己二酸绿色催化合成的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
己二酸是一种非常重要的脂肪族二元酸,工业用途广泛。现有的己二酸的工业生产中主要采用硝酸氧化工艺,该工艺产生了大量的N_2O、NO_x等有害气体和废酸液,造成了严重的环境污染。在环保压力日益增大的情况下,开发一种从源头上杜绝污染的绿色合成己二酸技术已成为化学领域中的一个重要课题。
     随着各种绿色合成己二酸技术的提出和深入研究,以绿色氧化剂H_2O_2催化氧化环己烯合成己二酸的技术受到了广泛的关注。在前人研究的基础上,我们实验室成功开发出一种以30%H_2O_2为氧化剂,以Na_2WO_4为催化剂前驱体,催化氧化环己烯合成己二酸的新工艺。该工艺完全去掉了相转移剂和有机配体,排除了杂质对产品纯度的影响,明显提高了环己烯氧化合成己二酸的一次分离结晶产率,我们还对催化剂的循环使用效果以及催化反应的放大效果进行了系统的研究。在这些研究成果的基础上,本论文对该动力学与反应机理进行了更加深入的考察和研究。
     1、反应热力学计算分析
     采用Gaussian03软件、查兰氏手册和基团加和法估算了主反应和可能发生的反应的热力学函数,从热力学上分析了反应进行的趋势,认为主反应在热力学上能够进行且有优势;采用Gaussian03软件计算了Noyori等提出的反应历程的每一步热力学函数,分析了其可行性。
     2、反应动力学及其机理研究
     研究反应过程中双氧水的动力学行为,实验考察了H_2O_2在不同酸度和不同温度反应体系中的反应动力学,认为在绿色合成己二酸过程中,H_2O_2在该反应体系中存在平行反应机理,同时发生两种反应,一是氧化环己烯,二是分解生成氧气,这两种反应存在竞争关系;在较低温度下,双氧水反应级数为零级当;pH=0.3、T=72℃时双氧水利用率最高,最有利于环己烯的氧化反应进行。
     实验考察了环己烯的动力学行为,求取了环己烯不同条件下的反应级数和反应速率常数。在pH=0.3的最佳反应条件下,环己烯的反应级数为2,反应活化能为95.628 kJ/mol。
     研究了产物己二酸的动力学行为,发现随着温度的升高,己二酸反应速率常数增大,反应级数也随之增大。最后提出涉及钨—二氧配合物催化剂的配位催化反应机理。
Adipic acid is a very important dibasic acid and is widely used in industry. The main industrial production process of adipic acid is nitric acid oxidation process, which generates large volumes of N_2O, NOx, and other harmful gases and waste acid, causing serious environmental pollution. With the increasing of environmental protection pressure, the development of green synthesis process for adipic acid have become an important subject in chemical industry.
     With the green adipic acid synthesis technologies of adipic acid proposed and researched deeply, technology that hydrogen peroxide oxidize cyclohexene to synthesize adipic acid has been widely concerned. Based on the previous research, our lab successfully developed a new technology, in which cyclohexene was directly oxidized with 30% H_2O_2 in homogenous system, without organic solvent, ligands and phase-transfer agents. This technology was very simple and caused no environmental pollution, and the purity of adipic acid could be increased by this method. The recycle of catalyst and scale-up reaction were both studied. In this thesis, the reaction kinetics and mechanism were investigated deeply.
     1. Study on the reaction mechanism
     Thermodynamic energy data of the main reaction and all the possible reactions was estimated with the Gaussian 03 program, Lange's Handbook of Chemistry and the group adding method, meanwhile the tendency of each reaction was analyzed. The main reaction is prior to the others in thermodynamics. Then, thermodynamic energy data of each step of the proximate reaction path introduced by Noyori was calculated by the Gaussian 03 program in order to confirm its feasibility.
     2. Study on reaction kinetics
     The reaction kinetics study of hydrogen peroxide under various acidic conditions and temperatures was performed. There was a parallel reaction mechanism in the green synthesis process of adipic acid, in which the hydrogen peroxide either oxidized cyclohexene or decomposed into water and oxygen, and the two reaction paths were competed with each other. The reaction order of hydrogen peroxide is 0 at low temperature.At pH = 0.3 and T = 72℃, utilization of hydrogen peroxide reached the maximum, which is the most favorable conditions to epoxidation of Cyclohexene.
     The kinetics behavior of cyclohexene under various acidity conditions and temperatures was studied, and the reaction order and rate constant was estimated. At pH = 0.3, which is the best reaction condition, the reaction order is the 2~(nd) and the activation energy is 95.628 kJ/mol.
     The kinetics behavior of adipic acid in the reaction was studied, too. As a result, both the reaction constant and the reaction order are increased as the temperature rises. Finally, we proposed coordination catalytic reaction mechanism that involved Tungsten-dioxygen complex catalyst.
引文
[1]魏文德编.有机化工原料大全.北京:化学工业出版社,1998,627-633.
    [2]苗永霞.己二酸绿色催化合成研究:郑州大学硕士学位论文.郑州大学,2003.
    [3]刘莹.己二酸绿色催化合成研究—钛硅催化剂体系及均相放大体系:郑州大学硕士学位论文.郑州大学,2005
    [4]郭中伟.己二酸绿色合成催化剂重复使用和放大反应的研究:郑州大学硕士学位论文.郑州大学,2005
    [5]连春红.磷钨杂多酸盐催化氧化环己烯合成己二酸的研究:郑州大学硕士学位论文.郑州大学,2006.
    [6]杨杏尘.己二酸生产工艺的新进展.合成纤维工业,1995,18(2):39-45
    [7]戴新民.己二酸生产工艺技术路线评述.河南化工,1996,12:2-5
    [8]杨学萍.己二酸生产技术现状及发展动向.精细石油化工进展,2004,5(9):15-19.
    [9]潘强,盛琳,曹莉,赵军辉.己二酸生产工艺比较.河南化工,2004,5:10-11.
    [10]田文平,贾飞,张华.己二酸的国内外生产消费现状及发展.化工中间体,2005,3:1-4.
    [11]梁程.己二酸合成技术进展与市场分析.石油化工技术经济,2006,(3):45-50.
    [12]刘周恩,章亚东,连春红.己二酸合成工艺研究进展评述.当代化工,2006,35(3):179-185
    [13]H. C. Zeng, X.Y. Pang. Catalytic decomposition of nitrous oxide on alumina-supported ruthenium catalysts Ru/Al_2O_3. Appl Catal B, 1997, 13: 113-122.
    [14]H. Hugl, C. Gürtler. Chemical industry reduces emissions-from production to the consumer. Chemosphere, 2001, 43: 17-20.
    [15]A. Shimizu, K. Miura, K. Tagawa. A thermal decomposition process for the N_2O produced in an adipic acid plant. Journal of Chemical Engineering of Japan, 2004, 37 (6): 808-813.
    [16] R. E. Dickinson, R. J. Cicerone. Future global wanning from atmospheric trace gases. Nature, 1986,319 : 109-115.
    [17] P. P. Knops-Gerrits, F. Thibault-Starzyk, P. A. Jacobs. Adipic acid synthesis via oxidation of cyclohexene over zeolite occluded manganese diimine complexes, stata of the art. Stud Surf Sci Catal, 1994, 84 : 1411-1418.
    [18] G P. Schindler, P. Bartl, W. F. Hoelderich. Oxidative cleavage of cyclohexane derivatives over titanium-containing Y zeolites. Appl Catal A, 1998, 166 (2) :267-279.
    
    [19] U. S. Balk. Metal silicate compositions and catalysts. US: 5830429.
    [20] R. Raja, S. O. Lee, M. Sanchez-Sanchez, G. Sankar, D. M. H. Kenneth, F.G. J.Brian, J. M. Thomas. Towards an environmentally acceptable heterogeneous catalytic method of producing adipic acid by the oxidation of hydrocarbons in air. Topics in Catalysis, 2002, 20 : 85-88.
    [21] S. O. Lee, R. Raja, K. D. M Harris, J. M. Thomas, B. F. G. Johnson, S. Gopinathan. Mechanistic insights into the conversion of cyclohexene to adipic acid by H_2O_2 in the presence of a TAPO-5 catalyst. Angewandte Chemie, International Edition 2003,42(13): 1520-1523.
    [22] G. Lapisardi, F. Chiker, F. Launay, J. P. Nogier, J. L. Bonardet. A "one-pot" synthesis of adipic acid from cyclohexene under mild conditions with new bifunctional Ti-Al-SBA-15 mesostructured catalysts. Catal Comm, 2004, 5 :277-281.
    [23] K. M. Draths, J. W. FROST. Environmentally compatible sythesis of adipic acid from D-glucose. J Am Chem Soc, 1994, 116(1): 399-400.
    [24] K .M. Draths, J. W. Frost. Improving the environment through process changes and product subtitutions, Green Chemistry. Oxford: Oxford University Press, 1998,157-159.
    [25] J. W. Frost, K. M. Draths. Synthesis of adipic acid from biomass-derived carbon sources. US: 5487987.
    [26] S. Ulf, D. Cardoso, R. Sereheli et al. Cyclohexane oxidation continues to be a challenge. Appl Catal A, 2001,211: 1-17.
    [27] Cheng Qiong, N. Vasantha, S. M. Thomas. Biological method for the production of adipic acid and intermediates. US: 6498242.
    [28] Wei Niu, K. M. Draths, J. W. Frost. Benzene-free synthesis of adipic acid. Biotechnol. Prog, 2002, 18: 201-211.
    [29] Euro Chem News, 2002, 76 (1998): 16.
    [30] J. Kauler, H. J. Schaefer, Tetrahedron. 1982, 38, 3299.
    [31] B. V. Lyalin, V. A. Petrosyan. Electrosynthesis of adipic acid by undivided cell electrolysis. Russian Chemical Bulletin, International Edition, 2004, 53 (3): 688-692.
    [32] J. T. Groves, D.V. Subramanian. Hydroxylation by cytochrome P-450 and metalloporphyrin models. J Am Chem Soc, 1984,106 (7): 2177-2181.
    [33] P. E. Ellis, J. E. Lyons. Effect of fluorination of the meso-phenyl groups of selective tetraphenylporphyrinato metal(Ⅲ)-catalysed reactions of isobutene with molecular oxygen. J Chem Soc Chem Commun, 1989,1187-1188.
    [34] P. E. Ellis, J. E. Lyons. Metalloporphyrin in catalytic oxidation (R.A.Sheldon, Ed). New York: Dekker, 1994, 291-296.
    [35] 王旭涛,褚明福,郭灿城.咪哩修饰硅胶配位固载锰(Ⅳ)卟啉对环己烷空气氧化的催化作用.高等学校化学学报,2005,26(1):64-67.
    [36] 郭灿城,郝旭东,张晓兵,郭广明,侯连伯,梁本熹,徐建兵,陈新斌.金属卟啉催化环已烷羟基化反应中环己酮的形成机理研究.化学学报,1998,56,489-494.
    [37] 黄冠,郭灿城.甲壳素铁卟啉制备及其催化空气氧化环己烷研究.分子催化,2005,19(1):36-40.
    [38] 袁营,纪红兵,陈一霞,韩勇,宋旭峰,佘远斌,钟儒刚.仿生催化氧气氧化 环己烷合成己二酸反应条件的研究.现代化工,2004,24(6):40-42.
    [39] Ying Yuan, Hongbing Ji, Yixia Chen, Yong Han, Xufeng Song, Yuanbin She, Rugang Zhong. Oxidation of cyclohexane to adipic acid using Fe-Porphyrin as a biomimetic catalyst. Organic Process Research & Development, 2004, 8, 418-420.
    [40] T. Iwahama, K. Syojyo, S. Sakaguchi, Y. O. Ishii. A new strategy for the preparation of terephthalic acid by the aerobic oxidation of p-Xylene using N-Hydroxyphthalimide as a catalyst. Advanced Synthesis & Catalysis, 1998, 2, 220-225.
    [41] S. A. Chavan, D. Srinivas, P. Ratnasamy. Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO_3 route over Co/Mn cluster complexes. J Catal, 2002, 212: 39-45.
    [42] 周民锋,纪顺俊,黄晓英.微波照射下H_2O_2氧化1,2环己二醇合成己二酸.合成化学,2004,12(1):9-12.
    [43] 袁先友,刘秋华,杨相军.微波促进杂多酸催化双氧水氧化环已酮制备己二酸.湖南科技学院学报,2005,26(11):86-88.
    [44] E. D. Antonelli, R. Aloisio, M. Gambaro, et al. Efficient oxdiative cleavage of olefins to carboxvlic acids with hydrogen peroxide catalyzed by methyltrioctylammonium tetrakis (oxodiperoxotungsto) phosphate (3-)under two-phase conditions. Synthetic aspects and investigation of the reaction course. J Org Chem, 1998, 63 (21): 7190-7206.
    [45] Deng Youquan, Ma Zufu, Chen Jing. Clean synthesis of adipic acid by oxidation of cyclohexene, Green Chem, 1999, 1: 275-276.
    [46] 马祖福,邓友全,王坤等.清洁催化氧化合成己二酸.化学通报,2001,62(2):116-118.
    [47] 李华明,纪明慧,林海强,舒火明,王思远,梁永伟.过氧杂多化合物催化环己烯氧化合成己二酸.石油化工,2003,32(5):374-377.
    [48] H. M. Li, M. H. Ji, H. Q. Lin, et al. Oxidation of Cyclohexene to Adipic Acid Over Peroxopolyoxo Complexes Catalysts. The progress of biotechnology, metal complexes an catalysis. Beijing: China Science & Culture Press, 2002, 82-84.
    [49] C. Venturello, M. Ricci. Process for preparing acids from olefins or vicinal compounds. European Patent 122804.
    [50] T. Oguchi, T. Ura, Y. Ishii, et al. Oxidative cleavage of olefins into carboxylic acids with hydrogen peroxide by tungstic acid. Chem Lett, 1989, 857-860.
    [51] Y. Isbii, K. Yamawaki, T. Ura, et al. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinum chloride. Epoxidation of olefins andallylic alcohols, ketonization of alcohols and diols, and oxidation cleavage ofl, 2-diols and olefins. J Org Chem, 1988, 53(15): 3587~3593.
    [52] 李华明,纪明慧,林海强,舒火明,柳镇安.H_3PW_(12)O_(40)催化合成己二酸.精细化工,2003,20(6):377-380.
    [53] 李华明,纪明慧,林海强,舒火明,邢福标,陈曼莉.杂多酸催化环己烯氧化合成己二酸.应用化学,2003,20(6):570-573.
    [54] 张英群,王春,李贵深,李敬慈.磷钨酸催化过氧化氢氧化环己烯合成己二酸.有机化学,2003,23(1):104-105
    [55] 张金辉,宫红.杂多酸清洁催化氧化环己烯制备己二酸.石油化工高等学校学报,2003,16(2):25-28.
    [56] 贾琦,欧玲,马红,王向宇.磷钨酸催化环己烯合成己二酸的研究.河南化工,2004,(4):18-20.
    [57] K. Sato, M. Aoki, R. Noyori. A green route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science, 1998, 281: 1646-1647.
    [58] 张世刚,姜恒,宫红.催化氧化环己酮/环己醇清洁合成己二酸.化工科技,2002,10(5):4-6.
    [59] 王艳丹,姜恒,宫红,苏婷婷.清洁催化氧化环己醇合成己二酸.化学世界,2002.9:484-486.
    [60] 宫红,杨中华,姜恒,孙兆林,张晓彤.清洁催化氧化坏己烯合成己二酸反应 中酸性配体的作用.催化学报,2002,23(2):182-184.
    [61]曹发斌,姜恒,宫红,王锐.Na_2WO_4/1,2,3,4-丁烷四羧酸催化氧化环己烯合成己二酸.化工科技,2004,12(5):01-04.
    [62]曹发斌,姜恒,宫红.钨酸/无机酸性配体催化氧化环己烯合成己二酸.合成纤维工业,2004,27(6):34-36.
    [63]张世刚,姜恒,孙兆林,张晓彤.GC-FTIR联用技术在催化氧化环己酮制己二酸反应机理研究中的应用.化学研究与应用,2004,16(2):229-230.
    [64]阎松,姜恒,宫红,王锐.三氧化钨催化氧化环己烯合成己二酸.中国钨业,2005,20(2):33-35
    [65]曹发斌,姜恒,宫红.钨酸催化氧化环己烯合成己二酸.有机化学,2005,25(1):96-100.
    [66]王艳丹,陈春茂.Na_2WO_4-2H_2O催化氧化环己醇/环己酮合成己二酸反应的研究.沈阳化工学院学报,2004,18(3):173-175
    [67]丁宗彪,连慧,王全瑞,陶凤岗.钨化合物催化过氧化氢氧化环己酮合成己二酸.有机化学,2004,24(3):319-321.
    [68]王向宇,苗永霞,贾琦,苏运来,曹书霞,戴新民.己二酸绿色合成中溶液酸性的影响.石油化工,2003,32(7):608-610.
    [69]P·德尼斯,F·莫茨,R·泼隆.用戊烯酸加氢羧化制备己二酸的方法.CN:1041409A.
    [70]小H·S·布鲁纳,S·L·莱恩,BE默弗罩.己二酸的制备.CN:1235592A.
    [71]G. D. J. Schulz, A. Onopchko. Process for converting cyclohexane to adipic acid. US: 4263453.
    [72]M·康斯坦丁尼,E·法切,D·尼维特.由环己烷的直接氧化制备己二酸的方法和催化剂的重复利用.CN:1157605A.
    [73]C. M. Park, N. S. Goroff. One step air oxidation of cyclohexane to produce adipic acid. US:5221800.
    [74]冯美平.丁二烯法制己二酸.合成纤维工业,1999,22(2):22-25
    [75]M. William, C. Francoise. Catalytic photooxidation of cyclohexene by aqueous uranyl/polymolybdate system. J. Chem. Soc. Perkin Traps 2. 1988, 8: 1479-1484.
    [76]林海强,李华明,于贤勇等.溶液pH值及钨前驱体影响含钨过氧物种结构的Raman光谱研究.化学学报,2004,62(18):1780-1784.
    [77]郑小明,陆维敏,周仁贤等编.第十一届全国催化学术会议论文集.浙江大学出版社,2002,1229.1230.
    [78]Gaussian 03, Revision C.02, Gaussian, Inc. Pittsburgh PA, 2003.
    [79]陈凯先,蒋华良,嵇汝运编.计算机辅助药物设计—原理方法及应用,2000年,上海科学技术出版社,上海
    [80]刘金霞,张宗培编.分析化学试验.郑州:郑州大学出版社,2004:10-12.
    [81]张文伟,孙联杰.对高锰酸钾测定双氧水含量的分析方法的研究和改进.辽宁师范大学学报(自然科学版),1997,20(3):262-264.
    [82]李英杰,张维冰,代丽君,安郁奇.强酸性条件下KMnO_4与H_2O_2反应体系的动力学研究.齐齐哈尔师范学院学报(自然科学版),1995,1(4):68-71.
    [83]姚成 许艳.江苏化工,1996,24(3):51-53.
    [84]王红,Origin7.0在化学动力学数据处理中的应用.青海师专学报(教育科学),2005.6:53-55
    [85]行文茹,邱东方,王琳,杨浩等.线性拟合法和非线性拟合法在化学动力学数据计算中的应用.南阳师范学院学报(自然科学版),2002,1(6):54-56.
    [86]陶景光,廖兆曙,罗慧倩等.化工学报,2003,54(7):942-945
    [87]吕希伦编.无机过氧化合物化学.北京:科学出版社,1993,421-430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700