具有高力学性能的可降解芳香/脂肪共聚酯的合成及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了得到具有良好的热性能,更高的伸长率和弹性模量的可降解聚合物材料,本文通过熔融缩聚法合成了一系列的芳香/脂肪共聚酯,并通过核磁共振(~1HNMR),差示扫描量热法(DSC),热重分析法(TG)和X射线衍射(XRD)技术对共聚酯进行了表征,得到了它们的熔融温度(T_m),熔融热(△H_m),玻璃化转变温度(T_g)和热分解温度(T_d)。
     首先利用对苯二甲酸二甲酯(DMT),1,6-己醇(HDO)和低聚乳酸(OLA)在钛酸四丁酯催化下合成了聚(对苯二甲酸己二醇酯-co-乳酸)(PHTL)共聚酯。通过对共聚酯PHTL核磁共振谱图分析得到,共聚酯中对苯二甲酸己二醇酯(n_(HT))的序列长度为3.5;DSC结果表明所有的共聚酯只显示一个玻璃化转变温度(T_g)和两个熔融温度(T_m),而且T_gs和T_ms都随乳酸含量增加而降低;水解降解实验证明PHTL共聚酯具有很好的水解降解性,通过对降解在缓冲液的成分萃取并进行~1H NMR分析得出,溶液中的主要成分为乳酸和对苯二甲酸己二醇链段。
     为了提高PHTL共聚酯的热学性能和力学性能,我们在PHTL共聚酯中引入了1,4-环己烷二甲醇(CHDM),同样方法合成了共聚酯PHCTL。共聚酯PHCTL中,随着CHDM含量的增加,共聚酯PHCTL刚性增加,熔点(T_m),热分解温度(T_d)也都明显增加,当环己烷二甲醇在二元醇投料中占50%时,T_m和T_d分别由未含环己烷二甲醇的129℃和361℃上升至219℃和383℃;PHCTL在37℃,磷酸缓冲液中发生了明显的降解,降解速率的大小与共聚酯的亲水性有关。
     为了进一步改善共聚酯的力学性能,我们在PHTL共聚酯中引入了自己合成的单体对苯二甲酸二(4-甲氧酰基苯基)酯(BMT),四元共聚合成了具有液晶性能的共聚酯PHBTL。DSC研究表明,随着BMT含量的增加,PHBTL共聚酯的熔点(T_m)降低,玻璃化转变温度(T_g)升高;XRD和偏光显微镜(POM)结果均表明共聚酯PHBTL为向列型液晶。
To obtain a biodegradable polymer material with satisfactory thermal properties, higher elongation and modulus of elasticity, a series of biodegradable aliphatic/aromatic copolyesters were synthesized via melt polycondensation. The resulting copolyesters were characterized by proton nuclear magnetic resonance (~1H NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and X-ray diffraction (XRD), and their melting temperature (T_m), melting heat of fusion (△H_m), glass-transition temperature (T_g), and thermal decomposition temperature (T_d) were obtained.
     In the first, poly (hexylene terephthalate-co-lactide) (PHTL) was synthesized from dimethyl terephthalate (DMT), 1, 6-hexanediol (HDO), and oligo(lactic acid) (OLA) in the presence of titanium (Ⅳ) butoxide. By using the relative integral areas of the dyad peaks in 'H NMR spectrum of copolyesters PHTL, the sequence lengths of the hexylene terephthalate (n_(HT)) units in the resultant copolyesters were 3.5. Only one T_g and two T_m's were observed for all samples, and were found to go down gradually with increasing of lactide moieties. The PHTL copolyesters exhibited a pronounced hydrolytic degradability, which increased with the content of lactide units. ~1H NMR analysis of the residue left by evaporation of the mother solution after hydrolytic degradation revealed that the degradation products consisted mostly of lactide and hexylene terephthalate blocks.
     To improve the thermal and mechanical properties of PHTL, 1, 4-cyclohexanedimethanol (CHDM) was introduced into the PHTL copolyester chains. The rigidity, melting temperature (T_m) and thermal decomposition temperature (T_d) of the PHCTL copolyesters increased obviously with increasing content of CHDM. With comparison to the copolyester without CHDM involving, T_m and T_d of the copolyesters with 50/50 of feeding ratio CHDM/HDO increased to 219℃and 383℃from 129℃and 361℃, respectively. Copolyester PHCTL exhibited a pronounced hydrolytic degradability, and the degradation rates of copolyesters were dependent on their hydrophilicity.
     To further increase the mechanical properties of PHTL, monomer bis(4-methoxycarbonyl phenyl) terephthalate (BMT) was synthesized, and melt polycondensation from DMT, HDO, OLA and BMT in the presence of titanium (Ⅳ) butoxide was adopted. The melting temperature (T_m) of PHBTL copolyesters decreased but glass-transition temperature (T_g) increased with increasing content of BMT. XRD and POM results of PHBTL polymers indicated that all PHBTL polymers were nematic liquid crystalline polymers.
引文
[1]侯庆晋.生物降解高分子材料的研究新进展[J].现代化工,2000,20(12):20-24.
    [2]王琳霞.生物降解高分子材料[J].塑料科技,2002,147:37-41.
    [3]黄根龙.生物降解高分子材料[J].上海化工.1996,2:32.
    [4]黄发荣.全生物降解高分子材料的发展状况[J].化学世界,1999,11:571-574.
    [5]D. L. Allara, W. L. Hawkins. Stabilization and degradation of polymers[J]. Adv Chem Ser 169. Washington D C: Amer Chem Soc, 1978, 205.
    [6]Y. Tokiwa, T. Suzuki. Degradation of poly-ethylene glycol adipate by a fungus[J]. J. Ferment. Technol. 1974, 52(6): 393-398.
    [7]李勇进,王公善.生物降解高分子材料[J].材料导报,1998,12(6):48-52.
    [8]D. Satyanaragana, D. R. Chatferji. The effect of structure variation on the biodegradation of polymers[J]. J Macromol Sci Rev Macromol Chem Phys, 1993. C33(3): 349.
    [9]倪秀元.可生物降解的高分子材料[J].自然杂志,1997,20(6):339-341.
    [10]翁端.环境高分子材料发展与展望-第三届国际环境高分子材料大会综述[J].高分子材料导报,1998,12(1):1-4.
    [11]宋贤良.以纤维素为基础的功能高分子材料[J].高分子通报,2002,2:47-52.
    [12]王周玉.可生物降解高分子材料的分类及应用[J].四川工业学院学报,2003,145(3):145-147.
    [13]张倩.生物降解高分子材料聚丙交酯的合成[J].塑料工业,2002,30(2):10-13.
    [14]黄强.淀粉类生物降解高分子材料研究进展[J].粮食与饲料工业,2000,9:51-55.
    [15]U. Witt, M Yamamoto, L. Kleeberg. Biodegradation of aliphatic-aromatic copolyesters: Evaluation of the final biodegradability and ecotoxicological impact of biodegradation intermediates[J]. Chemosphere, 2001, 44: 289-299.
    [16]R. J. Miiller, I. Kleeberg, W. D. Deckwer. Biodegradation of polyesters containing aromatic constituents[J]. J Biotechnology, 2001, 86: 87-95.
    [17]U. Witt, M. Yamamoto. Biodegradable Polymeric Materials- Not the Origin But the Chemical Structure Determines[J]. Biodegradability. Angew. Chem. Int. Ed., 1999, 38: 1438-1442.
    [18]U. Witt, R. J. M(?)ller. Nuclear Magnetic Resonance Spectroscopy for Evaluation of Biodegradability Macromol [J]. Chem. Phys., 1996, 197: 1525-1535.
    [19]R. J. M(?)ller, U. Witt. Architecture of Biodegradable Copolyesters Containing Aromatic Constituents[J]. Polym. Degrad. Stab., 1998, 59: 203-208.
    [20]Giorgio Montaudo, S. Maurizio, Emilio Scamporrino. Mechanism of Exchange in Polyesters. Composition and Microstructure of Copolymers Formed in the Melt Mixing Process of Poly (ethylene terephthalate) and Poly (ethylene adipate)[J]. Macromolecules, 1992, 25: 5099-5107.
    [21] Y. Tokiwa, T. Suzoki. Hydrolysis of Copolyesters Containing Aromatic and Aliphatic Ester Block by Lipase[J]. J Appl Polym Sci, 1981, 26: 441-448.
    [22] R. T. Darby, A. M. Kaplan. Fungal susceptibility of polyurethanes[J]. Appl Microbiol, 1968, 16:900-905.
    [23] J. E. Potts, R. A. Cending, W. B. Ackart, W. D. Niegisch. Polym Prepr (Am Chem Soc, Div Polym Chem), 1972, 13:629.
    [24] 王连才.生物降解脂肪-芳香族共聚聚酯的研究进展[J].中国塑料,2003,17(8):1-8.
    [25] 张勇.聚乙二醇/聚对苯二甲酸丁二醇酯聚醚酯弹性体的合成与表征-不同硬段长度对材料性能的影响[J].高分子学报,2002,4:167-171.
    [26] B. D. Ahn. Synthsis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1, 4-Butanediol[J]. J Appl Polym Sci, 2001, 82: 2808-2826.
    [27] Y. Chen. Preparation and characterization of aliphatic/aromatic copolyesters based on bisphenol-A terephthalate, hexylene terephthalate and lactide mioties[J]. Reac. Func. Polym., 2007, 67: 396-407.
    [28] G. Haderlein, C. Schmidt, J. H. Wendorff, A. Greiner. Synthesis of hydrolytically degradable aromatic polyesters with lactide moieties[J]. Polym. Adv. Technol, 1997, 8: 568-573.
    [29] G. Haderlein, H. Petersen, C. Schmidt, J. H. Wendorff, A. Schaper, D. B. Jones, J. Visjager, P. Smith, Greiner. Synthesis and properties of liquid crystalline aromatic copolyesters with lactide moieties[J]. Macromol. Chem. Phys., 1999, 200: 2080-2087.
    [30] Y. Chen, R. Wombacher, J. H. Wendorff, A. Greiner. Thermotropic Aromatic/Lactide Copolyesters with Lateral Methoxyethyleneoxy Substituents[J]. Chem. Mater., 2003, 15: 694-698.
    [31] Y. Chen, R. Wombacher, J. H. Wendorff, J. Visjager, P. Smith, A. Greiner. Design, Synthesis, and Properties of New Biodegradable Aromatic/Aliphatic Liquid Crystalline Copolyesters[J]. Biomacromolecules, 2003, 4: 974-980.
    [32] Y. Chen, Z. Jia, A. Schaper, M. Kristiansen, P. Smith, R. Wombacher, J. H. Wendorff, A. Greiner. Hydrolytic and Enzymatic Degradation of Liquid-Crystalline Aromatic/Aliphatic Copolyesters[J]. Biomacromolecules, 2004, 5: 11-16.
    [33] Y. Chen, R. Wombacher, J. H. Wendorff, A. Greiner. Thermotropic aromatic/lactide copolyesters with solubilizing side chains on aromatic rings[J]. Polymer, 2003, 44: 5513-5520.
    [34] 莫俊英,赵耀明.直接熔融缩合法制备生物降解材料PCEL[J].塑料工业,2007,1(25):4-7.
    [35] M. S. Nikolic, Djonlagic. Synthesis and characterization of biodegradable poly (butylene succinate-co-butylene adipate)s[J]. Polym. Degrad. Stab., 2001, 74: 263-270.
    [36] M. Nagata, H. Goto, W. Sakai. Synthesis and enzymatic degradation of poly (tetramethylene succinate) copolymers with terephthalic acid[J]. Polymer, 2000, 41: 4373-4376.
    [37] Y. J. Kim, O. O. Park. Miscibilities and rheological properties of poly (butylene succinate)-poly (butylene terephthalate) blends[J]. J. Appl. Polym. Sci., 1999, 72: 945-951.
    [38] S. S. Park, S. H. Chae, S. S. Im. Transesterification and crystallization behavior of poly (butylene succinate)/poly (butylene terephthalate) block copolymers[J]. J. Polym. Sci., Part A: Polym. Chem., 1998, 36: 147-156.
    [39] 郭宝华,丁慧鸽.生物可降解共聚物聚丁二酸/对苯二甲酸丁二醇酯(PBST)的序列结构及结晶性研究[J].高等学校化学学报,2003,(24):2312-2316.
    [40] M. Nagata, H. Goto, W. Sakai, N. Tsutsumi. Synthesis and enzymatic degradation of poly (tetramethylene succinate) copolymers with terephthalic acid[J]. Polymer, 2000, 41: 4373-4376.
    [41] N. Honda, 1. Taniguchi, M. Miyamoto, Y. Kimura. Reaction mechanism of enzymatic degradation of poly (butylene succinate-co-terephthalate) (PBST) with a lipase originated from Pseudomonas cepaciafJ]. Macromol Biosci, 2003, 3: 189.
    [42] F. Li. Thermal degradation and their kinetics of biodegradable poly (butylene succinate-co-butylene terephthate)s under nitrogen and air atmospheres [J]. Polym. Degrad. Stab, 2006, 91: 1685-1693.
    [43] F. X. Li, X. J. Xu, Q. H. Hao, Q. B. Li, J. Y. Yu and A. M. Cao. Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s[J]. J Polym Sci Part B Polym Phys, 2006, 44: 1635-1644.
    [44] Faxue Li, Xinjian Xu, Jianyong Yu and Amin Cao. The morphological effects upon enzymatic degradation of poly(butylene succinate-co-butylene terephthalate)s (PBST)[J]. Polym. Degrad. Stab., 2007, 92 (6): 1053-1060.
    [45] 李发学.成纤用生物降解性聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)的合成及结构性能研究[D].东华大学,2006.
    [46] H. C. Ki, O. Ok Park. Synthesis, characterization and biodegradability of the biodegradable aliphatic-aromatic random copolyesters[J]. Polymer, 2001, 42: 1849-1861.
    [47] L-C Wang. Synthesis and evaluation of biodegradable segmented multiblock poly (ether ester) copolymers for biomaterial applications[J]. Polym Int, 2004, 53: 2145-2154.
    [48] L. Wang. Fabrication and evaluation of tissue engineering vascular scaffolds based on biodegradable aliphatic-aromatic copolyesters[J]. Curr. Appl. Phys., 2005, 5: 557-560.
    [49] L. Wang. Preparation and characterization of aliphatic/aromatic copolyesters based on 1,4-cyclohexanedicarboxylic acid[J]. Polym. Degrad. Stab, 2006, 91: 2220-2228.
    [50] 任元元,兰建武, 陈玲玲,吴乐. Study on synthesis and spinning process of PBT /PEG/LA degradable copoly (ether-ester)[J].合成纤维工业, 2007, 30(4), 1-4.
    [51] Y. Tsai, C. H. Fan, C. Y. Hung, F. J. Tsai. Poly (ethylene terephthalate) Copolymers That Contain 5-tert-Butylisophthalic Acid and 1, 3/1, 4-Cyclohexanedimethanol: Synthesis, Characterization, and Properties[J]. J Appl Polym Sci, 2007, 104: 279-285.
    [52] Corrado Berti, Annamaria Celli, Paola Marchese, Giancarlo Barbiroli, Francesco Di Credico, Vincent Verney, Sophie Commereuc. Novel copolyesters based on poly(alkylene dicarboxylate)s: 1. Thermal behavior and biodegradation of aliphatic-aromatic random copolymers[J]. Eur. Polym. J., 2008, 44: 3650-3661.
    [53] Jie Du, Yubin Zheng, Liang Xu. Biodegradable liquid crystalline aromatic/aliphatic copolyesters. Part Ⅰ: Synthesis, characterization, and hydrolytic degradation of poly(butylene succinateco-butylene terephthaloyldioxy dibenzoates)[J]. Polym. Degrad. Stab, 2006, 91: 3281-3288.
    [54] Jie Du, Yubin Zheng, Jun Chang, Liang Xu. Synthesis, characterization and properties of high molecular weight poly(butylenes succinate) reinforced by mesogenic units[J]. Eur. Polym. J., 2007,43: 1969-1977.
    [55] Jie Du, Yuanyuan Fang, Yubin Zheng, Synthesis and characterization of poly(L-lactic acid) reinforced by biomesogenic units[J]. Polym. Degrad. Stab, 2008, 93: 838-845.
    [56] E. Ghalbzouri, E. N. Lamme, C. A. van Blitterswijk, J. koopman, M. Ponec. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering[J]. Biomaterials, 2004, 25: 2987-2996.
    [57] G. A. Van Dorp, M. C. Verhoeven, H. K. Koerten. Dermal regeneration in full thickness wounds in Yucatan miniature pigs using a biodegradable copolymer[J]. Wound Rep Reg, 1998,6:556-568.
    [58] A. M. Radder, J. A. van Loon, G. J. Puppels, C. A. van Blitterswijk. Degradation and calcification of a PEO/PBT copolymer series[J]. J. Mater. Sci.: Mater, in Medicine, 1995, 6: 510-517.
    [59] M. Kellomaki, S. Paasimaa, D. W. Grijpma. In vitro degradation of Polyactive (R) 1000PEOT70PBT30 devices[J]. Biomaterials, 2002, 23: 283-295.
    [60] J. M. Bezemer, D. W. Grijpma, P. J. Dijkstra, C. A. van Blitterswijk, J. Feijen. A controlled release system for proteins based on poly (ether ester) block-copolymers: polymer network characterization[J]. J Control Release, 1999, 62: 393-405.
    [61] J. M. Bezemer, D. W. Grijpma, P. J. Dijkstra, C. A. van Blitterswijk, J. Feijen. Control of protein delivery from amphiphilic poly (ether ester) multiblock copolymers by varying their water content using emulsification technique[J]. J Control Release, 2000, 66: 307-320.
    [62] 张勇,冯增国,刘凤香,张爱英.聚对苯二甲酸丁二醇酯-co-聚丁二酸丁二醇酯-b-聚乙二醇嵌段共聚物的合成及表征[J].化学学报,2002,60(12):2225-2231.
    [63] S. W. Kim, J. C. Lim, D. J. Kim, K. H. Seo. Synthesis and Characteristics of Biodegradable Copolyesters from the Transesterification of Poly (butylene adipate-co-succinate) and Poly (ethylene terephthalate)[J]. J Appl Polym Sci, 2004, 92: 3266-3274.
    [64] X. Q. Shi, K. Aimi, H. Ito. Characterization on mixed-crystal structure of poly(butylenes terephthalate/ sueeinate/adipate) biodegradable copolymer fibers[J]. Polymer. 2005, 46: 751-760.
    [65] 任元元,兰建武,陈玲玲,吴乐. Study on synthesis and spinning process of PBT/PEG/LA degradable copoly (ether-ester)[J]. 合成纤维工业, 2007, 30(4): 1-4.
    [66] Slim Salhi, Marline Tessier, Jean-Claude Blais, Rachid El Gharbi, Alain Fradet. Synthesis of Aliphatic-Aromatic Copolyesters by a High Temperature Bulk Reaction Between Poly(ethylene terephthalate) and Cyclodi(ethylene succinate)[J]. Macromol. chem. phys., 2004, 205(18): 2391-2397.
    [67] PISULA Wojciech, P1GLOWSKI Jacek, KUMMERLOWE Claudia. Preparation and characterization of copolyesters of poly(tetramethylene succinate) and poly(butylene terephthalate)[J]. Polymer. 2006, 51(5): 341-350.
    [68] B. Gordon, A. E. Mera. Synthesis and characterization of 2, 3-dialkyl-1, 4-butanediols and copolyesters containing these moieties[J]. Polym. Bull., 1989, 22: 379-386.
    [69] T. Kiyotsukuri, T. Masuda, N. Tsutsumi. Preparation and Properties of Poly (Ethylene-Terephthalate) Copolymers with 2, 2-Dialkyl-1, 3-Propanediols[J]. Polymer, 1994, 35: 1274-1279.
    [70] T. Kiyotsukuri, T. Masuda, N. Tsutsumi, W. Sakai, M. Nagata. Poly (ethylene terephthalate) copolymers with a smaller amount of poly (ethylene glycol)s and poly (butylene glycol)s[J]. Polymer, 1995, 36: 2629-2635.
    [71] M. Nagata, T. Kiyotsukuri, S. Minami, N. Tsutsumi, W. Sakai. Poly(ethylene terephthalate) copolymers[J]. Polym Int. 1996, 39: 83-89.
    [72] D. Kint, M. Sebastian. A review on the potential biodegradability of poly (ethylene terephthalate)[J]. Polym Int, 1999, 48: 346-352.
    [73] K. Grzebieniak, C. Slusarczyk, A. Wlochowicz, J. Janicki. Microstructure transformation due to hydrolytic degradation of ethylene terephthalate/lactic acid copolyesters[J]. Polimery, 2002,47:528-533.
    [74] K. Grzebieniak, M. Ratajska, G. Strobin. Estimation of hydrolysis and biodegradation processes in ethylene terephthalate and lactic acid copolymersfJ]. Fibres Text. East. Eur, 2001,9:61-65.
    [75] A. M. Reed, D. K. Gilding. Biodegradable polymers for use in surgery - poly (glycolic)/poly (lactic acid) homo and copolymers: II. In vitro degradation[J]. Polymer, 1981, 22: 499-504.
    [76] D. Ma, X. Xu, X. Luo. Transesterification and Ringed Sphe Rulites in Blends of Butylene Terephthalate-Caprolactone Copolyester with Poly(e-caprolactone)[J]. Polymer, 1997, 38: 1131-1138.
    [77] D. Ma, G. Zhang, Z. Huang. Synthesis and Chain Structure of Ethylene Terephthalate - e - Caprolactone Copolyester[J]. J Polym Sci, Part A: Polym Chem, 1998, 36: 2961-2969.
    [78] Darwin, Abdelilah. Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1, 4-butylene succinate) block copolymers[J]. Polymer. 2003, 44: 1321-1330.
    [79] E. Olewnik. Synthesis and structural study of copolymers of L-lactic acid and bis (2-hydroxyethyl terephthalate)[J]. Euro. Polym. J., 2007, 43: 1009-1019.
    [80] I. Acar. Modification of Waste Poly (Ethylene Terephthalate) (PET) by Using Poly (L-Lactic Acid) (PLA) and Hydrolytic Stability[J]. Polymer Plast Tech Eng, 2006, 45: 351-359.
    [81] Yasukatsu Maeda, Takuya Maeda. Synthesis and Characterization of Novel Biodegradable Copolyesters by Transreaction of Poly (ethylene terephthalate) with Copoly (succinic anhydride/ethylene oxide) [J]. J. Polym. Sci.: Part A: Polym. Chem., 2000, 38: 4478-4489.
    [82] J. P. Vacanti, R. Langer. Tissue engineering[J]. Science, 1993, 226: 920.
    [83] R. Langer. Biodegradable polymer scaffolds for tissue engineering[J]. Biotechnology, 1994, 12(7): 689-693.
    [84] P. Piotr, E. F. Miroslawa, S. Jerzy. Biocompatibility studies of new multiblock poly (ester-ester)s composed of poly (butylenes terephalate) and dimerized fatty acid[J]. Biomaterials, 2002, 23: 2973-2978.
    [85] R. G. Magdalena, E. F. Miroslawa. The Effect of Simulated Body Fluid on the Mechanical Properties of Multiblock Poly (Aliphatic/Aromatic ester) Copolymers[J]. Biomaterials, 2004, 25:5191-5198.
    [86] S. Wang, X. Xu, S. Gao, H. Q. Mao, K.W. Leong, H. Yu. A New Nerve Guide Conduit Material Composed of a Biodegradable Poly (phosphoester)[J]. Biomaterials, 2001, 22: 1157-1169.
    [87] B. I. Dahiyat, M. Richards, K. W. Leong. Controlled release from poly (phosphoester) matrices[J]. J. Controlled Release, 1995, 33: 13-21.
    [88] R. V. Dijkhuizen-Radersma, S. C. Hesseling, P. E. Kaim, K. de Groot, J. M. Bezemer. Biocompatibility and degradation of poly (ether-ester) microspheres: in-vitro and in-vivo evaluation[J]. Biomaterials, 2002, 23: 4719-4729.
    [89] A. A. Deschamps, A. A. van Apeldoorn, H. Hayen, J. D. de Bruijn, U. Karst, D. W. Grijpma, J. Feijen. In vivo and in vitro degradation of poly (ether ester) block copolymers based on poly (ethylene glycol) and poly (butylene terephthalate)[J]. Biomaterials, 2004, 25: 247-258.
    [90] E. l. Ghalbzouri, E. N. Lamme, C. van Blitterswijk, J. Koopman, M. Ponec. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering[J]. Biomaterials, 2004, 25: 2987-2996.
    [91] B. Wunderlich. in: Macromolecular Physics, Vol. 3, Crystal Melting[M]. New York: Academic Press, 1976, 30.
    [92] R. C. Roberts. Polyethylene terephthalate) I-Heat of fusion[J]. Polymer, 1969, 10: 113-116.
    [93] H. C. Ki, O. Ok Park. Synthesis, characterization and biodegradability of the biodegradable aliphatic-aromatic random copolyesters[J]. Polymer, 2001, 42: 1849-1861.
    [94] 黄健,潘智存,王慧芬,刘德山,周其庠.含柔性间隔基的热致液晶性共聚酯的合成[J].高分子学报,1989,4:431-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700