化活性。
     1、通过联苯选择性加氢制备环己基苯的反应,考察了骤冷骨架Ni催化剂在芳环加氢中的应用。以THF为溶剂,在70℃,1.0MPa下反应4h,联苯100%转化,环己基苯收率达到99.4%。动力学研究测得了联苯和环己基苯加氢反应的活化能,依次为36.1kJ·mol-1和44.7kJ.mol-1。采用Gaussian03程序计算得到环己基苯两个环的二面角约为90°,而联苯的二面角则为40~51°,由此解释了空间位阻可能是抑制环己基苯进一步加氢的主要原因。
     2、在精细高分子材料“C9石油树脂”不饱和芳烃的深度加氢中,采用常规骨架Ni催化剂,THF为溶剂,在180℃,7.0MPa下反应3h,加氢后C9石油树脂色相小于1#,产品指标完全达到国际市场要求,并在50L高压釜上完成了中试放大实验。采用骤冷骨架Ni代替常规骨架Ni催化剂后,催化剂用量进一步降低了23.5%。该成果已进行了工业放大,并取得了一次性开车成功。
     3、将常规骨架Ni和骤冷骨架Ni应用于3-(β-羟乙基砜)硝基苯加氢制备3-(β-羟乙基砜)苯胺,比较了催化剂的活性和寿命。骤冷骨架Ni在70℃,1.0MPa下反应4h,原料转化率为100%,产品收率在97%以上,比常规骨架Ni活性高、寿命长。在小试实验的基础上,进行了工业放大实验。骤冷骨架Ni经过循环套用后平均单耗仅为1.23%,而常规骨架Ni为2.10%。催化剂耗量下降了40%以上,节约了生产成本。通过HPLC-MS跟踪反应过程,对反应历程进行了初步探讨。
     4、骤冷骨架Ni催化间二硝基苯的加氢制备3-羟氨基-硝基苯加氢反应中选择性不理想,通过实验发现胶体法制备的负载型纳米Pt/C能够高选择性地催化芳香硝基化合物加氢制备芳香羟胺。采用Pt/C催化剂,THF为溶剂,在10℃,0.1MPa条件下,间二硝基苯的转化率为100%,3-羟氨基-硝基苯的选择性可达92.3%。
Skeletal Ni(S-Ni) with the sponge-like structure is a kind of well-known catalyst widely used in many hydrogenation processes. S-Ni offers several advantages such as easy separation, purification and recycling procedure. How to improve the activity, selectivity and life time of the S-Ni has been attracting worldwide attention for decades. The skeletal Ni prepared by rapidly quenching technique(QS-Ni), was a sort of effective and environmentally benign catalyst. In petrochemical industry, QS-Ni has been applied for the hydrorefining of hexanolactam using magnetically stabilized bed reactor. However, very limited knowledge has been accumulated on the application of QS-Ni in fine chemicals. In this thesis, the S-Ni and QS-Ni were separately obtained by the conventional method and rapidly quenching technique. We studied typical applications of S-Ni and QS-Ni in the hydrogenation of aromatic rings and nitro groups. Results showed that the QS-Ni was much more active than S-Ni.
     1. The application of QS-Ni in the hydrogenation of aromatic ring was studied by the selective hydrogenation of biphenyl(BP) to cyclohexylbenzene(CHB).The QS-Ni showed excellent activity and selectivity to CHB. Excellent 100% BP conversion and 99.4% CHB selectivity were obtained in one-pot reaction under 70℃and 1.0MPa H2 pressure. Effects of different reaction parameters were also investigated and the rate constant at different temperature was calculated. The activation energy for BP and CHB hydrogenation separately were 36.1 kJ·mol-1 and 44.7kJ·mol-1. The molecule structures of BP and CHB were optimized to one of their minimum-energy isomers using the Gaussian03 quantum chemistry code and frequency calculation was performed. Results showed that the dihedral of BP (40~51°) is smaller than that of CHB(90°). The geometric effect may play important roles in controlling the selectivity to CHB.
     2. S-Ni catalyst was used for the efficient deep hydrogenation of C9 Petroleum resin (C9PR). The reaction was conducted at 180℃and 7.0MPa H2 pressure. The products are colorless (less than 1# by Fe-Co colorimeter) with excellent thermal stability, light resistance and compatibility with other resins. The C9PR hydrogenation in pilot scale was successfully finished in 50L autoclave. After making use of C9-solvent and QS-Ni, the production cost was remarkably decreased. The consumed amounts of QS-Ni decreased 23.5% comparing with that of S-Ni. Based on the experimental results, the C9PR hydrogenation process in commercial scale had been successfully running in Daqing Huake Co. Ltd..
     3. The activity and life time of S-Ni and QS-Ni were compared in the hydrogenation of 3-(β-nitro-benzenesulfonyl)-ethanol to 3-(β-amino-benzenesulfonyl)-ethanol. Under 70℃and 1.0MPa H2 pressure, the conversion was 100% and the selectivity was higher than 97% over QS-Ni. The QS-Ni showed better performance than S-Ni and was repeatedly recycled for 30 times, when the activity still remained. Based on the above results, the S-Ni and QS-Ni were used for the hydrogenation of 3-(β-nitro-benzenesulfonyl)-ethanol industrially. The unit consumption of QS-Ni(1.23%) was lower than the consumption of S-Ni(2.10%). The component concentration during the reaction process was monitored by HPLC and the reaction mechanism was studied.
     4. The QS-Ni was used for the preparation of N-arylhydroxylamine(HA) by catalytic hydrogenation method, however, the selectivity was low and far behind satisfaction. The Pt colloid supported on carbon was tested to be an active and selective catalyst for the partial hydrogenation of nitroaromatics to the corresponding HAs, indicating this was an additive-free green catalytic approach for synthesis of HA. In order to explore the hydrogenation reaction mechanism of the formation of HA, m-dinitrobenzene was chosen as a model substrate. Under 10℃and 0.1 MPa H2 pressure, the maximum yield of N-(3-nitro-phenyl)-hydroxylamine was 92.3% at 100% conversion.
引文
[1]Rylander P N. Ulmann's Encyclopedia of Industrial Chemistry [M].5th edition. Weinheim: VCH,1989, A13,195.
    [2]胡华荣.猝冷骨架Ni样品的制备、表征、催化及吸附脱硫性质研究[D].上海:复旦大学化学系,2005.
    [3]Klement K, Willens R H, Duwez P. Non-crystalline Structure in Solidified Gold-Silicon Alloys [J]. Nature,1960,187:869-870.
    [4]Raney M. Method of preparing catalytic material [P]. US 1563587,1925.
    [5]Raney M. Method of producing finely divided nickel [P]. US 1628190,1927.
    [6]Nakabayashi I, Nagao E, Miyata K, et al. Spectroscopic study on plate-and sponge-type Raney nickel electrodes for fuel cells [J]. Journal of Materials Chemistry,1995,5(5): 737-742.
    [7]Sane S, Bonnier J M, Damon J P, et al. Raney metal catalysts. Ⅰ. Comparative properties of Raney nickel proceeding from nickel-aluminum intermetallic phases [J]. Applied Catalysis:General,1984,9(1):69-83.
    [8]Bakker M L, Young D J, Wainwright M S. Selective leaching of nickel-aluminum (NiAl3 and Ni2Al3) intermetallics to form Raney nickels [J]. Journal of Materials Science,1988, 23(11):3921-3926.
    [9]江志东,陈瑞芳,王金渠.雷尼镍催化剂[J].化学工业与工程,1997,14(2):23-32.
    [10]Freel J, Pieters W J M, Anderson R B. The structure of Raney nickel:Ⅰ Pore structure [J]. Journal of Catalysis,1969,14:247-256.
    [11]Freel J, Pieters W J M. The structure of Raney nickel:Ⅱ Electron microprobe studies [J]. Journal of Catalysis,1970,16:281-291.
    [12]Khaidar M, Allibert C, Driole J, et al. Composition, structure and crystallite size of Raney catalysts proceeding from several Ni-Al and Fe-Al intermetallic phases [J]. Materials Research Buttetin,1982,17:329-337.
    [13]雷浩.快凝Ni-Al合金结构及衍生骨架Ni催化剂加氢特性的研究[D].大连:中国科学院研究生院(大连化学物理研究所),2003.
    [14]Fouilloux P, Martin G A, Renouprez A J, et al. Texture and structure of Raney nickel [J]. Journal of Catalysis,1972,25(2):212-222.
    [15]Freel J, Robertson S D, Anderson R B. Structure of Raney nickel. Ⅲ. Chemisorption of hydrogen and carbon monoxide [J]. Journal of Catalysis,1970,18(3):243-248.
    [16]Birkenstock U, Holm R, Reinfandt B, et al. Surface analysis of Raney catalysts [J]. Journal of Catalysis,1985,93(1):55-67.
    [17]Fouilloux P. The nature of Raney nickel, its adsorbed hydrogen and its catalytic activity for hydrogenation reactions (review) [J]. Applied Catalysis,1983,8(1):1-42.
    [18]Robertson S D, Anderson R B. Structure of Raney nickel. Ⅳ. X-ray diffraction studies [J]. Journal of Catalysis,1971,23(2):286-294.
    [19]Yoshino T, Abe T, Abe S, et al. Surface characteristics and activities of plate-type Raney nickel catalyst [J]. Journal of Catalysis,1989,118(2):436-442.
    [20]Gallezot P, Cerino P J, Blanc B, et al. Glucose hydrogenation on promoted Raney-nickel catalysts [J]. Journal of Catalysis,1994,146(1):93-102.
    [21]赵纯洁,夏少武.骨架镍催化剂活性原因的分析[J].青岛化工学院学报,2002,23(3):12-15.
    [22]Bonnier J M, Damon J P, Masson J. New approach to skeletal nickel catalysts:catalytic properties of the nickel-chromium system [J]. Applied Catalysis,1988,42(2):285-297.
    [23]于甦生,吴指南,薛立我等.在改性骨架镍催化剂上丁炔二醇加氢制1,4-丁二醇[J].石油化工,1989,18(3):148-153.
    [24]Montgomery S R. Catalysis of Organic Reactions [M]. New York:Marcel Dekker,1981:393-409
    [25]Pardillos-Guindet J, Metais S, Vidal S, et al. Electrode potential of a dispersed Raney nickel electrode during acetone hydrogenation:Influence of the promoters [J]. Applied Catalysis, A:General,1995,132(1):61-75.
    [26]石川重三郎.日本化学会志[M],1961,82:135.
    [27]许丹倩,胡智燕,严新焕等.改性骨架镍催化加氢合成2,4-二氯-5-异丙氧基苯胺[J].农药,2003,42(10):20-21.
    [28]Augustine R L. Catalytic Hydrogenation:Technique and application in Organic Synthesis [ML NewYork:Marcel Dekker Inc,1965:27-32.
    [29]Hamar-Thibault S, Koscielski T, Damon J P, et al. Structure of Raney nickel catalysts modified by chromium hydroxide deposition [J]. Applied Catalysis,1989,56(1):57-71.
    [30]Hamar-Thibault S, Masson J, Fouilloux P, et al. Selective hydrogenation of acetophenone on chromium promoted raney nickel catalysts:I. Characterization of the catalysts [J]. Applied Catalysis A:General,1993,99(2):131-145.
    [31]Liu B J, Lu L H, Wang B C, et al. Liquid phase selective hydrogenation of furfural on Raney nickel modified by impregnation of salts of heteropolyacids [J]. Applied Catalysis A:General,1998,171(1):117-122.
    [32]刘百军,蔡天锡.杂多酸盐修饰骨架镍催化剂上肉桂醛的选择加氢[J].分子催化,2003,17(4):270-273.
    [33]Chen H N, Li R, Wang H L, et al. Highly efficient enantioselective hydrogenation of methyl acetoacetate over chirally modified Raney nickel catalytic system [J]. Journal of Molecular Catalysis A:Chemical,2007,269(1-2):125-132.
    [34]Koscielski T, Bonnier J M, Damon J P, et al. Catalytic hydrogenation on Raney nickel catalyst modified by chromium hydroxide deposition [J]. Applied Catalysis,1989,49(1): 91-99.
    [35]Mikhailenko S D, Fasman A B, Maksimova N A, et al. Influence of preparation conditions on structure and physicochemical properties of multicomponent Raney nickel catalysts [J]. Applied Catalysis,1984,12(2):141-150.
    [36]Klein J C. Surface analysis by x-ray photoelectron spectroscopy and Auger electron spectroscopy of molybdenum-doped Raney nickel catalysts [J]. Analytical Chemistry, 1984,56:685-689.
    [37]Koscielski T, Bonnier J M, Damon J P, et al. Catalytic hydrogenation on Raney nickel catalyst modified by chromium hydroxide deposition [J]. Applied catalysis,1989,49:91-99
    [38]李云明,王芬.非晶态材料的制备技术综述[J].陶瓷,2008,8,12-14.
    [39]姬文晋,黄慧民,邓淑华等.非晶态合金催化剂的制备及其应用.材料导报,2006,20(5),73-77.
    [40]Narasimhan M C. Continuous casting method for metallic amorphous strips [P]. US 4221257, 1980.
    [41]Klement W J, Willens R H, Duwez P. Noncrystalline structure in solidified gold-silicon alloys [J]. Nature,1960,187:869-870.
    [42]张荣生,刘海洪.快速凝固技术[M].北京:冶金工业出版社,1994.
    [44]吴慧军,沈刚,杨俊杰等.非晶态合金催化剂的制备与SR-NA-4催化剂的加氢性能[J].石油化工,2003,32(11):986.
    [45]Liu B, Qiao M H, Deng J F, et al. Skeletal Ni Catalyst Prepared from a Rapidly Quenehed Ni-Al Alloys and Its High Selectivity in 2-Ethylanthraquinone Hydrogenation [J]. Journal of Catalysis,2001,204:512-515.
    [46]Hu H R, Xie F Z, Pei Y et al. Skeletal Ni catalysts prepared from Ni-Al alloys rapidly quenched at different rates:Texture, structure and catalytic performance in chemoselective hydrogenation of 2-ethylanthraquinone [J]. Journal of Catalysis,2006, 237 (1):143-151.
    [47]Zhang H F, Wang A M, Li H, et al. Microstructure and catalytic properties of rapidly quenched Ni-Al-Cr-Fe alloy [J]. Material Letters,2008,48 (6):347-350.
    [48]汪颖,慕旭宏,宗保宁.非晶态合金催化剂在己内酰胺生产中的应用[J].石油化工,2001,30(8):631-634.
    [49]杨克勇,汪颖,赵成军等.一种非晶态合金催化剂加氢精制己内酰胺水溶液新工艺的开发[J].石油炼制与化工,2001,32(7):21-24.
    [50]吴浩,潘智勇,宗保宁等.非晶态Ni合金催化剂用于低温甲烷化反应的研究[J].化工进展,2005,24(3):299-302.
    [51]杨从新.非晶态合金催化剂的表征与应用研究综述[J].山东化工,2007,36:10-12.
    [52]幕旭宏,王宣,宗保宁等.非晶态合金催化剂用于葡萄糖加氢制山梨醇的研究[J].精细化工,1999,16(5):41-43.
    [53]王家钧.直接甲醇染料电池阴极Pt/C催化剂的研究[D].哈尔滨:哈尔滨工业大学,2008.
    [54]Liu C P, Xue X Z, Lu T H, et al. The Preparation of High Activity DMFC Pt/C Electrocatalysts Using a Pre-precipitation Method [J]. Journal of Power Sources,2006,161:68-73.
    [55]Hui C L, Li X G, Hsing I M. Well-dispersed Surfactant-stabilized Pt/C Nanocatalysts for Fuel Cell Application:Dispersion Control andSurfactant Removal [J]. Electrochimica Acta 2005,51:711-719.
    [56]朱科,张继炎,陈延禧.微乳液法制备PEMFC用Pt/C电催化剂[J].电池,2004,34(5),371-372.
    [57]Kurihara L K, Chow G M, Schoen P E. Nanocrystalline metallic powders and films produced by the polyol method [J]. Nanostructured Materials,1995,5(6):607-613.
    [58]Bonet F, Delmas V, Grugeon S, et al. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol [J]. Nanostructured Materials,1999,11(8):1277-1284.
    [59]Yan X P, Liu H F, Li K Y. Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction [J]. Journal of Materials Chemistry,2001,11(12):3387-3391.
    [60]Yu W Y, Tu W X, Liu H F. Synthesis of nanoscale platinum colloids by microwave dielectric heating[J]. Langmuir,1999,15(1):6-9.
    [61]Tu W X, Liu H F. Continuous synthesis of colloidal metal nanoclusters by microwave irrdiation [J]. Chemistry of Materials,2000,12(2):564-567.
    [62]Yang J, Deivaraj T C, Too H P, et al. Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol [J]. Langmuir,2004, 20(10):4241-4245.
    [63]俞贵艳,陈卫祥,赵杰,聂秋林.Pt/C纳米复合材料的合成与表征[J].浙江大学学报,2006,40(2):330-333.
    [64]梁营.直接甲醇燃料电池阳极碳纳米管和碳黑负载Pt基催化剂的研究[D].厦门:厦门大学,2007.
    [65]廖世军,谌敏.有机溶胶法制备Pt/C催化剂的影响因素[J].华南理工大学学报,2008,36(11):1-6.
    [66]Zhao J, Chen W X, Zheng Y F, et al. Microwave Polyol Synthesis of Pt/C Catalysts with Size-controlled Pt Particles for Methanol Electrocatalytic Oxidation [J]. Journal of Materials Science,2006,41:5514-5518.
    [67]Yasude K, Nishimura Y. The deposition of ultrafine platinum particles on carbon black by surface ion exchange-increase in loading amount [J]. Materials chemistry and physics, 2003,82:921-928.
    [68]胡传跃,李新海,王志兴等.锂离子电池电解液过充添加剂的行为[J].中国有色金属学报,2004,14(12): 2125-2130.
    [69]Suggit R, Crone J, Arkell A. Hydrogenation catalyst and process [P]. US 3760018,1973.
    [70]Crone J, Arkell A. Hydroalkylation catalyst and process [P]. US 3760019,1973.
    [71]Murtha T, Zuech E. Hydroalkylation process using multi-metallic zeolite catalyst [P]. US 4094918,1978.
    [72]Murtha T. Hydroalkylation using a rhenium, nickel, rare earth zeolite [P]. US 4152362, 1979.
    [73]Murtha T, Zuech E. Hydroalkylation using multi metallic zeolite catalyst [P]. US 4094920, 1978.
    [74]Murtha T, Zuech E. Hydroalkylation using nickel-ruthenium catalyst on zeolite type support [P].US 4268699,1981.
    [75]Ichiro M, Sadao D, Takemi Y, et al. Production of cyclohexylbenzene[P]. JP 52062253,1977.
    [76]Ichiro M, Takemi Y, Junichi K, et al. Production of cyclohexylbenzene [P]. JP 53108952, 1978.
    [77]Roman D S, James V L. Hydroalkylation of benzene and analogues [P]. DE 2756628,1978.
    [78]邱俊.Pd/Hβ双功能催化剂上苯加氢烷基化合成环己基苯[J].催化学报,2007,28(3),246-250.
    [79]先雪峰,周刚.苯基环己烷的制备方法[P].中国专利,1982263,2007.
    [80]方云进,郭欢欢.离子液体催化苯与环己烯的烷基化合成环己基苯[J].精细化工中间体,2008,25(4),405-408.
    [81]Rylander P, Steele D. Process for the selective hydrogenation of biphenyl and dipyridyl and derivatives thereof [P]. US 3387048,1968.
    [82]Gelman F, Avnir D, Schumann H, et al. Sol-gel entrapped Rh2Co2 (CO) 12:a catalyst precursor for efficient arene hydrogenation [J]. Journal of Molecular Catalysis. A, Chemical,2001, 171(1-2):191-194.
    [83]Tsukinoki T, Kanda T, Liu G B, et al. Organic reaction in water. Part 3:A facile method for reduction of aromatic rings using a Raney Ni-Al alloy in dilute aqueous alkaline solution under mild conditions [J]. Tetrahedron Letter,2000,41(31):5865-5868.
    [84]Shinichi N, Satoru M, Tetsuo S, et al. Hydrogenation of Biphenyls over the Hydrogen Storage Alloy MmNi3.5Co0.7Al0.8H4 [J]. Chemistry Letter,1994, (3):431-432.
    [85]Liu G B, Tsukinoki T, Kanda T, et al. Organic Reaction in water. Part 2. A new method for dechloriniation of chlorobiphneyls using a Raney Ni-Al alloy in dilute aqueous alialine solution [J]. Tetrahedron Letter,1998,39(33):5991-5994.
    [86]雷鸣,耿亮,王彦广.4-苄基氨甲酰苯基苯胺三氟甲磺酸盐:一种新型高效Friedel-Crafts苄基化和环己基化反应的催化剂[J].有机化学,2003,23(5):438—440.
    [87]范大武.C9石油树脂的研究应用进展[J].广州化工,2009,37(5):54-57.
    [88]韩松.C9石油树脂的研究现状[J].当代化工,2008,37(5),503-507.
    [89]汪宝和,刘邦孚芳烃石油树脂的生产及研究进展[J].现代化工,1997,(6):12-14.
    [90]林力.C9石油树脂的生产工艺及其应用[J].化学工程与装备.2008,9,106-107.
    [91]王金红,涂伟萍,廖东亮.C9石油树脂的研究进展[J].涂料工业,2002,10,29-32.
    [92]Okazaki T, Nagahara E, Keshi H, et al. Process for producing hydrogenated C9 petroleum resin and hydrogenated C9 petroleum resin [P]. US 6458902,2002.
    [93]Jay M M, Michael N G, Leonard R, Hecker et al. Synthesis and Biological Evaluation of Novel Indoloazepine Derivatives as Non-peptide V asopressin V2 Receptor Antagonists [J]. Bioorganic and Medicinal Chemistry Letters,2003,13:753-756.
    [94]Kim Y, Nam N H, You Y J, et al. Synthesis and Cytotoxicity of 3,4-Diaryl-2(5H)-furanones [J]. Bioorganic and Medicinal Chemistry Letter,2002,12:719-722.
    [95]武引文,吕新英.氯化亚锡还原法合成2,4,5-三甲氧基苯胺[J].河北化工,2000,(1):32-33.
    [96]Manas K B, Frederick F B, Bimal K B. Ultrasound-promoted highly efficient reduction of aromaticnitro compounds to the aromatic amines by samarium/ammonium chloride [J]. Tetrahedron Letters,2000,41(30):5603-5606.
    [97]Bhaumik K, Akamanchi K G. Nitroarene reduction using raney nickel alloy with ammonium chloride in water [J]. Canadian Journal of Chemistry,2003,81:197-200.
    [98]Banik B K, Mukhopadhyay C, Venkattaman M S et al. A facile reduction of aromatic nitro compounds to aromatic amines by samarium and iodine [J]. Tetrahedron Letter,1998,39: 7243-7246.
    [99]Lee J G, Choi K I, Koh H Y et al. Indium-mediated reduction of nitro and azide groups in the presence of HCl in aqueous media [J]. Synthesis,2001, (1):81-84.
    [100]张胜帮,吴美宁,冯玲玲.电合成对氯苯胺[J].精细化工,2006,23(1):74-76.
    [101]刘欣,王金霞,顾登平等.电化学法制备对氨基苯甲酸[J].精细化工,2006,23(9):921-923.
    [102]马宁,张含平,王正平.电解还原法合成对氨基苯酚[J].化学工程师,2004,5:61-62.
    [103]刘峥,吕慧丹.电解还原法合成间苯二胺[J].合成化学.2003,11(2):170-174.
    [104]吕荣文,张竹霞,张珂珂.水合肼还原对硝基乙酰苯胺的研究[J].染料与染色,2003,40(4):223-227.
    [105]Kumbhar P S, Valente J S. Mg-Fe hydrotalcite as a catalyst forthe reduction of aromatic nitro compoundswith hydrazine hydrate [J]. Journal of Catalysis,2000,191:467-473.
    [106]吕荣文,张竹霞,高昆玉.芳香基物的水合肼催化还原研究进展[J].染料与染色,2003,40(3):160-162.
    [107]赵海丽,姚开胜.催化还原硝基芳烃的研究现状及进展[J].化工进展,2008,27(12):1887-1902.
    [108]Blaser H. A Golden Boost to an Old Reaction [J]. Science,2006:312-313.
    [109]Richardson J T. Principles of Catalyst Development. Plenum Press, New York,1989.
    [110]Chen B, Dingerdissen U, Krauter J G E, et al. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Applied Catalysis A: general.2005,280:17-46.
    [111]侯洁.二硝基苯类化合物选择性催化加氢制备硝基芳胺的研究[D].大连:大连理工大学,2008
    [112]林乐森,吴祖望,王云德等.还原烷基化合成 m-(β-羟乙基砜)-N-乙基苯胺副反应的研究[J].染料工业,1999,36(3):1-5.
    [113]单尚,胡耿源,刘清.间硝基苯基-β-羟乙基砜的合成改进及表征[J].精细化工,1997(1):52-55.
    [114]化工部染料工业科技情报中心站.化工产品手册[M],北京化工出版社,1994:P761.
    [115]姜麟忠.催化氢化在有机合成中的应用[M].北京:化学工业出版社,1987,5.
    [116]吕连海,郭方,杜文强等.一种氯代芳香硝基化合物高选择性催化加氢制备氯代芳胺的方法[P].中国专利,200610047703.5,2006.
    [117]郭方,王越,吕连海.高分散度Ru/C选择性催化对氯硝基苯加氢制备对氯苯胺[J].精细化工,2007,24(2):252-256.
    [118]宋东明,李树德,包令杰等.间氨基苯-β-羟乙基砜合成工艺研究[J].染料工业,1993,30(3):26-29.
    [119]金杏妹,倪和平,徐青.m-β-羟乙基砜硝基苯催化加氢制m-β-羟乙基砜苯胺[J].华东理工大学学报,2000(2):208-211.
    [120]王桂林,王纪康,严巍等.催化加氢制备间-β-羟乙基砜苯胺[J].染料工业,2002,39(4):25-26.
    [121]韦少平,覃国红,韦志明等.硝基苯电解还原制对氨基苯酚[J].化工技术与开发,2003,32(04):1-3.
    [122]Kamm 0, Marvel C S.0-phenylhydroxylamine[J]. Organic Syntheses Collective vol.Ⅰ, 1941:445.
    [123]Ung S, Falguieres A, Guy A, et al. Ultrasonically activated reduction of substituted nitrobenzenes to corresponding N-arylhydroxylamines[J]. Tetrahedron Letter.2005,46: 5913-5917.
    [124]Shi Q X, Lu R W, Jin K, et al. Ultrasound-promoted Highly Chemoselective Reduction of Aromatic Nitro Compounds to the Corresponding N-Arylhydroxylamines Using Zinc and HC00NH4 in CH3CN[J]. Chemistry Letters,2006,35:226-227.
    [125]任平达,潘士峰,董庭威等.NaBH4/BiCl3复合体系还原芳香硝基化合物为氧化偶氮苯及其类似物[J].化学学报,1998,56:714-718.
    [126]Uchida S, Yanada K. Synthesis of N-Arylhydroxylamines by Tellurium-Catalyzed Reduction of Aromatic Nitro Compounds [J]. Chemistry Letters,1986:1069-1070.
    [127]Yanada K, Yamaguchi H, Meguri H, et al. Selenium-catalysed reduction of aromatic nitro compounds to N-arylhydroxylamines [J]. Journal of the Chemical Society. Chemcial Communication,1986,22:1655-1656.
    [128]Bartra M, Romea P, Urp F, et al. A fast procedure for the reduction of azides and nitro compounds based on the reducing ability of Sn(SR)3-species [J]. Tetrahedron,1990, 46(2):587-592.
    [129]Li F, Cui J N, Qian X H, et al. A novel strategy for the preparation of arylhydroxylamines: chemoselective reduction of aromatic nitro compounds using bakers'yeast [J]. Chemical Communication,2004:2338-2339.
    [130]Li F, Cui J N, Qian X H, et al. Highly chemselective reduction of aromatic nitro compounds to the corresponding hydroxylamines catalysed by plant cells from a grape [J]. Chemical Communication,2005:1901-1903.
    [131]李仲英,李江胜,刘卫东等.(杂)芳基羟胺合成研究进展[J].精细化工中间体,2003,33(5):5-8.
    [132]Rylander P N, Karpenko I M, Pond G R. Selective hydrogenation of nitroaromatics to the corresponging N-aryldroxylamine [P]. US 3694509,1972.
    [133]Chapman D W, Caskey D C. Process for the preparation of arylhydroxylamines [P]. EP 0086363,1983.
    [134]Davis G C. Moderated reduction reactions for producing aryldroxylamines [P]. US 4723030, 1988.
    [135]Ludec J L. Process for the preparation of hydroxylamines by hydrogenation of aromatic nitro derivatives [P]. US 3927101,1975.
    [136]Sharma A H, Hope P. Process for the preparation of a hydroxylamine[P]. US 5166435,1992.
    [137]Lim D H, Lu L H, Kim D B, et al. Binary-surfactant (Brij 35+Tween 20) assisted preparation of highly dispersed Pt nanoparticles on carbon [J]. Journal of Nanoparticle Research,2008,10 (7):1215-1220.
    [138]闫田胜,满振英.大庆华科C9石油树脂装置现状及发展对策[J].化学工程师,2008,148(1),49-51.
    [139]ISO 3839-78《石油产品和商品脂肪烯烃类—溴值的测定—电位滴定法》[S].
    [140]范广宁.低烯烃油料溴值测定误差分析.精细石油化工,2004,(4):56-57.
    [141]王福善.高性能石油树脂及加氢催化剂的研究[D].兰州:兰州大学,2007.
    [142]唐培堃.中间体化学及工艺学[M].北京:化学工业出版社,1984:P177.
    [143]Holler V, Wegricht D, Yuranov I, et al. Three-phase Nitrobenzene Hydrogenation over Suppported Glass Fiber Catalysts Reaction Kinetics Study [J]. Chemical Engineering Technology,2000,23(3),251-255.
    [144]Gelder E A, Jackson S D, Lok C M. The hydrogenation of nitrobenzene to aniline:a new mechanism [J]. Chemical Communication,2005:522-524.
    [145]吴祖望,彭孝军,战莉洁.硝基物还原—烷基化制N-单烷基芳胺的方法[P],中国专利,95114004.3,2001.
    [146]Zhou X J, Wu Z W, Lin L, et al. Selected synthesis of N-monoalkyl arylamines from nitro aromatic compound by reduction-alkylation [J]. Dyes and pigments,1998,36:365.
    [147]吕连海,郭方,辛俊娜等.一种高活性加氢催化剂Ru/C的制备方法[P].中国专利,200610047701.6,2006.
    [148]吕连海,辛俊娜,杜文强等.一种由胶体溶液制备负载型纳米Pd/C催化剂的方法[P].中国专利,200610047702.0,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700