光子晶体自准直现象及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是一种人工周期介质结构,在集成光学、全光通信等领域有着广泛的应用。最近几年,光子晶体的异常色散特性引起了越来越多的关注,成为一个新的研究热点,主要包括负折射、自准直、超棱镜等效应。其中,自准直效应为控制光的传输提供了一种崭新的方法,在集成光学中有着重要应用。本文对光子晶体中的自准直现象做了系统研究和深入分析,采用理论分析与数值计算相结合的方法,对光子晶体的可调自准直、宽带全角自准直、偏振无关的全角自准直以及宽带自准直亚波长成像等特性进行了深入研究,提高了光子晶体的自准直性能。并基于自准直效应,设计了多种分束器和光开关等光子晶体器件。本文主要完成了如下几个方面的工作:
     (1)从色散曲面与等频线分析入手,系统研究了光子晶体自准直效应原理,讨论了最大自准直角与等频线的关系。分析了自准直虚拟波导的传输特性,并计算了入射角对虚拟波导传输性能的影响。
     (2)提出并设计了自准直光束的T型、Y型以及1×3分束器。首先通过在正方晶格光子晶体中引入一个V型空气隙,设计了T型自准直光束分束器与1×3分束器。然后通过在三角晶格光子晶体中引入线缺陷,实现了自准直光束的60°弯曲;并通过引入V型线缺陷,设计了Y型自准直光束分束器与1×3分束器。目前自准直光束的分束形式单一,设计的T型与Y型分束器,使自准直光束有了更灵活的分束方式,以满足不同情形的应用。设计的1×3分束器可以将自准直光束一次性分成三束,不但效率高于普通的两个1×2分束器的组合,而且结构也更紧凑。
     (3)优化设计了基于空气环光子晶体的自准直光束偏振分束器。这种分束器可以通过选择合适的内环与外环半径,更为便捷地调节TE模与TM模的自准直频率,提高偏振无关的自准直带宽,因而具有更高的设计自由度,在设计阶段可以根据情况灵活地调节参数以达到最佳的性能。
     (4)研究了基于液晶材料与电磁感应透明材料光子晶体的可调自准直特性,并设计了自准直光开关。首先研究了液晶旋转角对自准直频率的影响,并基于液晶光子晶体的带隙可调性和自准直特性,设计了自准直光子晶体光开关。然后研究了基于半导体量子阱电磁感应透明材料光子晶体的可调自准直特性,并设计了基于电磁感应透明材料光子晶体的全光开关。
     (5)成功实现了基于二维菱形晶格光子晶体的宽带全角自准直、偏振无关的全角自准直以及自准直亚波长成像。首先计算了二维菱形晶格光子晶体的第一布里渊区及高对称点,并对其平面波展开法做了详细的推导。接着分析了菱形晶格光子晶体的带隙特性,并讨论了介质填充率、晶格角对带隙特性的影响。然后,基于菱形晶格光子晶体的独特性质,通过参数优化,实现了带宽为17.42%的宽带全角自准直,并对偏振无关的全角自准直进行了探讨。最后,研究了菱形晶格光子晶体的宽带自准直亚波长成像特性。
Photonic crystals (PCs) are periodic dielectric structures, which have been widelyused in the scientific and engineering fields, such as the integrated optics and all-opticalcommunications. In recent years, the unusual dispersion properties of PCs, including thenegative refraction, self-collimation (SC), and super prism, have attracted more andmore interest and become an active research area. Among them, the SC effect provides abrand-new way of controlling the light propagation and plays an important role in theintegrated optics. In this dissertation, the SC phenomenon is studied systematically andthoroughly. With theoretical analyses and numerical calculations, the SC characteristicsof the PCs are studied in detail, including the tunable SC, broadband all-angle SC,polarization-independent all-angle SC, and broadband subwavelength imagingproperties. These studies improve the SC performance in PCs. Some useful PC devicesare proposed based on the SC effect, such as the beam splitters, polarization beamsplitters (PBS) and optical switches. The main works are as follows:
     (1) By analyzing the dispersion surfaces and equi-frequency contours (EFCs), thefundamental principle of the SC effect in PCs is studied in detail. The relationshipbetween the maximum self-collimating angle and the EFCs is discussed. A virtualself-collimating waveguide is designed and the transmission properties are analyzed.The impact of the incident angle on the transmission performance is discussed.
     (2) A T-shaped, a Y-shaped and two one-to-three beam splitters are proposed. Atfirst, by introducing a V-shaped air gap into a square-lattice PC, a T-shaped and aone-to-three beam splitters are proposed. Then, a60°beam bending for self-collimatedbeam is realized by introducing a line defect into a triangular-lattice PC. With aV-shaped defect instead of the line defect, a Y-shaped and a one-to-three beam splittersare presented. These splitters provide more flexibility in the splitting ways for theself-collimated beams which are expected to satisfy more applications. the proposedone-to-three beam splitters, which can split light beam into three sub-beams in one go,are more compact and efficient than the combination of two one-to-two splitters.
     (3) A PBS is optimally designed based on the SC effect in the two-dimensional (2D) annular PCs. The self-collimating frequency for both TE and TM modes can be adjustedeasily by choosing proper inner and outer radii of the air ring. The bandwidth forpolarization-independent SC can also be enhanced. Such structures provide moreflexibility in the design of PBS. The optimum performance can be achieved by adjustingthe parameters freely in the design stage.
     (4) The tunabilities of SC in PCs based on the liquid-crystal (LC) materials andelectromagnetically induced transparent (EIT) materials are investigated. Firstly, theimpact of the twist angle of LCs on the self-collimating frequency is studied. An opticalswitch for self-collimated beams is proposed with LC PCs based on the tunability of thebandgap properties and SC effect. Then, the tunable SC in PCs that made of EITmaterials is studied and an all-optical switch is designed.
     (5) The broadband all-angle SC, polarization-independent all-angle SC, andbroadband subwavelength imaging are realized in the2D rhombic-lattice PCs. Firstly,the first Brillouin zone (FBZ) and the high symmetrical points are calculated. The planewave expansion method in such structures is deduced. The bandgap properties areanalyzed. The impacts of the filling ratio and the lattice angle on the bandgap propertiesare discussed. Then, by optimizing the parameters, the all-angle SC with a broadbandwidth of17.42%is realized in the rhombic-lattice PCs. Meanwhile, thesimultaneous SC for both TE and TM modes is extended to all-angle operation in suchstructures. At last, the broadband subwavelength imaging properties in rhombic-latticePCs are also investigated.
引文
[1] V. P. Bykov. Spontaneous emission in a periodic structure. J. Exp. Theor. Phys.,1972,35:269-275
    [2] V. P. Bykov. Spontaneous emission from a medium with a band spectrum. J. Exp. Theor. Phys.,1975,4:861-871
    [3] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys.Rev. Lett.,1987,58(20):2059-2062
    [4] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev.Lett.,1987,58(23):2486-2489
    [5] K. Yoshino, Y. Shimoda, Y. Kawagishi, et al. Temperature tuning of the stop band intransmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl.Phys. Lett.,1999,75(7):932-934
    [6] P. Russell. Photonic crystal fibers. Science,2003,299(5605):358-362
    [7] L. P. Biro, Z. Balint, K. Kertesz, et al. Role of photonic-crystal-type structures in the thermalregulation of a Lycaenid butterfly sister species pair. Phys. Rev. E,2003,67(2):021907-021914
    [8] R. C. McPhedran, N. A. Nicorovici, D. R. McKenzie, et al. The sea mouse and the photoniccrystal. Aust. J. Chem.,2001,54(4):241-244
    [9] K. Ho, C. Chan, C. Soukoulis. Existence of a photonic gap in periodic dielectric structures.Phys. Rev. Lett.,1990,65(25):3152-3155
    [10] E. Yablonovitch, T. J. Gmitter, R. D. Meade, et al. Donor and acceptor modes in photonicband structure. Phys. Rev. Lett.,1991,67(24):3380-3383
    [11] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, et al. Photonic crystals: modeling the flow oflight. Princeton University Press,2008
    [12] K. Sakoda. Optical properties of photonic crystals. Springer Verlag,2005
    [13] E. M. Purcell, H. Torrey, R. Pound. Resonance absorption by nuclear magnetic moments in asolid. Phys. Rev.,1946,69(1-2):37-38
    [14] Y. Akahane, T. Asano, B. S. Song, et al. High-Q photonic nanocavity in a two-dimensionalphotonic crystal. Nature,2003,425(6961):944-947
    [15] A. Chutinan, S. Noda. Waveguides and waveguide bends in two-dimensional photonic crystalslabs. Phys. Rev. B,2000,62(7):4488-4492
    [16] S. H. Fan, X. F. Yu, J. W. Shin, et al. Controlling diffraction and waveguide modes byexploiting spatial dispersions in photonic crystals. Proceedings of SPIE: Photonic CrystalMaterials and Devices IV,2006,6128: Z1280-Z1280
    [17] M. Notomi. Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B,2000,62(16):10696-10705
    [18] D. W. Prather, S. Shi, A. Sharkawy, et al. Dispersion engineering of photonic crystals.Proceedings of SPIE: Physics, Theory, and Applications of Periodic Structures in Optics II,2003,5184:30-40
    [19] M. Notomi. Negative refraction in photonic crystals. Opt. Quant. Electron.,2002,34(1-3):133-143
    [20] P. V. Parimi, W. T. Lu, P. Vodo, et al. Negative refraction and left-handed electromagnetism inmicrowave photonic crystals. Phys. Rev. Lett.,2004,92(12):74011-74014
    [21] R. Moussa, S. Foteinopoulou, L. Zhang, et al. Negative refraction and superlens behavior in atwo-dimensional photonic crystal. Phys. Rev. B,2005,71(8):085106-085111
    [22] H. Kosaka, T. Kawashima, A. Tomita, et al. Self-collimating phenomena in photonic crystals.Appl. Phys. Lett.,1999,74(9):1212-1214
    [23] D. W. Prather, S. Shi, J. Murakowski, et al. Self-collimation in photonic crystal structures: anew paradigm for applications and device development. J. Phys. D: Appl. Phys.,2007,40(9):2635-2651
    [24] J. Witzens, M. Loncar, A. Scherer. Self-collimation in planar photonic crystals. IEEE J. Sel.Top. Quant.,2002,8(6):1246-1257
    [25] H. Kosaka, T. Kawashima, A. Tomita, et al. Superprism phenomena in photonic crystals. Phys.Rev. B,1998,58(16):10096-10099
    [26] T. Baba, M. Nakamura. Photonic crystal light deflection devices using the superprism effect.IEEE J. Quantum. Elect.,2002,38(7):909-914
    [27] T. Baba, T. Matsumoto. Resolution of photonic crystal superprism. Appl. Phys. Lett.,2002,81(13):2325-2327
    [28] Y. Fink, J. N. Winn, S. Fan, et al. A dielectric omnidirectional reflector. Science,1998,282(5394):1679-1682
    [29] H. Altug, J. Vuckovic. Two-dimensional coupled photonic crystal resonator arrays. Appl. Phys.Lett.,2004,84(2):161-163
    [30] H. Takano, Y. Akahane, T. Asano, et al. In-plane-type channel drop filter in a two-dimensionalphotonic crystal slab. Appl. Phys. Lett.,2004,84(13):2226-2228
    [31] A. Mekis, J. C. Chen, I. Kurland, et al. High transmission through sharp bends in photoniccrystal waveguides. Phys. Rev. Lett.,1996,77(18):3787-3790
    [32] S. Y. Lin, E. Chow, J. Bur, et al. Low-loss, wide-angle Y splitter at similar to1.6~μmwavelengths built with a two-dimensional photonic crystal. Opt. Lett.,2002,27(16):1400-1402
    [33] H. Nakamura, Y. Sugimoto, K. Kanamoto, et al. Ultra-fast photonic crystal/quantum dotall-optical switch for future photonic networks. Opt. Express,2004,12(26):6606-6614
    [34] J. J. Wierer, M. R. Krames, J. E. Epler, et al. InGaN/GaN quantum-well heterostructurelight-emitting diodes employing photonic crystal structures. Appl. Phys. Lett.,2004,84(19):3885-3887
    [35] P. Yeh, A. Yariv, E. Marom. Theory of Bragg fiber. J. Opt. Soc. Am. A,1978,68(9):1196-1201
    [36] P. S. J. Russell, J. C. Knight, T. A. Birks. Photonic crystal fibers, waveguides and resonators.Proceedings of SPIE:18th Congress of the International Commission for Optics: Optics forthe Next Millennium, Technical Digest,1999,3749:60-62
    [37] M. Qiu, B. Jaskorzynska. Design of a channel drop filter in a two-dimensional triangularphotonic crystal. Appl. Phys. Lett.,2003,83(6):1074-1076
    [38] X. Y. Lei, H. Li, F. Ding, et al. Novel application of a perturbed photonic crystal: High-qualityfilter. Appl. Phys. Lett.,1997,71(20):2889-2891
    [39] H. G. Park, S. H. Kim, S. H. Kwon, et al. Electrically driven single-cell photonic crystal laser.Science,2004,305(5689):1444-1447
    [40] C. Wiesmann, K. Bergenek, N. Linder, et al. Photonic crystal LEDs-designing lightextraction. Laser Photonics Rev.,2009,3(3):262-286
    [41] S. J. McNab, N. Moll, Y. A. Vlasov. Ultra-low loss photonic integrated circuit withmembrane-type photonic crystal waveguides. Opt. Express,2003,11(22):2927-2939
    [42] T. F. Krauss. Photonic crystals for integrated optics. AIP Proceedings: Nanoscale Linear andNonlinear Optics: International School on Quantum Electronics,2001,560:89-98
    [43] M. Notomi. Negative refractive optics in photonic crystals. Proceedings of SPIE: Physics andSimulation of Optoelectronic Devices IX,2001,4283:428-441
    [44] T. Baba, T. Matsumoto, T. Asatsuma. Negative refraction in photonic crystals. Smart Optics,2009,55:91-100
    [45] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofand μ. Physics-Uspekhi,1968,10(4):509-514
    [46] J. Pendry, A. Holden, W. Stewart, et al. Extremely low frequency plasmons in metallicmesostructures. Phys. Rev. Lett.,1996,76(25):4773-4776
    [47] D. Smith, W. J. Padilla, D. Vier, et al. Composite medium with simultaneously negativepermeability and permittivity. Phys. Rev. Lett.,2000,84(18):4184-4187
    [48] C. Luo, S. G. Johnson, J. Joannopoulos, et al. All-angle negative refraction without negativeeffective index. Phys. Rev. B,2002,65(20):201104-201104
    [49] C. Y. Luo, S. G. Johnson, J. D. Joannopoulos. All-angle negative refraction in athree-dimensionally periodic photonic crystal. Appl. Phys. Lett.,2002,81(13):2352-2354
    [50] X. D. Zhang. Image resolution depending on slab thickness and object distance in atwo-dimensional photonic-crystal-based superlens. Phys. Rev. B,2004,70(19):195110-195119
    [51] X. H. Hu, C. T. Chan. Photonic crystals with silver nanowires as a near-infrared superlens.Appl. Phys. Lett.,2004,85(9):1520-1522
    [52] E. Cubukcu, K. Aydin, E. Ozbay, et al. Subwavelength resolution in a two-dimensionalphotonic-crystal-based superlens. Phys. Rev. Lett.,2003,91(20):207401-207405
    [53] A. Berrier, M. Mulot, M. Swillo, et al. Negative refraction at infrared wavelengths in atwo-dimensional photonic crystal. Phys. Rev. Lett.,2004,93(7):073902-073908
    [54] Z. C. Ruan, S. L. He. Open cavity formed by a photonic crystal with negative effective indexof refraction. Opt. Lett.,2005,30(17):2308-2310
    [55] P. Vodo, P. V. Parimi, W. T. Lu, et al. Focusing by planoconcave lens using negative refraction.Appl. Phys. Lett.,2005,86(20):201108-201111
    [56] V. Mocella, P. Dardano, L. Moretti, et al. A polarizing beam splitter using negative refractionof photonic crystals. Opt. Express,2005,13(19):7699-7707
    [57] H. Kosaka, T. Kawashima, A. Tomita, et al. Photonic crystals for micro lightwave circuitsusing wavelength-dependent angular beam steering. Appl. Phys. Lett.,1999,74:1370-1374
    [58] L. Wu, M. Mazilu, T. Karle, et al. Superprism phenomena in planar photonic crystals. IEEE J.Quantum. Elect.,2002,38(7):915-918
    [59] D. N. Chigrin, S. Enoch, C. M. S. Torres, et al. Self-guiding in two-dimensional photoniccrystals. Opt. Express,2003,11(10):1203-1211
    [60] J. W. Shin, S. H. Fan. Conditions for self-collimation in three-dimensional photonic crystals.Opt. Lett.,2005,30(18):2397-2399
    [61] R. Iliew, C. Etrich, F. Lederer. Self-collimation of light in three-dimensional photonic crystals.Opt. Express,2005,13(18):7076-7085
    [62] B. Lombardet, L. A. Dunbar, R. Ferrini, et al. A quantitative analysis of self-collimationeffects in planar photonic crystals. J. Appl. Phys.,2006,99(9):096108-096111
    [63] A. F. Matthews, S. K. Morrison, Y. S. Kivshar. Self-collimation and beam splitting inlow-index photonic crystals. Opt. Commun.,2007,279(2):313-319
    [64] D. S. Gao, Z. P. Zhou, D. S. Citrin. Self-collimated waveguide bends and partial bandgapreflection of photonic crystals with parallelogram lattice. J. Opt. Soc. Am. A,2008,25(3):791-795
    [65] Y. Xu, X. J. Chen, S. Lan, et al. The all-angle self-collimating phenomenon in photoniccrystals with rectangular symmetry. J. Opt. A: Pure Appl. Opt.,2008,10(8):085201-085206
    [66] Y. C. Chuang, T. J. Suleski. Complex rhombus lattice photonic crystals for broadbandall-angle self-collimation. J. Opt.,2010,12(3):035102-035108
    [67] Y. Xu, X. J. Chen, S. Lan, et al. Polarization-independent self-collimation based on pill-voidphotonic crystals with square symmetry. Opt. Express,2009,17(6):4903-4912
    [68] J. Hou, D. Gao. Polarization insensitive self-collimation waveguide in square lattice annularphotonic crystals. Opt. Commun.,2009,3172-3176
    [69] J. M. Park, S. G. Lee, H. R. Park, et al. Self-collimating photonic crystal antireflectionstructure for both TE and TM polarizations. Opt. Express,2010,18(12):13083-13093
    [70] Z. Li, H. Chen, Z. Song, et al. Finite-width waveguide and waveguide intersections forself-collimated beams in photonic crystals. Appl. Phys. Lett.,2004,85:4834-4837
    [71] X. F. Yu, S. H. Fan. Bends and splitters for self-collimated beams in photonic crystals. Appl.Phys. Lett.,2003,83(16):3251-3253
    [72] D. M. Pustai, S. Y. Shi, C. H. Chen, et al. Analysis of splitters for self-collimated beams inplanar photonic crystals. Opt. Express,2004,12(9):1823-1831
    [73] V. Zabelin, L. A. Dunbar, N. Le Thomas, et al. Self-collimating photonic crystal polarizationbeam splitter. Opt. Lett.,2007,32(5):530-532
    [74] X. Chen, Z. Qiang, D. Zhao, et al. Polarization beam splitter based on photonic crystalself-collimation Mach-Zehnder interferometer. Opt. Commun.,2010,490-493
    [75] J. M. Park, S. G. Lee, H. R. Park, et al. High-efficiency polarization beam splitter based on aself-collimating photonic crystal. J. Opt. Soc. Am. B,2010,27(11):2247-2254
    [76] X. Y. Chen, Z. X. Qiang, D. Y. Zhao, et al. Polarization-independent drop filters based onphotonic crystal self-collimation ring resonators. Opt. Express,2009,17(22):19808-19813
    [77] T. T. Kim, S. G. Lee, S. H. Kim, et al. Ring-type Fabry-Perot filter based on theself-collimation effect in a2D photonic crystal. Opt. Express,2010,18(16):17106-17113
    [78] T. T. Kim, S. G. Lee, H. Y. Park, et al. Asymmetric Mach-Zehnder filter based onself-collimation phenomenon in two-dimensional photonic crystals. Opt. Express,2010,18(6):5384-5389
    [79] D. Y. Zhao, J. Zhang, P. J. Yao, et al. Photonic crystal Mach-Zehnder interferometer based onself-collimation. Appl. Phys. Lett.,2007,90(23):231114-231117
    [80] H. M. Nguyen, M. A. Dundar, R. W. van der Heijden, et al. Compact Mach-Zehnderinterferometer based on self-collimation of light in a silicon photonic crystal. Opt. Express,2010,18(7):6437-6446
    [81] N. Yogesh, V. Subramanian. Analysis of Self-Collimation Based Cavity Resonator Formed byPhotonic Crystal. Prog. Electromagn. Res.,2010,12:115-130
    [82] R. Iliew, C. Etrich, T. Pertsch, et al. Subdiffractive all-photonic crystal Fabry-Perot resonators.Opt. Lett.,2008,33(22):2695-2697
    [83] D. W. Prather, S. Y. Shi, D. M. Pustai, et al. Dispersion-based optical routing in photoniccrystals. Opt. Lett.,2004,29(1):50-52
    [84] G. G. Zheng, L. X. Shi, X. Y. Li, et al. Optical interconnections with photonic crystalself-collimation, directional emission and co-directional coupling mechanism. J. Phys. D.Appl. Phys.,2009,42(11):115101-115106
    [85] T. Yamashita, C. J. Summers. Evaluation of self-collimated beams in photonic crystals foroptical interconnect. IEEE J. Sel. Area. Comm.,2005,23(7):1341-1347
    [86] Y. Zhang, B. Li. Optical switches and logic gates based on self-collimated beams intwo-dimensional photonic crystals. Opt. Express,2007,15(15):9287-9292
    [87] Z. L. Lu, C. A. Schuetz, S. Y. Shi, et al. Experimental demonstration of self-collimation inlow-index-contrast photonic crystals in the millimeter-wave regime. IEEE T. Microw. Theory,2005,53(4):1362-1368
    [88] Z. L. Lu, S. Y. Shi, J. A. Murakowski, et al. Experimental demonstration of self-collimationinside a three-dimensional photonic crystal. Phys. Rev. Lett.,2006,96(17):173902-173906
    [89] M. W. Kim, S. G. Lee, T. T. Kim, et al. Experimental demonstration of bending and splittingof self-collimated beams in two-dimensional photonic crystals. Appl. Phys. Lett.,2007,90(11):113121-113124
    [90] A. F. Matthews. Experimental demonstration of self-collimation beaming and splitting inphotonic crystals at microwave frequencies. Opt. Commun.,2009,282(9):1789-1792
    [91] A. Sharkawy, C. Chen, B. L. Miao, et al. Design and analysis of a chip-scale photonicanalog-to-digital converter. Proceedings of SPIE: Modeling and Simulation for MilitaryOperations IV,2009,73480
    [92] C. Y. Liu, L. W. Chen. Tunable band gap in a photonic crystal modulated by a nematic liquidcrystal. Phys. Rev. B,2005,72(4):045133-045138
    [93] K. Yee. Numerical solution of initial boundary value problems involving Maxwell's equationsin isotropic media. IEEE T. Antenn. Propag.,1966,14(3):302-307
    [94]葛德彪,闫玉波.电磁波时域有限差分法.西安:西安电子科技大学出版社,2005
    [95] A. F. Oskooi, D. Roundy, M. Ibanescu, et al. MEEP: A flexible free-software package forelectromagnetic simulations by the FDTD method. Comput. Phys. Commun.,2010,181(3):687-702
    [96] J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J.Comput. Phys.,1994,114(2):185-200
    [97] S. G. Johnson, J. D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell'sequations in a planewave basis. Opt. Express,2001,8(3):173–190
    [98] R. Iliew, C. Etrich, U. Peschel, et al. Diffractionless propagation of light in a low-indexphotonic-crystal film. Appl. Phys. Lett.,2004,85(24):5854-5856
    [99] D. W. Prather, S. Venkataraman, S. Shi, et al. Design, simulation and fabrication of3Dself-collimation photonic crystals. Proceedings of SPIE: Active and Passive OpticalComponents for Wdm Communications IV,2004,5595:45-53
    [100] Y. Chuang, T. Suleski. Photonic crystals for broadband, omnidirectional self-collimation. J.Opt.,2011,13:035103-035111
    [101] C. H. Chen, A. Sharkawy, D. M. Pustai, et al. Optimizing bending efficiency ofself-collimated beams in non-channel planar photonic crystal waveguides. Opt. Express,2003,11(23):3153-3159
    [102] B. L. Miao, C. H. Chen, S. Y. Shi, et al. A high-efficiency in-plane splitting coupler forplanar photonic crystal self-collimation devices. IEEE Photonic. Tech. Lett.,2005,17(1):61-63
    [103] Z. Yang, A. Wu, N. Fang, et al. Millimeter-scale self-collimation in planar photonic crystalsfabricated by CMOS technology. Opt. Commun.,2010,283(4):604-607
    [104] S. Fan, J. Joannopoulos, J. N. Winn, et al. Guided and defect modes in periodic dielectricwaveguides. J. Opt. Soc. Am. B,1995,12(7):1267-1272
    [105] S. G. Johnson, S. H. Fan, P. R. Villeneuve, et al. Guided modes in photonic crystal slabs.Phys. Rev. B,1999,60(8):5751-5758
    [106] S. Y. Shi, A. Sharkawy, C. H. Chen, et al. Dispersion-based beam splitter in photoniccrystals. Opt. Lett.,2004,29(6):617-619
    [107] S. G. Lee, S. S. Oh, J. E. Kim, et al. Line-defect-induced bending and splitting ofself-collimated beams in two-dimensional photonic crystals. Appl. Phys. Lett.,2005,87(18):181106-181109
    [108] Y. Xu, S. Wang, S. Lan, et al. Self-collimating polarization beam splitter based on photoniccrystal Mach-Zehnder interferometer. J. Opt. Soc. Am. B,2010,27(7):1359-1363
    [109] J. H. Sung, S. G. Lee, S. G. Park, et al. Design and fabrication of ultra compactwavelength-splitter using self-collimated diffraction in two-dimensional polymeric photoniccrystal. Proceedings of SPIE: Optoelectronic Integrated Circuits VIII,2006,6124:612411-612416
    [110] S. Y. Shi, A. Sharkawy, C. H. Chen, et al. Dispersion-based applications in photonic crystals.Proceedings of SPIE: Photonic Crystal Materials and Devices II,2004,5360:419-426
    [111] F. Goos, H. H nchen. Ein neuer und fundamentaler Versuch zur Totalreflexion. Annalen DerPhysik,1947,436(7-8):333-346
    [112] S. Seshadri. Goos-H nchen beam shift at total internal reflection. J. Opt. Soc. Am. A,1988,5(4):583-585
    [113] D. Felbacq, R. Smaali. Bloch modes dressed by evanescent waves and the generalizedGoos-Hanchen effect in photonic crystals. Phys. Rev. Lett.,2004,92(19):193902-193906
    [114] H. Kurt, D. S. Citrin. Annular photonic crystals. Opt. Express,2005,13(25):10316-10326
    [115] H. Kurt, R. Hao, Y. Chen, et al. Design of annular photonic crystal slabs. Opt. Lett.,2008,33(14):1614-1616
    [116] J. Feng, Y. Chen, J. Blair, et al. Fabrication of annular photonic crystals by atomic layerdeposition and sacrificial etching. J. Vac. Sci. Technol. B,2009,27:568-573
    [117] K. Busch, S. John. Liquid-crystal photonic-band-gap materials: The tunable electromagneticvacuum. Phys. Rev. Lett.,1999,83(5):967-970
    [118] E. P. Kosmidou, E. E. Kriezis, T. D. Tsiboukis. Analysis of tunable photonic crystal devicescomprising liquid crystal materials as defects. IEEE J. Quantum. Elect.,2005,41(5):657-665
    [119] M. Golosovsky, Y. Saado, D. Davidov. Self-assembly of floating magnetic particles intoordered structures: A promising route for the fabrication of tunable photonic band gapmaterials. Appl. Phys. Lett.,1999,75:4168-4171
    [120] C. S. Kee, H. Lim. Tunable complete photonic band gaps of two-dimensional photoniccrystals with intrinsic semiconductor rods. Phys. Rev. B,2001,64(12):121103-121107
    [121]黄子强.液晶显示原理.北京:国防工业出版社,2008
    [122] Y. Y. Wang, L. W. Chen. Tunable negative refraction photonic crystals achieved by liquidcrystals. Opt. Express,2006,14(22):10580-10587
    [123] C. Sekine, K. Iwakura, N. Konya, et al. Synthesis and properties of some novel highbirefringence phenylacetylene liquid crystal materials with lateral substituents. Liq. Cryst.,2001,28(9):1375-1387
    [124] H. Takeda, K. Yoshino. TE-TM mode coupling in two-dimensional photonic crystalscomposed of liquid-crystal rods. Phys. Rev. E,2004,70(2):026601-026608
    [125] Y. Shimoda, M. Ozaki, K. Yoshino. Electric field tuning of a stop band in a reflectionspectrum of synthetic opal infiltrated with nematic liquid crystal. Appl. Phys. Lett.,2001,79(22):3627-3629
    [126] B. G. Wu, J. L. West, J. W. Doane. Angular discrimination of light transmission throughpolymer-dispersed liquid crystal films. J. Appl. Phys.,1987,62(9):3925-3931
    [127] H. Zhang, P. Guo, P. Chen, et al. Liquid-crystal-filled photonic crystal for terahertz switchand filter. J. Opt. Soc. Am. B,2009,26(1):101-106
    [128] S. Harris, J. Field, A. Imamo lu. Nonlinear optical processes using electromagneticallyinduced transparency. Phys. Rev. Lett.,1990,64(10):1107-1110
    [129] F. Renzoni, W. Maichen, L. Windholz, et al. Coherent population trapping with lossesobserved on the Hanle effect of the D1sodium line. Phys. Rev. A,1997,55(5):3710-3718
    [130]庄飞,沈建其,叶军.调控电磁感应透明气体折射率实现可控光子带隙结构.物理学报,2007,56(1):541-546
    [131] K. J. Boller, A. Imamolu, S. Harris. Observation of electromagnetically inducedtransparency. Phys. Rev. Lett.,1991,66(20):2593-2596
    [132] B. S. Ham, P. Hemmer, M. Shahriar. Efficient electromagnetically induced transparency in arare-earth doped crystal. Opt. Commun.,1997,144(4-6):227-230
    [133] C. Wei, N. B. Manson. Observation of the dynamic Stark effect on electromagneticallyinduced transparency. Phys. Rev. A,1999,60(3):2540-2546
    [134] G. Serapiglia, E. Paspalakis, C. Sirtori, et al. Laser-induced quantum coherence in asemiconductor quantum well. Phys. Rev. Lett.,2000,84(5):1019-1022
    [135]涂燕飞,张国权,陈聪,等.固体介质中的电磁感应透明效应及其应用.物理,2007,36(005):399-404
    [136]胡小会,侯邦品.五能级原子系统中的多重电磁感应透明.原子与分子物理学报,2008,25(2):0375-0380
    [137] J. Tidstrom, C. W. Neff, L. M. Andersson. Photonic crystal cavity embedded inelectromagnetically induced transparency media. J. Opt.,2010,12(3):035105-035109
    [138] T. Baba. Slow light in photonic crystals. Nature Photonics,2008,2(8):465-473
    [139] N. V. Wheeler, P. S. Light, F. Couny, et al. EIT-based slow and fast light in an all-fibersystem. Proceedings of SPIE: Advances in Slow and Fast Light III,2010,7612:761202
    [140] M. Soljacic, J. D. Joannopoulos. Enhancement of nonlinear effects using photonic crystals.Nat. Mater.,2004,3(4):211-219
    [141] M. Phillips, H. Wang. Spin coherence and electromagnetically induced transparency viaexciton correlations. Phys. Rev. Lett.,2002,89(18):186401-186405
    [142] K. M. C. Fu, C. Santori, C. Stanley, et al. Coherent population trapping of electron spins in ahigh-purity n-type GaAs semiconductor. Phys. Rev. Lett.,2005,95(18):187405-187409
    [143] T. Akiyama, A. Neogi, H. Yoshida, et al. Enhancement of optical nonlinearity for shortwavelength (~1.5μm) intersubband transitions by n-doped InGaAs/AlAsSb MQW.Conference on Lasers and Electro-Optics,1999,23:257
    [144] M. Davan o, P. Holmstrom, D. J. Blumenthal, et al. Directional coupler wavelength filtersbased on waveguides exhibiting electromagnetically induced transparency. IEEE J.Quantum. Elect.,2003,39(4):608-613
    [145] E. Forsberg, J. She. Tunable photonic crystals based on EIT media. Proceedings of SPIE:Optoeletronic Materials and Devices,2006,6352: U208-U216
    [146]佘俊.基于液晶与光子晶体的新型光子学器件的研究:[博士学位论文].杭州:浙江大学,2008
    [147]张亚茹,孔令凯,冯卓宏,等.基于电磁感应透明的二维可控光子晶体分功率器.福建师范大学学报:自然科学版,2009,6:42-46
    [148] S. E. Barkou, J. Broeng, A. Bjarklev. Silica-air photonic crystal fiber design that permitswaveguiding by a true photonic bandgap effect. Opt. Lett.,1999,24(1):46-48
    [149] P. S. J. Russell. Photonic-crystal fibers. J. Lightwave. Technol.,2006,24(12):4729-4749
    [150] S. S. Xiao, M. Qiu. Study of transmission properties for waveguide bends by use of acircular photonic crystal. Phys. Lett. A,2005,340(5-6):474-479
    [151]刘頔威,刘盛纲.二维单斜点阵光子晶体的第一布里渊区及带隙计算.物理学报,2007,56(5):2747-2751
    [152] R. E. Hamam, M. Ibanescu, S. G. Johnson, et al. Broadband super-collimation in a hybridphotonic crystal structure. Opt. Express,2009,17(10):8109-8118
    [153] W. Y. Liang, T. B. Wang, C. P. Yin, et al. Super-broadband non-diffraction guiding modes inphotonic crystals with elliptical rods. J. Phys. D. Appl. Phys.,2010,43(7):075103-075109
    [154] F. J. Lawrence, L. C. Botten, K. B. Dossou, et al. Antireflection coatings fortwo-dimensional photonic crystals using a rigorous impedance definition. Appl. Phys. Lett.,2008,93(12):1114-1117
    [155] L. C. Botten, T. P. White, C. M. de Sterke, et al. Wide-angle coupling into rod-type photoniccrystals with ultralow reflectance. Phys. Rev. E,2006,74(2):026603-026613
    [156] H. Zhang, Y. Cen, L. Chen, et al. Full-angle collimations of two-dimensional photoniccrystals with ultrahigh-index background materials. J. Opt.,2010,12:045103-045108
    [157] Z. Y. Li, L. L. Lin. Evaluation of lensing in photonic crystal slabs exhibiting negativerefraction. Phys. Rev. B,2003,68(24):245110-245117
    [158] P. A. Belov, C. R. Simovski, P. Ikonen. Canalization of subwavelength images byelectromagnetic crystals. Phys. Rev. B,2005,71(19):193105-193109
    [159] S. A. Feng, Z. Y. Li, Z. F. Feng, et al. Focusing properties of a rectangular-rodphotonic-crystal slab. J. Appl. Phys.,2005,98(6):063102-063108
    [160] S. Feng, Z. Y. Li, Z. F. Feng, et al. Imaging properties of an elliptical-rod photonic-crystalslab lens. Phys. Rev. B,2005,72(7):075101-075109
    [161] Y. Y. Li, P. F. Gu, J. L. Zhang, et al. Self-collimation and superlensing in wavy-structuredtwo-dimensional photonic crystals. Appl. Phys. Lett.,2006,88(15):151911-151914

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700