有叶片粒子分离器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体式惯性分离器是直升机发动机的一个必不可少的重要部件,安装在发动机前端,粒子分离器的发展能保证发动机安全可靠地工作并延长其使用寿命,因此掌握粒子分离器的分离效率和流场流动规律就显得极为重要。
     本文以有叶片整体式粒子分离器为研究对象,考虑了一定长度的进气道和预旋叶片的影响,对其分离效率和内部流场流动特性进行了数值计算研究。计算模型采用非结构化网格布置,使叶片间通道内的网格更为细密。利用FLUENT计算软件对其进行了三维气固两相流动的数值模拟,计算中采用标准k-ε模型和SIMPLE算法,具体研究了几何结构因素和气动因素对有叶片粒子分离器的性能影响。
     几何机构因素包括不同的预旋叶片数目、预旋叶片的预旋角度、变化位置和分流器变化位置,结果表明,随着预旋叶片数目的增加、旋转角度的增大,AC粗尘和C级砂的分离效率都随之增大,预旋叶片的安置位置对分离效率的影响呈抛物线形状,也就是说当预选叶片处于某一位置时,分离效率最高,分流器位置往-X方向和-Y方向变化时,分离效率提高。将有叶片粒子分离器IPS(Inertial Particle Separator)进行了整体三维数值模拟,得到了不同粒径的粒子的分离效率,AC粗尘和C级砂的分离效率,结果表明:随着粒径的增大,分离效率也随之增大;有了进气道和预旋叶片的影响,粒子受到气流的作用会增大,粒径较小的粒子容易被气流带入主气流流路,粒径较大的粒子因为气流对其影响,并且惯性也较大,从而进入清除流流路被分离出去。气动因素包括进气流量、扫气比和砂尘量对分离效率的影响,进气流量、扫气比和砂尘量均对分离效率有较明显的影响,分离效率随着进气流量、扫气比和砂尘量的增大而增大。
     本文的研究工作对有叶片整体式粒子分离器的设计和改进提供了设计依据和理论指导,为今后进一步开展相关研究工作提供了技术储备。
Inertial particle separator (IPS) which is installed at the front of the engine is the indispensable and important part of the helicopter engine. The development of the IPS can guarantee the safe and reliable performance of engine and prolong its working time. It is very important to master the separation efficiency and the flow characteristics of IPS.
     The present paper deals with the numerical simulation about three-dimensional gas-solid two-phase flow thinking about the influence of the intake and swirling vanes in the inlet particle separator with vanes , with the aid of computer software—FLUENT. Numerical simulations were conducted to study the separation efficiency and the flow characteristics of IPS. The standard k ?εturbulence model and SIMPLE algorithm were applied in the paper to study the separation efficiency, pressure field, and the velocity field, under the influence of the geometry structure features and the aerodynamics structure.
     The geometry structure factors include the numbers, circumrotation angles, allocation of the swirling vanes and the allocation of the spliter. The results indicate that the separation efficiency of AC coarse dust and C-spec. sand increases when the number and angle of the swirling vanes increase. The influence curve of allocation of swirling vanes is a piece of parabola which means the separation efficiency is highest when the swirling vanes are a certain location. The separation efficiency increases when the spliter moves to the–X and–Y direction. The present paper deals with the numerical simulation about three-dimensional gas-solid two-phase flow. Separation efficiency is obtained for sands with different diameters. Separation efficiency of AC coarse dust and C-spec. sand are also obtained. The computations use standard k-εmode. The results show that Separation efficiency increases with the growth of particle size. Effects of flow on the particles enhance with the influence of intake and swirling vanes. The smaller particles are leaded easily into the engine because of the aerodynamic force of core flow. The larger particles are dominated by the inertial effects, so they are separated more from the streamlines. The separation efficiency increases when the inlet flux, the SCR (scavenging ratio) and the sand flux increase.
     The research work on this paper offers theoretical references for the improvement in design of inertial particle separator with vanes. The authentic experimental data lay a foundation for the further studies in the future as well.
引文
[1]范文正,于海滨,直升机进气防护装置的现状和发展趋势.航空科学技术,2000,1:31~32。
    [2]航空发动机设计手册总编委员会编.航空发动机设计手册第七册.航空工业出版社,2000.11:49~60。
    [3]李立国.直升机涡轮发动机的进气净化.南京:南京航空学院,1978.
    [4]侯凌云.直升机粒子分离器两相流场的数值模拟,[博士学位论文].西安:西北工业大学, 1998.
    [5] Robert J D,Bernnard S, Integral Engine Inlet Particle Separator, Volume 2--Design Guide,USAAMRDL-TR-75-31B,1975.
    [6]任光明. T700航空涡轮轴发动机及其发展.直升机动力装置. 2002.24(2):38~44.
    [7] A. Hamed. Investigation in the Variance in Particle Surface Interactions and Their Effects in Gas Turbines. Journal of Engineering for Gas Turbines and Power, 1992, 114(4): 235-241.
    [8] A . Hamed, Jun Y D, Yeuan J J. Particle Dynamic Simulations in Inlet Separator with an experimentally Based Bounce Model. J Propul Power, 1995, 11(2): 230-235.
    [9] A. Hamed. Solid Particle Dynamic Behavior Through Twisted Blade Rows. J. Fluid Energy, 1984, 106:251~256.
    [10] A. Hamed. Efforts of Particle Characteristics on Trajectories and Blade Impact Patterns. J. Fluid Energy, 1988, 110 :33~37.
    [11] E.A. Drury. Design of an inlet air cleaner for the black hawk helicopter auxiliary power unit. AIAA 871809, 1987, 1~7.
    [12] Bert A. Diehl, Jr. Military Specification Effects on Engine Particle Separator Design. Aerospace Technology Conference and Exposition, October 5-8, 871807,1987:1~7.
    [13] Willian Haynie. Scale Effects on Inertial Particle Separator Efficiency. Aerospace Technology Conference and Exposition, October 5-8, 871807, 1987:1~5.
    [14]叶静,胡柏安,熊焰.涡轴发动机无叶片粒子分离器流道设计.中国航空学会第六届动力年会论文集,2006:670~676.
    [15]林国华,袁修干,杨燕生.粒子分离器气动特性数值研究.航空动力学报,1998.13(2):199~202.
    [16]侯凌云,严传俊.二维粒子分离器的流场及分离效率的数值模拟.航空动力学报, 1997, 12(4): 374-376.
    [17]侯凌云,严传俊.分区多重网格法在复杂区域中的数值研究.推进技术,2000, 21(1):pp.54~56.
    [18]侯凌云,严传俊.直升机粒子分离器三维两相流场的数值模拟.航空动力学报,2000, 15(2): 215~217.
    [19]侯凌云,严传俊.多区域多重网格法在直升机粒子分离器中的应用.航空学报,2000, 21(3): 238~240.
    [20]缪亚芹.整体式粒子分离器部件的数值计算与试验研究,[硕士学位论文],南京:南京航空航天大学, 2006.
    [21]缪亚芹,王锁芳,吴恒刚.多喷管引射器试验研究与数值模拟.南京师范大学学报(工程技术版). 2006,6(2):68~71.
    [22]吴恒刚.无叶片整体式粒子分离器性能研究,[硕士学位论文].南京:南京航空航天大学.2007.
    [23]吴恒刚,王锁芳.整体式粒子分离器数值模拟.航空学报,2007,28(5):1073-1079.
    [24]王海刚.旋风分离器中气—固两相流数值计算与实验研究. [博士学位论文],北京:中国科学院工程热物理研究所. 2003.
    [25]刘大有.二相流体动力学.北京,高等教育出版社, 1993.
    [26] Kim J, Moin P, Moser R. Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number. J. Fluid Mech. 1997,330:349~374.
    [27]蔡文祥.环形燃烧室两相流燃烧流场与燃烧性能数值研究. [博士学位论文],南京:南京航空航天大学, 2007.
    [28] Liang-Shin Fan, Chao Zhu. Principles of Gas-solid Flows. Cambridge University Press. 1997.
    [29] Choi Y D, Chung M K. Analysis of Turbulent Gas-Solid Suspension Flow in a Pipe. J. Fluids Eng, 1983, 105.
    [30] Tsuji Y, et al. LDV Measurements of an Air-Solid Flow in a Vertical pip. J. Fluid Mech, 1984, 139.
    [31]吕清刚.直立弯道和直立分叉管中气固两相流动的研究. [博士学位论文],西安:西安交通大学,1991.
    [32]周力行,黄晓晴.颗粒湍动能输送方程的两相湍流模型和平面闭式两相射流的数值模拟.中国科学(A辑),1988, 12: 1262.
    [33]王运良,徐忠,苗永淼.气固两相流k-ε-kp-εp双流体模型及应用.航空动力学报. 1994,9(3):307~309.
    [34]蒲舫,张力等. CFBC旋风分离器气固两相流数值模拟与优化.工程热物理学报,2006,27(2):268~270.
    [35]谭晓军,陈丽华等.半圆管惯性分离器气固两相流动数值模拟.水动力研究与进展,2005,20(12).
    [36]袁竹林,马明.稀疏气固两相流动中颗粒分离特性的数值模拟.燃烧科学与技术. 2001,7(4):235~238.
    [37]贺铸,柳朝晖等.颗粒惯性对气固两相各向同性湍流中温度统计特性的影响.中国科学E辑技术科学2006, 36(1) :39~50.
    [38]王晓峰,王印泽,张裕中.超微粉碎过程中气固两相流场的数值模拟.现代制造工程. 2008,8:71~76.
    [39]闫洁,罗坤,樊建人等.稀疏两相射流中颗粒碰撞的数值研究.化工学报. 2008,59(4):866~874.
    [40]马志宏,李金国,张景飞.砂尘环境试验中颗粒沉降的数值模拟.环境适应性和可靠性. 2008,1:12~15.
    [41]陶文铨.数值传热学.西安:西安交通大学出版社, 2004.
    [42] Patankar S V. Numerical heat transfer and fluid flow. New York, Mc-Grow-Hill, 1980.
    [43]梁德旺,王国庆.两方程湍流模型的可压缩性修正及其应用.空气动力学学报,2000,18(1):98~104.
    [44]陶文铨.计算传热学的近代进展.北京:科学出版社,2000.
    [45] Gianluca Iaccarino.Prediction of the Turbulent Flow in a Diffuser with Commercial CFD Codes.Annual Research Briefs 2000, Center for Turbulence Research, USA, 271~278.
    [46] Fluent6.0 User’s Guide.Volume1-5, Fluent Inc.
    [47]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004.
    [48]周力行.湍流两相流动与燃烧的数值模拟.北京:清华大学出版社,1991.
    [49]方力酉.两相流动力学.长沙:国防科技大学出版社,1988.
    [50] P. G. Saffman. The lift on a small sphere in a slow shear flow. J. Fluid Mech, 1965, 25(3), 385-400.
    [51]岑可法,樊建人.燃烧流体力学.北京:水利电力出版社,1991.
    [52] M. Sommerfeld. Modeling of Particle-wall Collisions in Confined Gas-particle Flow. Int. J. Multiphase flow , 1992, 18(6):905~926.
    [53] Grant, G. Tabakoff, W. Erosion Prediction in Turbo Machinery from Environmental Solid Particles. J. Aircraft , 1975, 12:471~478.
    [54] Tsuji, Y. Seki, W. Morikawa, Y. Computer Simulation of Pneumatic Conveying: the Case of Presence of Pipe Branches. J. Soc. Powder Tech. Japan, 1983, 20:270~279.
    [55] Tsuji, Y. Oshima, T. Morikawa, Y. Numerical Simulation of Pneumatic Conveying in a Horizontal Pipe. 1985, 3:38~51.
    [56] Tsuji, Y. Morikawa, Y. Tanaka, T. etc. Numerical Simulation of Gas-solid Tow-phase Flow in a Two-dimensional Horizontal Channel. Int. J. Multiphase Flow, 1987, 13, (5):671~684.
    [57] A.V Nguyen, C.A.J. Fletcher. Particle Interaction with the Wall Surface in Two-phase Gas-solid Particle Flow. Multiphase Flow, 1997, 25:139~154.
    [58] Hussein M F, Tabakoff W. Dynamics Behavior of Solid Particle Suspend by Polluted Flow in a Turbine Stage. J. Aircraft, 1973, 10.
    [59] Tabakoff W, Hamed A. Aerodynamic Effects on Erosion in Turbomachinery. Proc.1977 Joint Gas Turb Engine, Tokyo, 1977:574-581.
    [60] Wakeman T J, Tabakoff W. Measured Particle Rebound Characteristics Useful for Erosion Prediction. ASME-82-GI-170, 1982.
    [61] Tabakoff W. Measurements of Particles Rebound Characteristics on Materials Used in Gas Turbines. J Propulsion. 1991,7(5): 805-813.
    [62] Tabakoff W, Murugan D M, Hamed A. Efforts of Target Materials Used in Gas Restitution Characteristics for Turbomachinery Application. AIAA-94-0143.
    [63] A. Hamed. Particle Dynamic of Inlet Flowfields with Swirling Vanes. AIAA 87-0001R, 1987,19(9):707~712.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700