膜用改性聚酯的结晶特性和热稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双向拉伸聚酯薄膜(BOPET)由于具有优良的综合性能,使其应用范围十分广泛,已由主要用于包装发展到电子、光学、影像、磁性等现代工业领域。但是BOPET仍然存在一些固有的缺陷,如结晶速度慢,作为电绝缘材料耐热级别低等,这些都使其应用和发展受到限制。针对这些问题,本文主要对PET进行第三单体共聚改性,以提高其结晶和热稳定性能。
     本文采用丙三醇(GL)、4,4’-联苯二甲酸(BPDA)分别作为第三单体参与由对苯二甲酸与乙二醇直接酯化聚合制得了丙三醇和联苯二甲酸改性聚酯:GL-PET(其中GL含量300-1800ppm)和BPDA-PET(其中BPDA5-25mol%)。用核磁共振(NMR)和红外(FR-IR)分析了共聚酯的分子结构与组成,由GPC和粘度法测定了产物的分子量。结果表明,GL和BPDA都参与了共聚合反应,成功连接到PET大分子链上,且产物具有与纯PET一样高的分子量。
     利用差示扫描量热仪(DSC)测试不同升温速度下的GL-PET共聚酯的非等温结晶过程,并用Avrami, Ozawa,莫志深法等分别计算分析了共聚酯的结晶动力学,结果表明:GL-PET的结晶速率大于纯PET,结晶活化能也低于纯PET的相应值,但GL-PET的结晶速率和动力学结晶能力并非与GL含量线性相关,而是在GL含量为900ppm时结晶速率常数最高,动力学结晶能力最强。通过比较不同方法,发现Avrami和莫志深法等能对GL-PET非等温结晶过程进行比较合理的分析。
     对BPDA-PET共聚酯的DSC分析表明:BPDA-PET的玻璃化转变温度随BPDA含量的增加而提高,其熔点则呈下降趋势;结合XRD和DMA的分析,发现BPDA-PET中的结晶主要是PET的结晶结构,但在BPDA含量25mol%时,稍有联苯二甲酸二甲酯(PEBB)的结晶特性。所以,大多数未结晶的PEBB链段滞留在无定形区,它们也与PET链段不相容,所以BPDA-PET呈现出两个玻璃化转变。
     利用热失重分析(TGA)对BPDA-PET共聚酯在氮气和空气下的热稳定性进行考察,结果发现在氮气气氛中PET及BPDA-PET共聚酯只存在一个降解台阶,BPDA-PET的热稳定性高于PET,且随着BPDA链段含量的增加,共聚酯的热稳定性提高;当气氛为空气时所有样品都存在两个降解阶段(第二台阶非常弱),第一阶段的降解行为与氮气气氛中的相似,但各试样在空气气氛中起始分解温度都下降了近30℃,PETBB的起始热分解温度高于PET。推测这是由手空气中的氧在第一阶段起了催化剂的作用,第二阶段为第一阶段产物的进一步氧化。采用Friedman和Chang法求算了BPDA-PET体系在一定升温速率下在氮气和空气中的降解活化能和反应级数。表明BPDA-PET降解活化能增大,反应级数n也变大。
Biaxially oriented polyester film (BOPET) with excellent performance shows a wide range of applications from packaging to electron, optics, image, magnetic, etc. But BOPET film still has some intrinsic defects, such as slow crystallization rate, low heat resistance level, especially as electrical insulating materials. To solve these problems, PET was modified by adding the third monomers during its polymerization process to produce copolyesters which could improve the crystallization and thermal stability of BOPET films.
     Modified copolyesters were prepared from TPA and EG, with Blycerol (GL) and 4,4'-bibenzoic acid (BPDA) as the third monomor respectively. Molecular structure and composition of the copolyesters were confirmed by NMR and FT-IR, and molecular weight of the copolyesters were measured by GPC and intrinsic viscosity. The results demonstrated that not only GL and BPDA successfully linked to PET macromolecular chain by copolymerization respectively, but also high molecular weight polymers were obtained.
     Non-isothermal crystallization processes of GL-PET copolyesters were investigated by differential scanning calorimetry (DSC) under different heating rates, and the crystallization kinetics of copolymers were analyzed through Avrami Ozawa and combined Avrami with Ozawa equations respectively. The results indicated that the crystallization rates of GL-PET were higher and the crystallizabilities of them were lower than that of pure PET. But the crystallization rates and kinetic crystallizabilities of GL-PET were not linear correlation with contents of GL. When content of GL was 900ppm, the copolyester diplayed the highest crystallization rate constant and kinetic crystallizability. By comparing different methods, the modified Avrami and combined Avrami with Ozawa equations were found to analyze the non-isothermal crystallization processes reasonably.
     The DSC analysis of BPDA-PET copolyester showed that with the increasing content of BPDA, the glass transition temperature (Tg) of BPDA-PET was enhanced and the melting point (Tm) decreased. Combining XRD and DMA results, it was showed that crystallization in BPDA-PET was mainly composed of crystal structure of PET, but when content of BPDA was 25%, the copolyester exhibited a few crystalline characteristic of PEBB. Thus most of uncrystallized PEBB sequences which were also incompatible with PET retained in amorphous regions, so BPDA-PET appeared two glass transitions.
     The thermal stabilities of BPDA-PET copolyester in nitrogen and air atmosphere were tested via thermogravimetry analysis (TGA), and the results showed that PET and BPDA-PET copolyester had only one weight-loss stage. The thermal stability of BPDA-PET was enhanced with the increasing content of BPDA unit. In air, all the samples would show two weight-loss stages (the second was weak), and the degradation behavior during the first stage was similar with that in nitrogen although the onset degradation temperature decreased nearly 30℃, still BPDA-PET possessed higher onset degradation temperature than PET. It was deduced that the oxygen in air acted as a catalyzer in the first weight-loss stage and the second stage should be explained to the further oxidative of the first stage. The Friedman and Chang methods were used to calculate the decomposition activation energy and reaction order of different heating rates under nitrogen and air atmosphere, which indicated that the decomposition activation energy of BPDA-PET enhanced and the reaction order n increased too.
引文
[1]周理水,PET塑料的改性及应用[J],塑料,2000,29(5):41-45
    [2]符朝贵,BOPET薄膜的现状和发展前景[J],塑料包装,2005,15(5):15-18
    [3]杨始堃,聚酯薄膜应用和相关技术(Ⅱ)[J],聚酯工业,2003,16(2):62-64
    [4]杨始堃,聚酯薄膜应用和相关技术(Ⅲ)[J],聚酯工业,2003,16(3):58-60
    [5]施良和,胡汉杰,高分子科学的今天与明天[M],北京:化工出版社,1994
    [6]张师民,聚酯的生产及应用[M],北京:中国石油出版社,1997
    [7]Chapleau N., Ajji A., Micromechanical Behavior of Impact Modified Poly (Ethylene Terephthalate)[J], Polym. Eng. Sci.,2003,43(6):1197
    [8]李桂娟,李祎,于宝杰等,成核剂13或2,4-二(亚苄基)-D山梨醇对PET/PEN共混体系结构和结晶形态影响[J],中国塑料,2004,18(3):20
    [9]李迎春,韩朝昱,左乐平等,聚烯烃改性PET的研究[J],塑料工业,2004,32(6):17-20
    [10]杨始堃,聚酯薄膜应用和相关技术(Ⅰ)[J],聚酯工业,2003,16(1):58-62
    [11]胡一丁,吴美琰,PET塑料增韧改性的进展[J],中国塑料,199,5(1):4-11
    [12]肖鹤祥,1990-1991年国外PET工程塑料工业进展[J],塑料工业,1992,3:19-20
    [13]叶明新,黄玮石,张真胜等,PET的快速结晶[C],CTU96高分子和化学纤维学术讨论会论文集,1996:18-20
    [14]林国良,姚青青,罗秀红,PET/聚乙二醇共混物结晶行为的研究[J],工程塑料应用,1994,22(5):27-29
    [15]李宗军,北京服装学院研究生论文,1997
    [16]Coleman E.A., Fast Crystalling PET Compositions [P], US,4448913,1984
    [17]郭仁义,危大福,卢红等,结晶促进剂和成核剂对PET结晶性能的影响[J],高分子材料科学与工程,2003,19(4):121-124
    [18]李鑫,仲蕾兰,顾丽霞,抗静电PET-PEG共聚酯的研究[J],高分子材料科学与工程,2002,18(5):50-53
    [19]苏辰宇等,非晶聚对苯二甲酸乙二酯的制备与表征[J],高分子学报,2001,2:232-237
    [20]Marini M., Pilati F., Saccani A., Toselli M., Improvement of thermo- oxidative stability of electrically insulating polymeric materials by organic-inorganic hybrid coating [J], Polym. Degrad. and Stab.,2008,93(6):1170-1175
    [21]Moeini H. R., Preparation and properties of novel green poly (ether-ester urethane)s insulating coatings based on polyols derived from glycolyzed PET, castor oil, and adipic acid and blocked isocyanate[J], Journal of Applied Polymer Science, 2007,106:1853-1859
    [22]Saccani A., Toselli M., Messori M., Fabbri P., Pilati F., Electrical behavior of PET films coated with nanostructured organic-inorganic hybrids [J]. Journal of Applied Polymer Scicience,2006,102:4870-4877
    [23]徐锦龙,李伯耿,李乃祥等,PET/有机蒙脱土纳米复合材料等温结晶动力学过程研究[J],高分子材料科学与工程,2002,18(6):149-152
    [24]王刚,王鉴,王立娟等,抗氧剂作用机理及研究进展[J],合成材料老化与应用,2006,35(2):38-42
    [25]武荣瑞,张天骄,成纤聚合物的合成与改性[M],北京:中国石化出版社,2003
    [26]Holland B. J., Hay J. N., The thermal degradation of poly(vinyl acetate) measured by thermal analysis-Fourier transform infrared spectroscopy[J], Polymer,2002,43:1835-18473
    [27]Botelho G., Arlete Queiros A., Liberal S., Gijsman P., Studies on thermal and thermo-oxidative degradation of poly (ethylene terephthalate) and poly (butylene terephthalate)[J], Polym. Degrad. and Stab.,2001,74:39-48
    [28]Buxbaum L. H., IR laser ablative degradation of poly(ethylene terephthalate): Formation of insoluble films with differently bonded C=O groups [J], Angew. Chem. Int.Ed.Engl.,1968,7:182
    [29]Allen N. S., Edge M., Mohammadian M., UV and thermal hydrolytic degradation of poly (ethylene terephthalate):importance of hydroperoxides and benzophenone end groups [J], Polym. Degrad. Stab.,1993,41:191-196
    [30]Ciolacu C. F. L., Choudhury N. R., Dutta N. K., Colour formation in PET during melt processing [J], Polym. Degrad. Stab.,2006,91:875-885
    [31]周天,王宇新,电容膜用新型PEN-PET共聚酯的研制[J],聚酯工业,2007,20(1):16-20
    [32]杨始堃,电机绝缘槽楔材料之—杜帮公司(美)涤纶厚膜的剖析[J],绝缘材料,1983(4):18-21
    [33]谢大荣,吴南屏,添加剂对电工用PET结晶行为和热稳定性影响的DSC、TGA研究[J],绝缘材料,1986(6):14-18
    [34]王德华,李虹,聚酯薄膜的耐热[J],绝缘材料通讯,1992(4):1-7
    [35]杨始堃,陈玉君,低萃取及B级聚酯绝缘膜研究Ⅰ[J],国内研制动态合成技术及应用,2007,22(1):1-3
    [36]杨始堃,陈玉君,低萃取及B级聚酯绝缘膜研究Ⅱ[J],薄膜样品的结构与性能研究合成技术及应用,2007,22(2):1-3
    [37]杨始堃,陈玉君,低萃取及B级聚酯绝缘膜研究Ⅲ[J],聚酯树脂配方研究合成技术及应用,2007,22(3):1-3
    [38]杨始堃,陈玉君,低萃取及B级聚酯绝缘膜研究Ⅳ[J],制造工艺技术设计合成技术及应用,2007,22(4):1-3
    [39]Samperi F., Puglisi C., Alicata R., Montando G., Thermal degradation of PET the processing temperature [J], Polym. Degrad. Stab.,2004,83:3-10
    [40]Xuepei Y. X., Li C., Guan. G., et al, Thermal degradation investigation of poly (ethylene terephthalate)/fibrous silicate nanocomposites [J], Polym. Degrad. Stab., 2008,93(2):466-475
    [41]Chae D. W., Kim B. C., Gold nanotubule and its applications in analytical chemistry [J], Fenxi Huaxue,2006,34(9):1348-1352
    [42]吴唯,刘国松,钱琦等,PET/PEN共混聚酯的结晶和稳定性能研究[J],中国塑料,2003,17(6):43-47
    [43]朱庆松,王利生,纳米技术在聚酯薄膜中的应用,软包装,2003,1:39-40
    [44]李阳,王依民,蒙脱土对PET结晶性能、热稳定性和力学性能的影响中国塑料[J],2004,18(8):23-28
    [45]Seo K. S., Caflisch G. B., Correction to Molecular dimensions and meltrheology of an all-aromatic liquid crystalline polymer [J], J. Polym. Sci. Part B: Polym. Phys.,2001,39:2378-2389
    [46]Sunan S., Onanong W., Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/ poly (ethylene terephthalate) copolyester [J], Polym. Degrad. Stab.,2005,88:300-308
    [47]Nandika A. D., Thermally stimulated depolarization currents in poly (ethyleneterephthalate-ran-p-hydroxybenzoates)[J], Polym Eng and Sci,2001,41(6): 962-970
    [48]行春丽,成战胜,啤酒瓶用共缩聚PET/PEN的研究[J],塑料工业,2005,33(6): 67-69
    [49]Mukhopadhyay S. M., Joshi P., Datta S., Zhao J. G., France P., Plasma assisted hydrophobic coatings in porous materials [J], Journal of Ph-ysics D:Applied Physics, 2002,35:1927
    [50]邵金荣,PET热灌装瓶瓶型要素及耐热性能的改善[J],中国包装,2004,1:99-100
    [1]章建浩,食品包装大全[M], 北京:中国轻工业出版社,2000:17-20
    [2]高宏保,国内聚酯薄膜现状及发展趋势[J],合成技术及应用,2006,21(4):25-28
    [3]Jayakannan M., Ramakrishnan S., Effect of branching on the crystallization kinetics of poly (ethylene terephthalate) [J], Journal of Applied Polymer Science, 1999,74(1):59-66
    [4]Rosu R. F., Shanks R. A., Bhattacharya S. N., Shear rheology and thermal properties of linear and branched poly (ethylene terephthalate) blends [J], Polymer (Guildford)A,1999,40(21):5891-5898
    [5]Li G., Yang S. L., Jiang J. M., et al, The Complicated Influence of Branching on Crystallization Behavior of Poly (ethylene Terephthalate) [J], Journal of Applied Polymer Science,2008,110(3),1649-1655
    [6]张新忠,陈彦模,张瑜等,齐聚物对PET结晶性能的影响[J],合成纤维工业,2009,32(4):27-29
    [7]董西霞,何曼君,陈维孝,高分子物理[M],上海:复旦大学出版社,1998:180
    [8]Jabarin S. A., Crystallization kinetics of polyethylene terephthalateⅡ Dynamic crystallization of PET [J], J. Appl. Polym. Sci.,1987,34:97-108
    [9]Liu T. X., Mo Z. S., Zhang H. F., Nonisothermal crystallization behavior of a novel poly (aryl ether ketone):PEDEKmK [J], Appl. Polym. Sci.,1998,67:815-821
    [10]Avrami M., Kinetics of phase change Ⅰ. General theory[J], J. Chem. Phys., 1939,7:1103-1115
    [11]Avrami M., Kinetics of phase change Ⅱ. Transformation-time relation for random distribution of Nuclei[J], J. Chem. Phys.,1939,8:212-224
    [12]Avrami M., Kinetics of phase change Ⅲ. Granulation, phase change and microstructure[J], J. Chem. Phys.,1941,9:177-184
    [13]Ozawa T., Kinetics of non-isothermal crystallization [J], Polymler,1971,12: 150-158
    [14]Liu T., Mo Z. S., Wang S., et al, Nonisothermal melt and cold crystallization kinetics of poly (arylether ether ketone ketone) [J], Polym. Eng. Sci.,1997,37: 568-575
    [15]Andrzej J., Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by d.s.c. [J], Polymer, 1978,19:1142-1144
    [16]Kissinger H. E., Reaction Kinetics in Differential Thermal Analysis [J], Analytical Chemistry,1957,29(11):1702-1706
    [17]Wang X. S., Yan D. Y., Tian G. H., Li X. G., Effect of molecular weight on crystallization and melting of poly (trimethylene terephthalate) [J], Polym. Eng. Sci., 2001,41:1655-1664
    [18]Eder M., Wochowicz A., Kinetics of non-isothermal crystallization of polyethylene and polypropylene [J], Polymer,1983,24:1593-1595
    [19]Cebe P., Hong S. D., Crystallization behavior of poly (ether ether ketone) [J], Polymer,1986,27:1183-1192
    [20]Srivinas S., Babu J. R., Riffle J. S., et al, Kinetics of isothermal and nonisothermal crystallization of novel poly (arylene ether ether sulfide) s [J], Polym. Eng. Sci.,1997,37:497-510
    [21]Kong X., Yang X., Li G., et al, Non-isothermal crystallization kinetics:poly [(ethylene terephthalate)-poly (ethylene oxide)] segmented copolymer and poly (ethylene oxide) homopolymer [J], Eur. Polym. J.,2001,37:1855-1862
    [22]Ozawa T., Kinetics of non-isothermal crystallization [J], Polymler,1971,12: 150-158
    [23]Zhang S. L., Zhao Y., Sun X. B., Jiang Z. H., et al, Crystallization kinetics and melting behavior of PA1010/Ether-based TPU blends [M], Chemical Research in Chinese Universities,2007,23:370-373
    [24]An Y. X., Dong L. S., Mo Z. S., et al, Nonisothermal crystallization kinetics of poly (β-hydroxybutyrate) [J], Journal of Polymer Science Part B:Polymer Physics, 1998,36:1305-1312
    [25]Tao Y. J., Mai K. C., Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly (ethylene terephthalate) blends [J], European Polymer Journal,2007,43:3538-3549
    [26]Xiao J., Zhang H. L., Wan X. H., Crystallization Kinetics of New Copoly (ethylene terephthalate-imide)s[J], Polymer,2002,43:3683-3690
    [27]Liu Z. J., Chen K. Q., Yan D. Y., Crystallization, Morphology and Dynamic Mechanical Properties of Poly (trimethylene terephthalate)/ Clay Nanocomposites [J], European Polymer Journal,2003,39:2359-2366
    [28]Xue M. L., Sheng J., Yu Y. L., Nonisothermal Crystallization Kinetics and Spherulite Morphology of Poly (trimethylene terephthalate) [J], European Polymer Journal,2004,40:811-818
    [29]Achilias D. S., Papageorgiou G. Z., Karayannidis G. P., Isothermal and Nonisothermal Crystallization Kinetics of Poly (propylene terephthalate) [J], Journal of Polymer Science:Part B:Polymer Physics,2004,42:3775-3796
    [30]Jin W. L., Seung W. L., Byeongdu L., Synthesis and Non-isothermal Crystallization Characteristics of Poly [(ethylene)-co-(trimethylene terephthalate)] s [J], Macromol.Chem.Phys.,2001,202(15):3072-3080
    [1]法格博格D.R.,含有4,4’-联苯二甲酸,1,4-环己烷二甲醇和紫外线吸收化合物的共聚聚酯和由其制成的制品[P]:CN.,1409738,2003
    [2]霍夫曼D.C.,佩科里尼T.J.,迪克尔森J.P.等,聚酯模塑料[P]:CN.1085683,2002
    [3]Heitz W., Schmidt H., Aromatic polyester from substituted hydroquinone and biphenyl dicarboxylic acid[P]:US.,4866154,1989
    [4]Shimizu I., Production of biphenyl 4,4'-dicar boxylic acid dalkali metal salt [P]: JP.,2019340,1990
    [5]Schiraldi D. A., Lee J. J., Occelli M. L., Mechanical Properties and Atomic Force Microscopic Cross Sectional Analysis of Injection Molded Poly (ethylene terephthalate-co-4,4'-bibenzoate) [J], Journal of Industrial and Engineerming Chemistry,2001,7(2):67-71
    [6]Sherman S. C., Iretskii A. V., White M. G., Schiraldi D. A., Cyclic hydrocarbons are oxidized to ketones, alcohols and carboxylic acids with no undesirable waste products [J], Chemical Innovation,2000,30:21-25
    [7]Liu R. Y. F., Hu Y. S., Hibbs M. R., Collard D. M., Schiraldi D. A., Hiltenr A., Baer E., Comparison of statistical and blocky copolymers of ethylene terephthlate and ethylene 4,4'-bibenzoate based on thermal behavior and oxygen transport properties [J], J.Polym. Sci., Part B:Polym. Phys.,2003,41:289-307
    [8]Schiraldi D. A., Lee J. J., Gould S. A. C., Occelli M. L., Mechanical properties and atomic force microscopic cross sectional analysis of injection molded poly (ethylene terephthalate-co-4,4' -bibenzoate) [J], J. Ind. Eng. Chem.,2001,7(2):67-71 [9]Fakiro V. S., Fischer E.W., Hoffmann R., Schmidt G.F., Polymer,1977,18: 1121-1129
    [10]Gohil R.M., J.Appl.Polym. Sci.,1994,52:925
    [11]Hold S. P. J., Truner J.A., Polymer,1971,12:195
    [12]Greener J., Tsou A. H., Blanton T. N., Polymer Engineering and Science,1999, 39(2):2403-2418
    [13]Lee B., Shin T. J., Lee S. W., Time-resolved X-ray scattering and calorimetric studies on the crystallization behaviors of poly (ethylene terephthalate) (PET) and its copolymers containing isophthalate units [J], Polymer,2003,44:2509
    [14]Wu T. M., Lin Y. W., Crystallization behavior and morphology of poly (ethylene-co- trimethylene terephthalate) s [J], Journal of Polymer Science, Part B: Polymer Physics,2004,42:4255-4271
    [15]Ma H., Uchida T., Collard D. M., Schiraldi D. A., Kumar S., Crystal structure and composition of poly (ethylene terephthalate-co-4,4'-bibenzoate) [J], Macromolecules,2004,37:7643-48
    [16]Ma H., Collard D. M., Structure and dynamic mechanical properties of Poly (ethylene terephthalate-co-4,4'-bibenzoate)fibes [J], Polymer,2007,48:651-1658
    [1]Jabarin S. A. and Lofgren E. A, Thermal stability of ethylene tere-phthalate [J], Polym. Eng. Sci.,1984,24(13):1056-1063
    [2]Gabriela B., Arlete Q., Sofia L., Pieter G., Studies on thermal and thermo-oxidative degradation of poly (ethylene tere- phthalate) and poly (butylenes tetephthalate)[J], Polym. Degrad. Stab.,2001,74:39-48
    [3]Wang X. S., Li X. G., Yan D. Y., Thermal decomposition kinetics of poly (trimethylene terephthalate) [J], Polym. Degrad. Stab.,2000,69:361-372
    [4]Wei G. F., Hua D. B., Gu L. X., Thermal Stability of Poly (ethy-lene-co-trimethylene terephthalate) s [J], J. Appl. Polym. Sci.,2006,101: 3330-3335
    [5]Saikrasun S., Wongkalasin O., Thermal decomposition kinetics of thermotropic liquid crystalline p-hydroxy benzoic acid/ poly (ethy- lene terephthalate) copolyester [J], Polym. Degrad. Stab.,2005,8:300-308
    [6]Audrey A., Deschamps D. W., Grijpma J. F., Poly (ethylene oxide)/poly (butylenes terephthalate) segmented block copolymers:the effect of copolymer composition on physical properties and degradation behavior [J], Polymer,2001:9335-9345
    [7]Li X. G., Huang M. R., High-resolution thermogravimetric kinetics of liquid crystalline poly (p-oxybenzoate-co-ethylene terephthalate) [J], Polym. Test.,2000,19:385-397
    [8]Girija B. G., Sailaja R. R. N., Madras G., Thermal degradation and mechanical properties of PET blends [J], Polym. Degrad. Stab.,2005,90: 147-153
    [9]Qian Z. Y., Li S., He Y., Liu X. B., Synthesis and in vitro degr- adation study of poly (ethylene terephthalate)/ poly (ethylene glycol) (PET/PEG) multiblock copolyme [J], Polym. Degrad. Stab.,2004,83:93-100
    [10]Chen M.S., Chang S.J., Chang R. S., Chen S. M., Tsai H. B., Copol-yesters:Part Ⅱ-Thermal degradation of poly (butylenes isophthalate-co-tereph thalates)[J], Polym. Degrad. Stab.,1989,23(3):239-243
    [11]Eguiazabal J. I., Iruin J. J., Miscibility and thermal decomposition in phenoxy/poly (ethylene terephthalate) and phenoxy/ poly (butylenes terephth- alate) blends [J], Mater. Chem. and Phys.,1987,18:147-154
    [12]Li X. G., Huang M. R., Guan G. H., Sun T., Thermal decom- position kinetics of liquid crystalline p-oxybenzoate/ethylene tereph-thalate/ third monomer terpolymers [J], Polym. Degrad. Stab.,1999,65:463-472
    [13]Du X. H., Zhao Ch. Sh., Wang Y. Zh., et al, Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid cry- stal copolyester/PET blends Mater [J], Chem. Phys.,2006,98:172-177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700