层状阴离子粘土设计合成、催化性能及计算模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状阴离子粘土(LDHs)是一种具有特殊层状构型的功能材料,一直受到学术界和工业界的关注。其组成通式为:[M_(1-x)~(2+)M_x~(3+)(OH)_2](A~(n-))_(x/n)·mH_2O。因为LDHs层板M~(2+)和M~(3+)以及层间阴离子A~(n-)的可调配性,使得LDHs材料的结构与功能具有多变性,因此LDHs材料在催化、吸附分离、医药、PVC热稳定剂等领域得到广泛应用。本研究工作以“水相重整制氢”与“原位气相加氢”两类新型催化反应为功能导向,对LDHs材料进行设计合成、性能评价以及计算模拟研究。
     以“制氢/加氢”为功能导向进行LDHs材料设计合成根据“乙二醇水相重整制氢”与“苯甲酸(甲酯)原位气相加氢”催化反应要求,对催化剂活性组分进行设计调配。调变金属离子摩尔比,采用共沉淀法合成系列NiSnAl、NiMgAl以及CuMnAl-LDHs材料。然后用XRD、TG-DTA、BET、TPR-MS、SEM、EDS等手段对合成材料进行微观结构、热稳定性以及还原特性表征。本文首次将LDHs材料通过“直接H_2还原/活化”法构筑的金属负载型催化剂用于“制氢/加氢”催化反应,明显提高了催化性能。并依据XRD、TPR-MS表征结果,提出了LDHs材料构筑金属负载型催化剂的“直接H_2还原/活化”机制。
     生物质衍生物水相重整制氢研究以葡萄糖或多元醇等生物质衍生物作为原料制备清洁、高效的氢能,是目前国内外制氢研究的热点。本文以乙二醇水溶液作为反应物,以Ni基LDHs材料作为催化剂,于500K下通过水相重整反应制氢。研究表明,采用Sn或者Mg对NiAl-LDHs进行修饰,都能提高其制氢活性以及选择性。究其原因,前者主要形成了Ni_3Sn合金,而后者主要是增加了载体的碱性。综合制氢活性与选择性,Ni_(20)SnAl_7-LDHs衍生催化剂表现较佳,H_2选择性接近100%,H_2产率为292.01μmol/min。并且,该催化剂显示出良好的稳定性,稳定时间达到120 h以上。以LDHs为前躯体制备的新型催化剂与Dumesic等报道的Pt/γ-Al_2O_3以及Sn-Raney Ni催化剂活性及稳定性相当。
     苯甲酸(甲酯)原位气相加氢合成苯甲醛研究首次将“甲醇水蒸气重整制氢”与“苯甲酸(甲酯)气相加氢”进行反应耦合,高选择性地制备苯甲醛。为实现该新型“制氢/加氢”耦合反应,本文以CuMnAl-LDHs为前躯体制备了双功能催化剂。在最佳反应条件下,苯甲醛选择性可达到95.63%,其选择性要明显优于传统的外加氢方法。并根据产物分布提出了苯甲酸(甲酯)“原位”气相加氢反应机制。该反应体系由于不需要外加氢气,因此简化了反应工艺,避免了H_2在生产、运输、存储等环节存在的困难。
     LDHs材料结构与功能的计算模拟研究LDHs材料结构复杂:原子种类多、可调变性强、键型多样;层板中存在离子键和共价键,主客体又以静电、氢键和范德华作用力相结合。因此,采用单一模型和方法很难对LDHs材料结构与性能进行深入理论研究。本文采用密度泛函理论(DFT)、分子动力学模拟(MD)以及物理静电模型(EPM)相结合,从不同模拟尺度与精度对无机层状功能材料(LDHs)的结构与能量进行模拟计算。研究简单客体CO_3~(2-)、SO_4~(2-)、CrO_4~(2-)、F~-、Cl~-、Br~-、I~-、OH~-、NO_3~-以及复杂药物阴离子(DIF)插层LDHs材料的层间结构特点、主客体超分子作用细节以及电子转移状况;考察水分子在LDHs限域空间中的分布形态、氢键形成情况;关联其热稳定性、离子交换以及水合膨胀等重要物化特性;为新型LDHs材料的分子设计提供理论依据。
Layered double hydroxides(LDHs) have been attracting attention of scientists and academe as a kind of materials with special structure and properties.It is generally expressed in the formula:[M~(2+)_(1-x) M~(3+)_x(OH)_2](A~(n-))_(x/n)·mH_2O.Because M~(2+) and M~(3+) in the layer-sheets and anions(A~(n-)) in the gallery are flexibly controllable,and the structure and properties of LDHs are changeable,it can be used for the design of functional materials.LDHs are widely used in catalysis,adsorption-separation, medicine,PVC stability,dope,oil-exploitation and so on.
     Under the guide of hydrogen production from aqueous-phase reforming of ethylene glycol and "in situ" hydrogenation of methyl benzoate,the design and synthesis, catalytic performance and computer simulation of layered double hydroxides were carried out.
     The total thesis was divided into four sections:
     (1) The design and synthesis of LDHs based under the guide of hydrogen production and hydrogenation reaction
     According to the catalytic requirement of hydrogen production from aqueousphase reforming of ethylene glycol and "in situ" hydrogenation of methyl benzoate or benzoic acid,we designed and filtered the activation components of catalysts. Changing the mol.ratio of metal ions,a series of NiSnAl,NiMgAl,and CuMnAl-LDHs materials were synthesized with a coprecipitation method.And then,the structure,thermal stabilities,and reductive properties were characterized by XRD, TG-DTA,BET,TPR-MS,SEM,EDS technologies.
     LDHs materials must be changed into the metal supported catalysts in the hydrogen production and hydrogenation reaction.The traditional pathway of LDHs derived catalysts was that LDHs containing transition metals are first calcined,and then are reduced under H_2 atmosphere.In this study,a new-typed reductive method,direct H_2 reduction of LDHs,was proposed to construct the metal supported catalysts.The performance was obviously promoted using the catalysts reduced by direct H_2 reduction method.At last,the reduction and activation mechanism of LDHs based metal supported catalysts was proposed against the XRD and TPR-MS characterization results.
     (2) Hydrogen production from aqueous-phase reforming of biomass-derived hydrocarbons
     Recently,the clean and effective hydrogen energy is produced by glycose or alcohol as the reactant,which is the hotspot of research for hydrogen production.In this study,hydrogen production by aqueous-phase reforming of biomass-derived ethylene glycol(EG) was tested at near 500 K over the modified NiAl-LDHs derived catalysts.The results showed that the activity and selectivity of H_2 were improved when Sn or Mg modified to Ni/Al-LDHs.The reasons for H_2 production selectivity and activation promoted,the former was likely related with the Ni_3Sn alloy conformed,and the later was likely related with the alkali supports.
     H_2 selectivity reached near 100%and H_2 production rate was 292.01μmol/min over Ni_(20)SnAl_7-HT derived catalyst.Moreover,the catalyst displayed a good stability, reaching above 120 h.The H_2 selectivity and stabilities of Sn modified Ni-LDHs derived catalyst were equal to the performance of Pt/γ-Al_2O_3 and Sn-Raney Ni catalysts reported by Dumesic et al.
     (3) 'In situ' hydrogenation of methyl benzoate(benzoic acid) to benzaldehyde
     The coupling reaction between hydrogen production from steaming reforming of methanol and hydrogenation of methyl benzoate(benzoic acid),for the first time,was proposed to produce benzaldehyde.In order to realize this new-typed coupling reaction,the Cu component was designed for steaming reforming of methanol,and the Mn component was designed for hydrogenation of methyl benzoate(benzoic acid). The bi-functional catalysts were prepared with CuMnAl-LDHs as precursors.Cu-Mn catalyst displayed a good catalytic performance,and the selectivity of benzaldehyde reaches 95.63%,which was superior to the traditional hydrogenation methods.The mechanism of 'in situ' hydrogenation was proposed according to the production distribution and catalysts characterization.'In situ' hydrogenation method could predigest the reaction craftwork because it needn't additional H_2,so it can avoid the difficulty in production,transport,and storage of H_2.
     (4) Computer simulation of the structure and properties of LDHs
     The structure of LDHs was complicated because the layers existed electrovalent bond and covalent bond,and the interactions of host-guest included static electricity effect,hydrogen bonding and van der waals force.So theoretical studies of the structure and properties of LDHs were difficult with single model and method.The structure parameters and energies of LDHs were calculated with density functional theory(DFT),molecular dynamics(MD),and electrostatic potential model(EPM) from different dimensions and accuracies.The interlayer structure characters, host-guest interaction,electron transfer of CO_3~(2-),SO_4~(2-),CrO_4~(2-),F~-,Cl~-,Br~-,I~-,OH~-, NO_3~- and drug molecule(DIF) intercalated LDHs were studied.Moreover,the distribution,hydrogen-bonding of interlayer anions and water molecules were discussed.And ion-exchange properties,heat stabilities,hydration and swelling properties were concluded according to the calculational and experimental results. The computer simulation provided theoretical supporting for molecule design of new-typed LDHs materials.
引文
[1]Cavani F.,Trifiro F.,Vaccari A.Hydrotalcite-type anionic clay:preparation,properties and application[J].Catal.Today,1991,11(2):173-301.
    [2]Rives V.,Ulibarri M.A.Layered double hydroxides(LDH) intercalated with metal coordination compounds and oxometalates[J].Coordination Chemistry Reviews,1999,181,61-120.
    [3]Pergher S.B.C.,Corma A.,Fomes V.Pillared layered materials:preparation and properties[J].Quimica Nova,1999,22(5):693-709.
    [4]Zikmund M.,Hrnciarova K.Anionic clays:structure,synthesis,applications[J].Chemicke Listy,1997,91(3):169-178.
    [5]Feitknecht W.Formation of double hydroxides between bi-and trivalent metal[J].Helv.Chim.Acta,1942,25:555-569.
    [6]Evans D.G.,Slade R.C.T.Structural aspects of layered double hydroxides[J].Layered Double Hydroxides,2006,119:1-87.
    [7]Lei L.X.,Zhang W.F.,Hu M.,et al.Layered double hydroxides:Structures,properties and applications[J].Chinese Journal of Inorganic Chemistry,2005,21(4):451-463.
    [8]Leroux F.,Taviot-Gueho C.Fine tuning between organic and inorganic host structure:new trends in layered double hydroxide hybrid assemblies[J].Journal of Materials Chemistry,2005,15(35-36):3628-3642.
    [9]Kunert A.,Zaborski M.The structure,properties and uses of layered minerals[J].Przemysl Chemiczny,2006,85(11):1510-1517.
    [10]倪哲明,夏盛杰,王力耕,等.诺氟沙星插层镁铝水滑石新型药物-无机复合材料的超分子结构、热稳定性和缓释性能[J].高等学校化学学报,2007,28(7):1214-1219.
    [11]Ni Z.M.,Xia S.J.,Wang,L.G.,et al.Treatment of methyl orange by calcined layered double hydroxides in aqueous solution:Adsorption property and kinetic studies[J].Journal of Colloid and Interface Science,2007,316(2):284-291.
    [12]Radha A.V.,Kamath P.V.,Ravishankar N.,et al.Suppression of the reversible thermal behavior of the layered double hydroxide(LDH) of Mg with Al:Stabilization of nanoparticulate oxides[J].Langmuir,2007,23(14):7700-7706.
    [13]Stanimirova T.,Hibino T.,Balek V.Thermal behavior of Mg-Al-CO3 layered double hydroxide characterized by emanation thermal analysis[J].Journal of Thermal Analysis and Calorimetry,2006,84(2):473-478.
    [14]Casenave S.,Martinez H.,Guimon C.,et al.Acid-base properties of Mg-Ni-Al mixed oxides using LDH as precursors[J].Thermochimica Acta,2001,379(1-2):85-93.
    [15]Shen J.Y.,Tu M.,Hu C.Structural and surface acid/base properties of hydrotalcite -derived MgAlO oxides calcined at varying temperatures[J].Journal of Solid State Chemistry,1998,137(2),295-301.
    [16]李大塘,郭军,沈俭一,等.焙烧温度对Mg(Al)O复合物结构和表面酸碱性质影响的研究[J].化学物理学报,2000,13(2):220-226.
    [17]Zhao Y.,Jiao Q.Z.,Evans D.G.,et al.Mechanism of pore formation and structural characterization for mesoporous Mg-Al composite oxides[J],Science in China Series-Chemistry,2002,45(1):37-45.
    [18]Vaccari A.,Gazzano M.Hydrotalcite-type anionic clays as precursors of high-surface-area Ni/Mg/Al mixed oxides[J],Preparation of Catalysis Ⅵ,1995,91:893-902.
    [19]Nagorny O.V.,Vol'khin V.V.,Sokolova M.M.,et al.Anion-exchange properties of magnesium chromium(Ⅲ) hydroxide[J].Russian Journal of Inorganic Chemistry,2005,50(3):483-487.
    [20]Lee J.H.,Rhee S.W.,Jung D.Y.Step-wise anion-exchange in layered double hydroxides using solvothermal treatment[J].Bulletin of the Korean Chemical Society,2005,26(2):248-252.
    [21]Takehira K.,Shishido T.Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting "memory effect"[J],Catalysis Surveys From Asia,2007,11(1-2):1-30.
    [22]Erickson K.L.,Bostrom T.E.,Frost R.L.A study of structural memory effects in synthetic hydrotalcites using environmental SEM.Materials Letters,2005,59(2-3):226-229.
    [23]Wong E,Buchheit R.G.Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings[J],Progress in organic Coatings,2004,51(2):91-102.
    [24]Feng L.,Duan X.Applications of layered double hydroxides[J].Layered Double Hydroxides,2006,119:193-223.
    [25]Serwicka E.M.Clays as catalysts for the removal of nitrogen oxides[J].Polish Journal of Chemistry,2001,75(3):307-328.
    [26]Chen Y.Z.,Hwang C.M.,Liaw C.W.One-step synthesis of methyl isobutyl ketone from acetone with calcined Mg/Al hydrotalcite-supported palladium or nickel catalysts [J].Appl.Catal.A,1998,169(2):207-214.
    [27]李蕾,刘石均,李保山,等.有机紫外吸收剂插层锌铝水滑石的制备及表征[J].无机化学学报,2007,23(3):407-414.
    [28]张慧,徐彦红,Evans D.G.,等.磁性纳米固体碱催化剂MgAl-OH-LDHs/NiFe_2O_4的合成、表征与性能研究[J].化学学报,2004,62(8):750-756.
    [29]金志琳,侯万国,戴国亮,等.电解质对Mg-Al HTlc溶胶聚集动力学行为的影响[J].化学学报,2004,62(20):2025-2029.
    [30]倪哲明,李丹,王力耕,等.二氟尼柳嵌入镁铝水滑石的合成表征与研究[J].高校化学工程学报,2006,20(6):915-919.
    [31]He J.,Wei M.,Li B.,et al.Preparation of layered double hydroxides[J].Layered Double Hydroxides,2006,119:89-119.
    [32]Ni Z.M.,Yu W.H.,Zhao S.F.,et al.Preparation and characterization of ternary cation hydrotalcite-like compounds and their adsorption of NO_x[J],Indian Journal of Chemistry-A,2005,44(12):2480-2482.
    [33]Naghash A.R.,Xu Z.,Etsell T.H.Coprecipitation of nickel-copper-aluminum takovite as catalyst precursors for simultaneous production of carbon nanofibers and hydrogen [J].Chemistry of Materials,2005,17(4):815-821.
    [34]Chang Z.,Evans D.G.,Duan X.,et al.Synthesis of[Zn-Al-CO3]layered double hydroxides by a coprecipitation method under steady-state conditions[J].Journal of Solid State Chemistry,2005,178(9):2766-2777.
    [35]谢晖,矫庆泽,段雪.镁铝型水滑石水热合成[J].应用化学,2001,18(1):70-72.
    [36]吕仁庆,马荔,项寿鹤.柱撑阴离子粘土材料研究进展[J].石油大学学报(自然科学版),2001,25(5):120-125.
    [37]段雪,矫庆泽,李蕾.均分散超细阴离子层状材料的新合成方法[P],中国专利,9911385,1999-09-14.
    [38]卢永定.新型矿物材料-水滑石[J].无机盐工业,1998,30(3):8-9.
    [39]Figueras F.,Kantam M.L.,Choudary B.M.Solid base catalysts in organic synthesis[J].Cur.Org.Chem.,2006,10(13):1627-1637.
    [40]Kim D.H.,Kang J.S.,Lee Y.J.,et al.Steam reforming of n-hexadecane over noble metal-modified Ni-based catalysts[J].Catal.Today,2008,136(3-4):228-234.
    [41]Macala G.S.,Robertson A.W.,Johnson C.L.,et al.Transesterification catalysts from iron doped hydrotalcite-like precursors:Solid bases for biodiesel production[J].Catal.Lett.,2008,122(3-4):205-209.
    [42]Chang C.T.,Liaw B.J.,Huang C.T.,et al.Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation[J].Appl.Catal.A-Gen.,2007,332(2):216-224.
    [43]Bergada O.,Salagre P.,Cesteros Y.,et al.Effective catalysts,prepared from several hydrotalcites aged with and without microwaves,for the clean obtention of 2-phenylethanol [J].Appl.Catal.A-Gen.,2007,331:19-25.
    [44]Bueno J.M.C.,Gazzano M.,Coelho M.G.,et al.Synthesis and reactivity of copper-containing nonstoichiometric spinel-type catalysis[J].Appl.Catal.A-Gen.,1993,103(1):69-78.
    [45]Beretta A.,Sun Q.,Herman R.G.,et al.Production of methanol and isobutyl alcohol mixtures over double-bed cesium-promoted Cu/ZnO/Cr_2O_3 and ZnO/Cr_2O_3 catalysts[J].Ind.Eng.Chem.Res.,1996,35(5):1534-1542.
    [46]Cabello F.M.,Tichit D.,Coq B.,et al.Hydrogenation of acetonitrile on nickel-based catalysts prepared from hydrotalcite-like precursors[J].J.Catal.,1997,167(1):142-152.
    [47]Gardner E.,Pinnavaia T.J.On the nature of selective olefin oxidation catalysts derived from molybdate-and tungstate-intercalated layered double hydroxides[J].Appl.Catal.A-[J]. Gen., 1998,167(1): 65-74.
    
    [48] Prinetto F., Ghiotti G, Durand R., et al. Investigation of acid-base properties of catalysts obtained from layered double hydroxides [J]. J. Phys. Chem. B, 2000, 104 (47) : 11117-11126.
    
    [49] Kim D., Huang C.Z., Lee H., et al. Hydrotalcite-type catalysts for narrow-range oxyethylation of 1-dodecanol using ethyleneoxide [J]. Appl. Catal. A-Gen., 2003, 249(2):229-240.
    
    [50] Ribeiro N.F.P., Henriques C.A., Schmal M. Copper-based catalysts for synthesis of methylamines: the effect of the metal and the role of the support [J]. Catal. Lett.,2005,104(3-4): 111-119.
    [51] Gusi S., Pizzoli F., Trifiro F., et al., 1987. Preparation of multicomponent catalysts for the hydrogenation of carbon monoxide via hydrotalcite-like precursors. In: Delmon B., Grange P.,Jacobs P.A., et al. (Eds.), Preparation of Catalysts IV. Elsevier, Amsterdam, pp. 753-763.
    [52] Basile F., Basini L., D'Amore M., et al. Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane - Residence time dependence of the reactivity features [J].J. Catal., 1998,173(2): 247-256.
    [53] Velu S., Suzuki K., Kapoor M.P., et al. Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts[J]. Appl. Catal.A-Gen., 2001,213(1): 47-63.
    [54] Velu S., Suzuki K., Osaki T. Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides[J]. Catal.Lett, 1999,62(2-4): 159-167.
    [55] Abello S., Vijaya-Shankar D., Perez-Ramirez J. Stability, reutilization, and scalability of activated hydrotalcites in aldol condensation [J]. Appl. Catal. A-Gen.,2008,342(1-2): 119-125.
    [56] Abello S., Medina F., Tichit D., et al. Nanoplatelet-based reconstructed hydrotalcites: towards more efficient solid base catalysts in aldol condensations [J]. Chem. Comm., 2005, (11):1453-1455.
    
    [57] Mestres R. A green look at the aldol reaction [J]. Green Chem., 2004, 6(12): 583-603.
    [58] Zhu K.Z., Liu C.B., Ye X.K, et al. Catalysis of copper-containing transition metal hydrotalcite-like compounds in the phenol hydroxylation with hydrogen peroxide [J]. Chem. J.Chin. Univ., 1997,18(9): 1530-1533.
    [59] Zhu K.Z., Liu C.B., Ye X.K., et al. Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (I) phenol hydroxylation [J]. Appl. Catal. A-Gen., 1998,168 (2): 365-372.
    [60] Matsushita T., Ebitani K., Kaneda K. Highly efficient oxidation of alcohols and aromatic compounds catalysed by the Ru-Co-Al hydrotalcite in the presence of molecular oxygen [J].Chem. Comm., 1999, (3): 265-266.
    [61] Kaneda K., Yamashita T., Matsushita T., et al. Heterogeneous oxidation of allylic and benzylic alcohols catalyzed by Ru- Al-Mg hydrotalcites in the presence of molecular oxygen J.Org.Chem.,1998,63(6):1750-1751.
    [62]Auer S.M.,Schneider M.,Balker A.Novel Heterogeneous route for the coupling of phenylethyne by a catalyst derived from Cu-Mg-Al hydrotalcite[J].J.Chem.Soc.-Chem.Comm.,1995,(20):2057-2058.
    [63]Davis R.J.,Mielczarski E.Effect of catalyst preparation on the aromatization of n-hexane over Pt clusters supported on hydrotalcite[J].ACS Symposium Series,1993,517:327-336.
    [64]Trombetta M.,Ramis G.,Busca G.,et al.Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcite-type precursors[J].Langmuir,1997,13(17):4628-4637.
    [65]Sangeetha P.,Seetharamulu P.,Shanthi K.,et al.Studies on Mg-Al oxide hydrotalcite supported Pd catalysts for vapor phase hydrogenation of nitrobenzene[J].J.Mol.Catal.A-Chem.,2007,273(1-2):244-249.
    [66]Tichit D.,Medina F.,Durand R.,et al.Use of Ni containing anionic clay minerals as precursors of catalysts for the hydrogenation of nitriles[J].Heterogeneous catalysis and fine chemicals Ⅳ.,1997,108:297-304.
    [67]Narayanan S.,Krishna K.Highly active hydrotalcite supported palladium catalyst for selective synthesis of cyclohexanonefrom phenol[J].Appl.Catal.A-Gen.,1996,147(2):253-258.
    [68]Claus P.,Berndt H.,Mohr C.,et al.Pd/MgO:Catalyst characterization and phenol hydrogenation activity[J].J.Catal.,2000,192(1):88-97.
    [69]Castiglioni G.L.,Ferrari M.,Guercio A.,et al.Chromium-free catalysts for selective vapor phase hydrogenation of maleic anhydride to gamma-butyrolactone[J].Catal.Today,1996,27(1-2):181-186.
    [70]Jyothi T.M.,Raja T.,Sreekumar K.,et al.Influence of acid-base properties of mixed oxides derived from hydrotalcite-like precursors in the transfer hydrogenation of propiophenone[J].J.Mol.Catal.A-Chem.,2000,157(1-2):193-198.
    [71]Davda R.R.,Shabaker J.W.,Huber G.W.,et al.Aqueous-phase reforming of ethylene glycol on silica-supported metal catalysts.Appl.Catal.B,2003,43(1):13-26.
    [72]Jacobsen H."Heterogreeneous" chemistry:catalysts for hydrogen production from biomass [J].Angew chem.,2004,43(15):1912-1914.
    [73]Davada R.R.,Dumesic J.A.Renewable hydrogen by aqueous-phase reforming of glucose[J].Chem.Commun.,2004,(1):36-37.
    [74]Davada R.R.,Dumesic J.A.Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide[J].Angew.chem.,2003,42(34):4068-4071.
    [75]Huber G.W.,Cortright R.D.,Dumesic J.A.Renewable alkanes by aqueous-phase reforming of biomass-oxygenates[J].Angew.chem.,2004,43(12):1549-1551.
    [76]Cortright R.D.,Davda R.R.,Dumesic J.A.Hyderogen from catalytic reforming of biomass-dedved hydrogcarbons in liquid water[J].Nature,2002,418(6901):964-967.
    [77]Davda R.R.,Shabaker J.W.,Huber G.W.,et al.A review of catalytic issues and process conditions for renewable hydrogen and alkancs by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts,Appl.Catal.B,2005,56(1-2):171-186.
    [78]Kabyemela B.M.,Adschiri T.,Malaluan R.M.,et al.Kinetics of glucose epimerization and decomposition in subcritical and supercritical Water[J].Ind.Eng.Chem.Res.,1997,36(5):1552-1558.
    [79]Kabyemela B.M.,Adschiri T.,Malaluan R.M.,et al.Glucose and fructose decomposition in subcritical and supcrcritical Water:detailed rcactionpathway,mechanisms,and kinetics[J].Ind.Eng.Chem.Res.,1999,38(8):2888-2895.
    [80]Huber G.2 W.,Dumcsic J.A.An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J].Catal.Today,2006,111(1-2):119-132.
    [81]Sinfelt J.H.,Yates D.J.C.Catalytic hydrogenolysis of ethane over the noble metals of Group Ⅷ[J].J.Catal.,1967,8(1):82-90.
    [82]Somorjai G.A.Introduction to Surface Chemistry and Catalysis,Wiley,New York,1994.
    [83]Vannice M.A.The catalytic synthesis of hydrocarbons from H_2/CO mixtures over the Group Ⅷ metals:Ⅴ.The catalytic behavior of silica-supported metals[J].J.Catal.,1977,50(2):228-236.
    [84]Shabaker J.W.,Davda R.R.,Huber G.W.,et al.Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum catalysts[J].J.Catal.,2003,215(2):344-352.
    [85]Shabaker J.W.,Hubcr G.W.,Davda R.R.,et al.Aqueous-phase reforming of ethylene glycol over supported platinum catalysts[J].Catal.Lett.,2003,88(1-2):1-8.
    [86]Shabaker J.W.,Huber G.W.,Dumesic J.A.Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts[J].J.Catal.,2004,222(1):180-191.
    [87]Huber G.W.,Shabaker J.W.,Dumesic J.A.,Rancy Ni-Sn catalyst for H_2 production from biomass-derived hydrocarbons[J].Science,2003,300(5628):2075-2077.
    [88]Alcala R.,Mavrikakis M.,Dumesic J.A.DFT studies for cleavage of C-C and C-O bond in surface species dcrived from ethanol on Pt(111)[J].J.Catal.,2003,218(1):178-190.
    [89]Iglesia E.,Soled S.L.,Fiato R.A.Fischcr-Tropsch synthesis on cobalt and ruthenium.Metal dispersion and support effects on reaction rate and selectivity[J].J.Catal.,1992,137(1):212-224.
    [90]Kellner C.S.,Bell A.T.The kinetics and mechanism of carbon monoxide hydrogenation over alumina-supported ruthenium[J].J.Catal.,1981,70(2):418-432.
    [91]Grenoble D.C.,Estadt M.M.,Ollis D.F.The chemistry and catalysis of the water gas shift reaction:1.The kinetics over supported metal catalysts[J].J.Catal.,1981,67(1):90-102.
    [92]Rylander P.N.Hydrogenation Methods.New York:Academic Press,1985.
    [93]杨建峰,孙军庆,李小年,等.利用乙醇重整制氢进行硝基苯原位液相加氢合成苯胺[J].催化学报.2006,27(7):559-561.
    [94]姜莉,祝一锋,项益智,等.甲醇水相重整制氢原位还原苯乙酮制备α-苯乙醇[J].催化学报.2007,28(3):281-286.
    [95]李小年,项益智.一类新的液相催化氢化反应体系[J].中国科学(B辑).2007,37(2):136-142.
    [96]项益智,李小年.苯酚液相原位加氢合成环己酮和环己醇[J].化工学报.2007,58(12):3041-3045
    [97]Luo Q.S.,Li L.,Wang Z.X.,et al.Theoretical study of the layer-anion interactions in magnesium aluminum layered double hydroxides[J].Chinese J.Inorg.Chem.,2001,17(6):835-842.
    [98]Pu M.,Zhang B.F.Theoretical study on the microstructures of hydrotaleite lamellae with Mg/Al ratio of two[J].Mater.Lett.,2005,59(27):3343-3347.
    [99]Li L.,Liu S.J.,Li B.S.,et al.Preparation and photochemical characterization of compounds by intercalation of organic UV absorbents into Zn-Al hydrotalcite-like compounds[J].Chin.J.Inorg.Chem.,2007,23(3):407-414.
    [100]Masini P.,Bernasconi M.Ab initio simulations of hydroxylation and dehydroxylation reactions at surfaces:amorphous silica and brucite[J].J.Physics-Condensed.Mater.,2002,14(16):4133-4144.
    [101]Trave A.,Selloni A.,Goursot A.,et al.First principles study of the structure and chemistry of Mg-based hydrotalcite-like anionic clays[J].J.Phys.chem.B,2002,106(47):12291-12296.
    [102]Liu L.Y.,Pu M.,Yang L.,et al.Experimental and theoretical study on the structure of acid orange 7-pillared layered double hydroxide[J].Mater.Chem.Phys.,2007,106(2-3):422-427.
    [103]杨作银;周宏伟;张敬畅,等.Mg-Al类水滑石层板结构中Al/Mg比与稳定性的关系[J].物理化学学报.2007,23(6):795-800.
    [104]Segall M.D.,Lindan P.J.D.,Probert M.J.,et al.First-principles simulation:ideas,illustrations and the CASTEP code[J].J.Phys.Condens.Mater.,2002,14(11):2717-2744.
    [105]Greenwell H.C.,Stackhouse S.,Coveney P.V.,et al.A density functional theory study of catalytic trans-esterification by tert-butoxide MgAl anionic clays[J].J.Phys.Chem.B,2003,107(15):3476-3485.
    [106]文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73.
    [107]Heermann D.W.Computer Simulation Methods in Theoretical Physics[M].Springer-Verlag Press,1990.
    [108]Li H.,Ma J.,Evans D.G.,et al.Molecular dynamics modeling of the structures and binding energies of alpha-nickel hydroxides and nickel-aluminum layered double hydroxides containing various interlayer guest anions[J].Chem.Mater,2006,18(18):4405-4414.
    [109]King J.,Jones W.The attempted simulation of layered double hydroxide intercalates through lattice energy minimization [J].Mol. Cryst. Liq. Cryst., 1992,211, 257-269.
    [110] Aicken A.M., Bell I.S., Coveney P.V., et al. Simulation of layered double hydroxide intercalates [J]. Adv. Mater, 1997,9(6): 496-500.
    [111] Newman S.P., Williams S.J., Coveney P.V., et al. Interlayer arrangement of hydrated MgAl layered double hydroxides containing guest terephthalate anions: Comparison of simulation and measurement [J].J. Phys. Chem. B, 1998,102(35): 6710-6719.
    [112] Newman S.P., Greenwell H.C., Coveney P.V., et al. Computer simulation of interlayer arrangement in cinnamate intercalated layered double hydroxides [J]. J. Mol. Struct., 2003,647(1-3):75-83.
    [113] Shichi T., Takagi K., Sawaki Y. Stereoselectivity control of [2+2] photocycloaddition by changing site distances of hydrotalcite interlayers [J]. Chem. Comm., 1996, (17): 2027-2028.
    [114] Mohanambe L., Vasudevan S. Anionic clays containing anti-inflammatory drug molecules:Comparison of molecular dynamics simulation and measurements [J]. J. Phys. Chem. B,2005,109(32): 15651-15658.
    [115] De Roy A., Forano C, El Malki K., et al. In Expanded Clays and Other Microporous Solids;Occelli M.L., Robson H.E., Eds; Van Nostrand Reinhold: New York, 1992; p 108, Vol. 2.
    [116] Cerius2, version 4.2; Accelrys: San Diego, CA, 2001. Materials Studio Modeling, version 3.1.0.0; Accelrys Software Inc: San Diego, CA, 2004.
    [117] Hou X.Q., Bish D.L., Wang S.L., et al. Hydration, expansion, structure, and dynamics of layered double hydroxides [J]. American Mineralogist, 2003,88 (1): 167-179.
    [118] Greenwell H.C., Harvey M.J., Boulet P., et al. Interlayer structure and bonding in nonswelling primary amine intercalated clays [J]. Macromolecules, 2005,38(14): 6189-6200.
    [119] Katti D.R., Schmidt S.R., Ghosh P., et al. Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics [J]. Clays Clay Miner, 2005,53(2):171-178.
    [120] Coveney P.V., Greenwell H.C. Large-scale MD simulations for studying the interlayer structure in cationic and anionic clays and nanocomposite materials [J]. Geochim. Cosmochim. Acta, 2004, 68(11):A106.
    [121] Greenwell H.C., Jones W., Coveney P.V., et al. On the application of computer simulation techniques to anionic and cationic clays: A materials chemistry perspective [J]. J. Mater.Chem., 2006,16(8): 708-723.
    [122] Thyveetil M.A., Coveney P.V., Suter J.L., et al. Emergence of undulations and determination of materials properties in large-scale molecular dynamics simulation of layered double hydroxides [J]. Chem. Mater, 2007,19(23): 5510-5523.
    [123] Cygan R.T., Liang J.J., Kalinichev A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J]. J. Phys. Chem. B, 2004,108(4):1255-1266.
    [124] Loison C, Mareschal M., Kremer K., et al. Thermal fluctuations in a lamellar phase of a binary amphiphile-solvent mixture: A molecular-dynamics study [J]. J. Chem. Phys., 2003, 119(24):3138-13148.
    [125]Suter J.L.,Coveney P.V.,Greenwell H.C.,et al.Large-scale molecular dynamics study of montmorillonite clay:Emergence of undulatory fluctuations and determination of material properties[J].J.Phys.Chem.C,2007,111(23):8248-8259.
    [126]Bravo-Suarez J.J.,Paez-Mozo E.A.,Oyama S.,et al.Microtextural properties of layered double hydroxides:a theoretical and structural model[J].Micro.& Meso.Mater.,2004,67(1):1-17.
    [1]Cavani F.,Trifiro F.,Vaccari A.Hydrotalcite-type anionic clay:preparation,properties and application[J].Catal.Today,1991,11(2):173-301.
    [2]Coronado E.,Galan-Mascaros J.R.,Marti-Gastaldo C.,et al.Spontaneous magnetization in Ni-Al and Ni-Fe layered double hydroxides[J].Inorg.Chem.,2008,47(19):9103-9110.
    [3]Mitsudome T.,Mikami Y.,Ebata K.,et al.Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols[J].Chem.Comm.,2008,(39):4804-4806.
    [4]Li L.,Shi J.L.In situ assembly of layered double hydroxide nano-crystallites within silica mesopores and its high solid base catalytic activity[J].Chem.Comm.,2008,(8):996-998.
    [5]Roeffaers M.B.J.,Sels B.F.,Uji-i H.,et al.Spatially resolved observation of crystal-face -dependent catalysis by single turnover counting[J].Nature,2006,439(7076):572-575.
    [6]Allada R.K.,Navrotsky A.,Berbeco H.T.,et al.Thermochemistry and aqueous solubilities of hydrotalcite-like solids[J].Scinece,2002,296(5568):721-723.
    [7]Aicken A.M.,Bell I.S.,Coveney P.V.,et al.Simulation of layered double hydroxide intercalates[J].Adv.Mater,1997,9(6):496-500.
    [8]Chang C.T.,Liaw B.J.,Huang C.T.,et al.Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation[J].Appl.Catal.A,2007,332(2):216-224.
    [9]Intissar M.,Malherbe F.,Prevot V.,et al.Evidences of segregated SnO_2 type nanoparticles coating layered double hydroxide at moderate temperature[J].J.Colloid.Interface.Sci.,2006,299(2):747-753.
    [10]Saber O.,Tagaya H.Preparation and intercalation reactions of Zn-Sn LDH and Zn-Al-Sn LDH[J].J.Porous Mater,2003,10(2):83-91.
    [11]Rives V.,Prieto O.,Dubey A.,et al,Synergistic effect in the hydroxylation of phenol over CoNiAl ternary hydrotalcites[J].J.Catal.,2003,220(1) 161-171.
    [12]Prevot V.,Forano C.,Besse J.P.Hydrolysis in polyol:New route for hybrid- layered double hydroxides preparation[J].Chem.Mater.,2005,17(26):6695-6701.
    [13]Seis B.F.,De Vos D.E.,Jacobs P.A.Hydrotalcite-like anionic clays in catalytic organic reactions[J].Catal.Rev.Sci.Eng.,2001,43(4):443-488.
    [14]Tichit D.,Gerardin C.,Durand R.,et al,Layered double hydroxides:precursors for multifunctional catalysts[J].Topics in Catal.,2006,39(1-2):89-96.
    [15]Ni Z.M.,Yu W.H.,Zhao S.F.,et al.The adsorption of NOx on magnesium aluminium hydrotalcite[J].Chin.Chem.Lett.,2004,15(8):989-992.
    [16]Velu S.,Suzuki K.,Kapoor M.P.,et al.Effect of sn incorporation on the thermal transformation and reducibility of M(Ⅱ)Al-layered double hydroxides[M(Ⅱ) = Ni or Co][J].Chem.Mater,2000,12(3):719-730.
    [17]Velu S.,Suzuki K.,Osaki T.,et al.Synthesis of new Sn incorporated layered double hydroxides and their evolution to mixed oxides[J].Mater Res.Bull.,1999,34(10-11): 1707-1717.
    [18] Intissar M., Jumas J.C., Besse J.P., et al. Reinvestigation of the layered double hydroxide containing tetravalent cations: Unambiguous response provided by XAS and Mossbauer spectroscopies [J]. Chem. Mater., 2003,15 (24): 4625-4632.
    [19] Velu S, Suzuki K., Okazaki M., et al. Synthesis of new Sn-incorporated layered double hydroxides and their thermal evolution to mixed oxides [J]. Chem. Mater., 1999, 11 (8):2163-2172.
    [20] Velu S., Suzuki K.., Osaki T. A comparative study of reactions of methanol over catalysts derived from NiAl- and CoAl-layered double hydroxides and their Sn-containing analogues [J]. Catal. Lett., 2000,69 (1-2): 43-50.
    [21] Kannan S. Catalytic applications of hydrotalcite-like materials and their derived forms [J].Catal. Surv. Asia., 2006,10(3-4): 117-137.
    [1] Qi A.D., Wang S.D., Fu G.Z., et al. La-Ce-Ni-O monolithic perovskite catalysts potential for gasoline autothermal reforming system[J]. Appl. Catal. A, 2005,281(1-2): 233-246.
    [2] Huber G.W., Iborra S., Corma A. Synthesis of transportation fuels from biomass: Chemistry,catalysts, and engineering [J]. Chem.Rev., 2006,106(9):4044-4098.
    [3] Cortright R.D., Davda R.R., Dumesic J.A., Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J]. Nature, 2002, 418(6901): 964- 967.
    [4] He R., Davda R.R., Dumesic J.A. In situ ATR-1R spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al_2O_3 catalysts in vapor and liquid phases [J]. J.Phys. Chem. B, 2005,109(7):2810-2820.
    [5] Huber G.W., Shabaker J.W., Dumesic J.A. Raney Ni-Sn catalyst for H_2 production from biomass-derived hydrocarbons[J]. Science, 2003,300(5628):2075-2077.
    [6] Shabaker J.W., Huber G.W., Dumesic J.A. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts [J]. J. Catal., 2004,222 (1):180-191.
    [7] Davda R.R., Shabaker J.W., Huber G.W., et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Appl. Catal. B, 2005,56(1-2):171-186.
    [8] Shabaker J.W., Simonetti D.A., Cortright R.D., et al. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies [J]. J. Catal., 2005,231(1):67-76.
    [9] Bai Y., Lu C.S., Ma L., et al. Hydrogen production by aqueous-phase reforming of ethylene glycol over Pt catalysts supported on gamma-Al_2O_3 modified with Ce and Mg [J]. Chin. J.Catal., 2006,27(3):275-280.
    [10] Xie F.Z., Chu X.W., Hu H.R., et al. Characterization and catalytic properties of Sn-modified rapidly quenched skeletal Ni catalysts in aqueous-phase reforming of ethylene glycol [J]. J.Catal., 2006, 241(1):211-220.
    
    [11] Turco M., Bagnasco G., Costantino U., et al. Production of hydrogen from oxidative steam reforming of methanol-I. Preparation and characterization of Cu/ZnO/A12O3 catalysts from ahydrotalcite-like LDH precursor [J]. J. Catal., 2004,228(1): 43-55.
    
    [12] Albertazzi S., Basile F., Benito P., et al. Effect of silicates on the structure of Ni-containing catalysts obtained from hydrotalcite-type precursors [J]. Catal. Today, 2007,128(3-4):258-263.
    [1]H(o|¨)lderich W.F.,in:Guczi L.,Solymosi F.,Telenyi P.(Eds.),New Frontiers in Catalysis,Proceedings of the 10~(th) International Congress on Catalysis,Budapest,Hungary,Elsevier,Amsterdam,1993,pp.127-163.
    [2]Ullmanns Encyclop(a|¨)die der Technischen Chemie,vol.20,Verlag Chemic,Weinheim,Deerfield Beach,Basel,1979,pp.S135-S147.
    [3]Maki T.,Yokoyama T.Recent progress in manufacturing technology for aromatic- aldehydes [J].J.Synth.Org.Chem.Japan.,1991,49(3):195-204.
    [4]Xu H.L.,Shen W.,Yang Y.T.Characterization and activity of MnO/γ-Al_2O_3 for hydrogenation of methyl benzoate to benzaldehyde[J].Chin.J.Chem.,2001,19(7):647-651.
    [5]de Lange M.W.,van Ommen J.G.,Lefferts L.Deoxygenation of benzoic acid on metal oxides-1.The selective pathway to benzaldehyde[J].Appl.Catal.A-Gen.,2001,220(1-2):41-49.
    [6]陈庚,沈伟,徐华龙.钾对苯甲酸甲酯加氢催化剂MnOx/γ-Al_2O_3的修饰作用[J].化学学报.2002,60(9):1601-1605.
    [7]Chen A.M.,Xu H.L.,Yue Y.H.,et al.Support effect in hydrogenation of methyl benzoate over supported manganese oxide catalysts[J].J.Mol.Catal A-Chem.,2003,203(1-2):299-306.
    [8]Lu W.J.,Lu G.Z.,Liu X.,et al.Effects of support and modifiers on catalytic performance of zinc oxide for hydrogenation of methyl benzoate to benzaldehyde[J].Mater.Chem.Phys.,2003,82(1):120-127.
    [9]Chen A.M.,Xu H.L.,Yue Y.H.,et al.M-Mn-Al hydrotalcite-like compounds as precursors for methyl benzoate hydrogenation catalysts[J].Ind.Eng.Chem.Res.2004,43(20):6409-6415.
    [10]Chen A.M.,Xu H.L.,Yue Y.H.,et al.Hydrogenation of methyl benzoate to benzaldehyde over manganese oxide catalysts prepared from Mg/Mn/Al hydrotalcite-like compounds[J].Appl.Catal.A-Gen.,2004,274(1-2):101-109.
    [11]Chen A.M.,Xu H.L.,Hua W.M.,et al.Hydrogenation of methyl benzoate over Mn/Al catalysts:Comparison among catalyst preparation routes[J].Topics In Catal.,2005,35(1-2):177-185.
    [12]徐华龙,黄静静,杨新艳,等.K-MnO/γ-Al_2O_3和Cu/SiO_2催化剂应用于苯甲酸甲酯连续加氢合成无氯苯甲醇[J].化学学报.2006,64(16):615-1621.
    [13]杨建峰,孙军庆,李小年,等.利用乙醇重整制氢进行硝基苯原位液相加氢合成苯胺[J].催化学报.2006,27(7):559-561.
    [14]姜莉,祝一锋,项益智,等.甲醇水相重整制氢原位还原苯乙酮制α-苯乙醇[J].催化学报.2007,28(3):281-286.
    [15]李小年,项益智.一类新的液相催化氢化反应体系[J].中国科学(B辑).2007,37(2):136-142.
    [16]项益智,李小年.苯酚液相原位加氢合成环己酮和环己醇[J].化工学报.2007,58(12):3041-3045.
    [17]董文生,牛玉琴,陈正华,等.苯甲酸甲酯催化加氢制苯甲醛[J].石油化工.1995,24(11):776-779
    [18]Davda R.R.,Shabaker J.W.,Huber G.W.,et al.A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts[J].Appl.Catal.B,21105,56(1-2):171-186.
    [19]Huber G.W.,Iborra S.,Corma A.Synthesis of transportation fuels from biomass:Chemistry,catalysts,and engineering[J].Chem.Rev.,2006,1116(9):4044-4098.
    [20]Ni Z.M.,Yu W.H.,Zhao S.F.,et al.The adsorption of NOx on magnesium aluminium hydrotalcite[J].Chin.Chem.Lett.,2004,15(8):989-992.
    [21]Idem R.O.,Bakhshi N.N.Characterization studies of calcined,promoted and non-promoted methanol steam reforming catalysts[J].Can.J.Chem.Eng.,1996,74(2):288-299.
    [22]Idem R.O.,Bakhshi N.N.Production of hydrogen from methano 1 over promoted coprecipitated Cu_2Al catalysts:the effects of various promoters and catalyst activation methods[J].Ind.Eng.Chem.Res.,1995,34(5):1548-1550.
    [1]Khan A.I.,O'Hare D.Intercalation chemistry of layered double hydroxides:recent developments and applications[J].J.Mater.Chem.,2002,12(11):3191-3198.
    [2]Roeffaers M.B.J.,Sels B.F.,Uji-I H.,et al.Spatially resolved observation of crystalface-dependent catalysis by single turnover counting[J].Nature,2006,439(7076):572-575.
    [3]Boulet P.,Greenwell H.C.,Stackhouse S.,et al.Recent advances in understanding the structure and reactivity of clays using electronic structure calculations[J].J.Mole.Struc.(Theochem),2006,762(1-3):33-48.
    [4]Aicken A.M.,Bell I.S.,Coveney P.V.,et al.Simulation of layered double hydroxide intercalates [J].Adv.Mater,1997,9(6):496-500.
    [5]Greenwell H.C.,Jones W.,Newman S.P.,et al.Computer simulation of interlayer arrangement in cinnamate intercalated layered double hydroxides[J].J.Mol.Struct.,2003,647(15):75-83.
    [6]Newman S.P.,Di Cristina T.,Coveney P.V.,et al.Molecular dynamics simulation of cationic and anionic clays containing amino acids[J].Langmuir,2002,18(7):2933-2939.
    [7]Greenwell H.C.,Jones W.,Coveney P.V.,et al.On the application of computer simulation techniques to anionic and cationic clays:A materials chemistry perspective[J].J.Mater.Chem.,2006,16(8):708-723.
    [8]Greenwell H.C.,Stackhouse S.,Coveney P.V.,et al.A density functional theory study of catalytic trans-esterification by tert-butoxide MgAl anionic clays[J].J.Phys.Chem.B,2003,107(15):3476-3485.
    [9]Kumar P.P.,Kalinichev A.G.,Kirkpatrick R.J.Hydration,swelling,interlayer structure,and hydrogen bonding in organolayered double hydroxides:Insights from molecular dynamics simulation of citrate-intercalated hydrotalcite[J].J.Phys.Chem.B,2006,110(9):3841-3844.
    [10]Wang J.W.,Kalinichev A.G.,Kirkpatrick R.J.,et al.Molecular modeling of the structure and energetics of hydrotalcite hydration[J].Chem.Mater.,2001,13(1):145-150.
    [11]Pu M.,Zhang B.F.Theoretical study on the microstructures of hydrotalcite lamellae with Mg/Al ratio of two[J].Mater.Lett.,2005,59(27):3343-3347.
    [12]李蕾,张春英,矫庆泽,等.Mg-Al-CO_3与Zn-Al-CO_3水滑石热稳定性差异的研究[J].无机化学学报,2001,17(1):113-118.
    [13]Li H.,Ma J.,Evans D.G.,et al.Molecular dynamics modeling of the structures and binding energies of alpha-nickel hydroxides and nickel-aluminum layered double hydroxides containing various interlayer guest anions[J].Chem.Mater,2006,18(18):4405-4414.
    [14]倪哲明,潘国祥,王力耕,等.二元类水滑石层板组成、结构与性能的理论研究[J].无机化学学报,2006,22(1):91-95.
    [15]Ni Z.M.,Pan G.X.,Wang L.G.et al.Structure and properties of hydrotalcite using electrostatic potential energy model[J].Chin.J Chem.Phys.,2006,19(3):277-280.
    [16]倪哲明,潘国祥,王力耕,等.LDHs主体层板与卤素阴离子超分子作用的理论研究[J]. 物理化学学报,2006,22(11):1321-1324.
    [17]Oh J.M.,Hwang S.H.,Choy J.H.The effect of synthetic conditions on tailoring the size of hydrotalcite particles[J].Solid State Ionics,2002,151(1-4):285-291.
    [18]Frisch M.J.,Trucks G.W.,Schlegel H.B.et al.Gaussian 03,Revision B.01,Pittsburgh PA:Gaussian,Inc.,2003.
    [19]Hobza P.,Sponer J.Structure,energetics,and dynamics of the nucleic acid base pairs:Nonempirical ab initio calculations[J].Chem.Rev.,1999,99(11):3247-3276.
    [20]Miyata S.Anion exchange properties of hydrotalcite-like compounds[3].Clays Clay Miner.,1983,31(4):305-311.
    [1] Cavani F., Trifiro R, Vaccari A. Hydrotalcite-type anionic clay: preparation, properties and application [J]. Catal. Today, 1991,11(2): 173-301.
    [2] Khan A.I., O'Hare D. Intercalation chemistry of layered double hydroxides: recent developments and applications [J]. J. Mater. Chem., 2002,12(11): 3191-3198.
    [3] Roeffaers M.B.J., Sels B.F., Uji-I H., et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting [J]. Nature, 2006,439(7076): 572-575.
    [4] Ni Z.M., Yu W.H., Zhao S.R, et al. The adsorption of NOx on magnesium aluminium hydrotalcite [J]. Chin. Chem. Lett., 2004,15(8): 989-992.
    [5] Bontchev R.P., Liu S., Krumhansl, J.L., et al. Synthesis, characterization, and ion exchange properties of hydrotalcite Mg_6Al_2(OH)_(16)(A)_x(A')_(2-x)·4H_2O (A, A' = Cl~-, Br~-, I~-, and NO_3~-, 2≥ x≥0) derivatives [J].Chem. Mater., 2003,15(19): 3669-3675.
    [6] Ambrogi V., Fardella G, Grandolini G. et al., Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: uptake of diclofenac for a controlled release formulation [J]. AAPS Pharm. Sci. Tech., 2002,3(3): article 26.
    [7] Khan A.I., Lei L., Norquist A.J., et al. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide [J]. Chem. Commun., 2001, (22):2342-2343.
    [8] Dollinger H.C., Liszkay M. Use of the antacid hydrotalcite to treat gastroduodenal lesions induced by nonsteroidal anti-inflammatory drugs-a multicenter, double-blind,placebo-controlled study [J]. Eur. J. Gastroenterol Hepatol, 1993,5: S133-S137.
    [9] Li D., Ni Z.M., Wang L.G. Synthesis and characterization of magnesium aluminum layered double hydroxides intercalated with diflunisal [J].Chin. J. Inorg. Chem., 2006, 22(9):1573-1578.
    [10] Toth R., Ferrone ML, Miertus S., et al. Structure and energetics of biocompatible polymer nanocomposite systems: A molecular dynamics study [J]. Biomacromolecules, 2006,7(6):1714-1719.
    
    [11] Boulet P., Greenwell H.C., Stackhouse S., et al. Recent advances in understanding the structure and reactivity of clays using electronic structure calculations [J]. J. Mole. Struc.(Theochem), 2006, 762(1-3):33-48.
    
    [12] Hou X.Q., Kalinichev A.G., Kirkpatrick R.J. Interlayer structure and dynamics of Cl~--LiA12-layered double hydroxide: Cl-35 NMR observations and molecular dynamics modeling [J]. Chem. Mater., 2002,14(5): 2078-2085.
    [13] Cygan R.T., Liang J.J., Kalinichev A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J]. J. Phys. Chem. B, 2004,108(4):1255-1266.
    [14] Trave A., Selloni A., Goursot A., et al. First principles study of the structure and chemistry of Mg-based hydrotalcite-like anionic clays [J]. J. Phys. Chem.B, 2002,106(47): 12291-12296.
    [15]Greenwell H.C.,Jones W.,Coveney P.V.,et al.On the application of computer simulation techniques to anionic and cationic clays:A materials chemistry perspective[J].J.Mater.Chem.,2006,16(8):708-723.
    [16]Li H.,Ma J.,Evans D.G.,et al.Molecular dynamics modeling of the structures and binding energies of alpha-nickel hydroxides and nickel-aluminum layered double hydroxides containing various interlayer guest anions[J].Chem.Mater.,2006,15(18):4405-4414.
    [17]倪哲明,潘国祥,王力耕,等.LDHs主体层板与卤素阴离子超分子作用的理论研究[J].物理化学学报,2006,22(11):1321-1324.
    [18]潘国祥,倪哲明,李小年.类水滑石主体层板与客体CO_3~(2-)、H_2O间的超分子作用[J].物理化学学报,2007,23(8):1195-1200.
    [19]胥倩,倪哲明,潘国祥,等.水滑石限域空间中Cr与H_2O的超分子作用[J].物理化学学报,2008,24(4):601-606.
    [20]Sideris P.J.,Nielsen U.G.,Gan Z.H.,et al.Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy[J].Science,2008,321(5885):113-117.
    [21]Rappe A.K.,Casewit C.J.,Colwell K.S.,et al.UFF,a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations[J].J.Am.Chem.Soc.,1992,114(25):10024-10035.
    [22]王三跃,阳庆元,仲崇立.柔性金属-有机骨架材料中甲醇吸附和扩散的分子模拟[J].化学学报,2006,64(17):1775-1779.
    [23]王进,曾凡桂,王军霞.钠蒙脱石水化膨胀和层间结构的分子动力学模拟[J].硅酸盐学报,2005,33(8):996-1001.
    [24]那平,张帆,李艳妮.水化Na-蒙脱石和Na/Mg-蒙脱石的分子动力学模拟[J].物理化学学报[J],2006,22(9):1137-1142.
    [25]Sun H.COMPASS:An ab initio force-field optimized for condensed-phase applications -Overview with details on alkane and benzene compounds[J].J.Phys.Chem.B,1998,102(38):7338-7364.
    [26]Mayo S.L.,Olafson B.D.,Goddardetal W.A.Dreiding - a genetic force-field for molecular simulations[J].J.Phys.Chem.,1990,94(26):8897-8909.
    [27]Boclair J.W.,Braterman P.S.,Brister B.D.,et al.Layer-anion interactions in magnesium aluminum layered double hydroxides intercalated with cobalticyanide and nitroprusside[J].Chem.Mater.,1999,11(8):2199-2204.
    [28]Titulaer M.K.,Talsma H.,Jansen B.H.,et al.Clay Miner.,1996,31(2):263-277.
    [29]Kumar P.P.,Kalinichev A.G.,Kirkpatrick R.J.Molecular dynamics simulation of the energetics and structure of layered double hydroxides intercalated with carboxylic acids[J].J.Phys.Chem.C,2007,111(36):13517-13523.
    [30]Nose,S.Mol,Phys.,1984,52:255
    [31]Parrinello,M.,Rahman,A.J.App.Phys.,1981,52:7182
    [32]Kumar P.P.,Kalinichev A.G.,Kirkpatrick R.J.Hydration,swelling,interlayer structure,and hydrogen bonding in organolayered double hydroxides:Insights from molecular dynamics simulation of citrate-intercalated hydrotaleite[J].J.Phys.Chem.B,2006,110(9):3841-3844.
    [33]李蕾,张春英,矫庆泽,等.Mg-Al-CO_3与Zn-Al-CO_3水滑石热稳定性差异的研究[J].无机化学学报,2001,17(1):113-118.
    [34]Wang J.W.,Kalinichev A.G.,Kirkpatriek R.J.,et al.Molecular modeling of the structure and energetics of hydrotalcite hydration[J].Chem.Mater.,2001,13(1):145-150.
    [35]殷开梁,邹定辉,杨波,等.Materials Studio软件涉及力场中氢键的研究[J].计算机与应用化学,2006,23(12):1335-1340.
    [1]Cavani F.,Trifiro F.,Vaccari A.Hydrotalcite-type anionic clay:preparation,properties and application[J].Catal.Today,1991,11(2):173-301.
    [2]Ni Z.M.,Yu W.H.,Zhao S.E,et al.The adsorption of NOx on magnesium aluminium hydrotalcite[J].Chin.Chem.Lett.,2004,15(8):989-992.
    [3]Drezdzon M.A.Synthesis of isopolymetalate-pillared hydrotalcite via organic- anion-pillared precursors[J].Inorg.Chem.,1988,27(5):4628-4632.
    [4]Nijs H.,De Bock M.,Vansant E.F.Evaluation of the microporosity of pillared [Fe(CN)(6)]-MgAl-LDHs[J].Micro.& Meso.Mater.,1999,30(2-3):243-253.
    [5]张慧,齐荣,段雪,等.镁铁和镁铝双羟基复合金属氧化物的结构和性能差异[J].无机化学学报,2002,18(8):833-838.
    [6]李蕾,张春英,段雪,等.Mg-Al-CO_3与Zn-Al-CO_3水滑石热稳定性差异的研究[J].无机化学学报,2001,17(1):113-118.
    [7]Greenwell H.C.,Jones W.,Newman S.P.,et al.Computer simulation of interlayer arrangement in cinnamate intercalated layered double hydroxides[J].J.Mol.Struct.,2003,647(15):75-83.
    [8]Bravo-Suarez J.J.,Paez-Mozo E.A.,Oyama S.,et al.Microtextural properties of layered double hydroxides:a theoretical and structural model[J].Micro.& Meso.Mater.,2004,67(1):1-17.
    [9]Xu Z.P.,Zeng H.C,Abrupt structural transformation in hydrotalcite-like compounds Mg_(1-x)Al_x(OH)_2(NO_3)_x·nH_2O as a continuous function of nitrate anions[J].J.Phys.Chem.B,2001,105(9):1743-1749.
    [10]Trave A.,Selloni A.,Goursot A.,et al.First principles study of the structure and chemistry of Mg-based hydrotalcite-like anionic clays[J].J.Phys.chem.B,2002,106(47):12291-12296.
    [11]Newman S.P.,Cristina T.D.,Coveney P.V.Molecular dynamics simulation of cationic and anionic clays containing amino acids[J].Langmuir,2002,18(7):2933-2939.
    [12]Intissar M.,Jumas J.C.,Besse J.P.,et al.Reinvestigation of the layered double hydroxide containing tetravalent cations:Unambiguous response provided by XAS and Mossbauer spectroscopies[J].Chem.Mater.,2003,15(24):4625-4632.
    [13]Miyata S.Anion exchange properties of hydrotalcite-like compounds[J].Clays Clay Miner,1983,31(4):305-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700