硅基光子晶体带隙特性与波导研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着硅基微电子元器件集成度的不断提高,器件工艺线宽正趋于理论极限,用电子作为信息载体的微电子技术即将面临难以逾越的瓶颈。因此,用光子作为信息载体的集成光电子学成为了亟须发展的方向。其中,继承了现代大规模集成电路成熟的硅基加工技术,并兼具光子晶体完美控制光能力的硅基光子晶体器件自然的成为了研究的热点与前沿。硅基光波导是传递光子信息的通道,是硅基集成光电回路的核心基础器件。以硅基光子晶体波导为核心可以设计出各种功能各异、种类丰富的硅基光电子器件,如硅基微腔、波导、光延迟器、分束器、耦合器、调制器、探测器等,从而极大的推动硅基光电集成领域的发展。因此,本论文以硅基光子晶体为核心,在“国家重点基础研究发展计划(973计划)前期预研专项”(2006CB708310),“国家青年科学基金”(60706013),“湖北省自然科学基金重大项目”(2006ABD002),“华中科技大学自主创新究基金”(M2009026),“武汉光电国家实验室(筹)创新基金”(P080003),和“华中科技大学研究生创新基金”(HF-08-05-2011-230)等的支持下,重点进行了硅基光子晶体的光子带隙研究和新型光子晶体波导器件的机理与器件原型研究,取得了如下成果:
     (1)采用全三维平面波法,研究了一种新型环形孔光子晶体绝缘体二氧化硅上硅(SOI)非对称平板的光子带隙,比较了新型环形孔光子晶体平板和普通圆形孔光子晶体的带隙。通过研究发现,在很大范围的空气体积填充比内,同样空气体积填充比的优化的环形光子晶体平板和普通圆形孔光子晶体平板相比,具有更大的光子带隙。例如,对于空气填充比为15%的时候,与普通圆形孔光子晶体平板相比,在环形光子晶体平板中观察到了将近两倍的光子带隙增强。
     (2)讨论了硅基光子晶体波导中带边慢光的限制因素,研究了零色散型光子晶体宽带慢光波导的机理。在此基础上,设计了一种新型对称边界环宽带低色散光子晶体慢光波导。通过调节这种边界环波导环中的内径大小,可以使得光子晶体导模色散曲线中出现一个线性段,从而实现低色散宽带慢光。时域有限差分仿真表明,在一种优化的这种慢光波导中可以实现中心波长在1550纳米,带宽为2.3纳米的群折射率为74.4的慢光传输。
     (3)研究讨论了色散补偿型光子晶体宽带慢光波导的机理。在此基础上,设计了一种新型啁啾沟道光子晶体耦合慢光波导。通过调节这种波导的结构参数,可以获得一种理想的“座椅状”导模色散曲线。然后再对这种波导的宽度进行啁啾,可以实现宽带低色散慢光。在时域有限差分仿真实验中,成功地获得了中心波长在1550纳米,带宽为20纳米的宽带慢光传输。并且,这种波导能够在低折射率非线性材料沟道结构中实现慢光与光控制,可望用于高速光信号处理以及加强光与物质的相互作用等领域里面。
     (4)探讨了光子晶体的自准直原理,利用环形光子晶体比普通光子晶体多一个自由度的优势,设计了一种新型宽带偏振无关自准直波导。这种偏振无关自准直波导不但能同时工作于横电场模式和横磁场模式状态下,并且在中心波长为1550纳米时具有约102.9纳米宽的偏振无关自准直传播的带宽。因此,可以用于各种宽带的可重构波导器件和高密度光电集成器件,如偏振分束器,偏振耦合器等。
With the fast increasing of microelectronic devices integration in a single silicon chip, device fabrication line width is approaching to the theoretical limit. Therefore, microelectronics technology which uses electrons as information carriers will soon face formidable bottleneck. Thus, optoelectronics integration which uses photons as the information carrier is thought to be the new development direction. Silicon based photonic crystal, which inherits of the mature silicon processing technology of modern large scale integrated circuits and also has the perfect ability to control light due to their photonic band gap, naturally becomes to be the research hotspot. Silicon based photonic waveguides is the information transmission channel, and also is one of the key foundation devices for silicon-based integrated optical circuits. In the basis of the silicon based photonic crystal waveguide, a variety of different functions silicon-based optoelectronic devices can be designed and fabricated, such as silicon-based micro-cavity, waveguide, optical delay, splitter, couplers, modulators, detection and so on. Therefore, supported by the National Basic Research Program of China (grant 2006CB708310), Natural Science Foundation of China (grant 60706013), Natural Science Foundation of Hubei (grant 2006ABD002), the Independent Creative Research Foundation of Huazhong University of Science and Technology (grant M2009026), the Creative Research Foundation of Wuhan National Laboratory for Optoelectronics (grant P080003) and the Graduation Creative Research Foundation of Huazhong University of Science and Technology(grant HF-08-05-2011-230), this thesis focus on the photonic band gap characteristic and new types of silicon based photonic crystal waveguide devices:
     (1) Based on investigations and discussions of the formation mechanism of photonic band gap in photonic crystal, photonic band structures of annular photonic-crystal silicon-on-insulator asymmetric slabs with finite thickness were investigated by the three-dimensional plane-wave expansion method. The results show that for a broad range of air-volume filling factors, annular photonic-crystal slabs can exhibit a significantly larger band gap than conventional circular-hole photonic-crystal slabs. For a noticeable case, approximately a two-fold enhancement of the band gap was observed based on the same configurations except the use of optimized annular holes instead of circular holes. This desirable behavior suggests a potential for annular photonic-crystal silicon-on-insulator slabs to serve as the basis of various optical cavities, waveguides, and mirrors.
     (2) Based on the investigations and discussion of the flat band slow light mechanism in photonic crystal waveguide, flat band low dispersion slow light in symmetric line defect photonic crystals waveguide formed by adding dielectric pillars in the air holes nearest to the waveguide core is investigated. By adjusting the radii of the new dielectric pillars, a linear band in the photonic band structure appears which denotes low group velocity dispersion. High average group index of 74.4 with 2.3 nm bandwidth centered at 1550 nm wavelength is demonstrated in an optimized waveguide by finite-difference time-domain simulation. The novel photonic crystal waveguide can provide various applications, such as optical buffer memories, efficient optical switches and especially in enhanced light-matter interaction both in the linear and nonlinear regime with a simple and straight structure.
     (3) Based on the investigations and discussion of dispersion compensation wide band slow light mechanism in photonic crystal waveguide, wideband dispersion-free slow light in chirped-slot photonic-crystal coupled waveguides is proposed and theoretically investigated in detail. By systematically analyzing the dependence of band shape on various structure parameters, unique inflection points in the key photonic band with approximate zero group velocity can be obtained in an optimized slot photonic-crystal coupled waveguide. By simply chirping the widths of the photonic-crystal waveguides in the optimized structure, wideband (up to 20 nm centered at 1550 nm wavelength) slow-light with optical confinement in the low dielectric slot is demonstrated numerically with relative temporal pulse-width spreading well below 8% as obtained from two-dimensional finite-difference time-domain simulations. The wideband slow-light operation of the proposed structures would offer significant potential for novel compact high-speed optical-signal-processing devices in silicon-based systems.
     (4) Based on the investigations and discussion of photonic crystal self-collimation phenomena and theory, making use of the two freedom adjustable parameters of the annular photonic crystal, the frequency bands for self-collimation at both TE and TM polarizations in square lattice annular photonic crystals are studied systematically by plane wave expansion and finite difference time domain methods. A polarization insensitive self-collimation waveguide in a high dielectric contrast system with bandwidth up to 102.9 nm is demonstrated as an example of the implementation of photonic integration circuits.
引文
[1]Bardeen J., Brattain W. H. The transistor, a semiconductor triode. Physical Review, 1948,74:230-231
    [2]王阳元.历史机遇和我国微电子发展之路.中国集成电路,2005,70(3):30-38
    [3]王启明.支撑光网络发展的光子集成器件研发与趋势.深圳大学学报理工版,2004,21(3):189-196
    [4]余金中.硅基光电子学研究进展与趋势.世界科技研究与发展,2007,29(5):50-56
    [5]周治平,郜定山,汪毅等.硅基集成光电子器件的新进展.激光与光电子学进展,2007,44(2):31-37
    [6]周治平,王兴军,冯俊波等.硅基微纳光电子系统中光源的研究现状及发展趋势.激光与光电子学进展,2009,46(10):28-35
    [7]"Moor's Law, Made real by Intel Innovations," Intel Corporation, Retrieved from internet web:http://www.intel.com/technology/mooreslaw/index.htm
    [8]"INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2009 EDITION", ITRS,2009
    [9]郜定山.二维光子晶体的理论及器件研究:[博士后出站报告].武汉:华中科技大学图书馆,2007
    [10]Miller S. E. Integrated Optics-an Introduction. Bell System Technical Journal, 1969,48(7):2059-2069
    [11]Kaminow I. P. Optical integrated circuits:A personal perspective. Journal of Lightwave Technology,2008,26(9-12):994-1004
    [12]"Silicon Photonics Research," Intel Corporation, Retrieved from internet web: http://techresearch. intel.com/ResearchAreaDetail s. aspx? Id=26.
    [13]Rong H. S., Xu S. B., Kuo Y. H., et al. Low-threshold continuous-wave Raman silicon laser. Nature Photonics,2007,1(4):232-237
    [14]Rong H. S., Jones R., Liu A. S., et al. A continuous-wave Raman silicon laser. Nature,2005,433(7027):725-728
    [15]Liao L., Liu A., Rubin D., et al.40 Gbit/s silicon optical modulator for high-speed applications. Electronics Letters,2009,43(22):51-52
    [16]Liu A. S., Liao L., Rubin D., et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express,2007,15(2):660-668
    [17]Vacondio F., Mirshafiei M., Basak J., et al. A Silicon Modulator Enabling RF Over Fiber for 802.11 OFDM Signals. Ieee Journal of Selected Topics in Quantum Electronics,2010,16(1):141-148
    [18]Kang Y. M., Liu H. D., Morse M., et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nature Photonics,2009,3(1): 59-63
    [19]Barkai A., Liu A. S., Kim D., et al. Double-Stage Taper for Coupling Between SOI Waveguides and Single-Mode Fiber. Journal of Lightwave Technology,2008, 26(21-24):3860-3865
    [20]Andrew A., Ling L., Richard J., et al, Demonstration of a High Speed 4-Channel Integrated Silicon Photonics WDM Link with Hybrid Silicon Lasers.2010, p. PDIWI5.
    [21]Canham L. Light-Emitting-Diodes-The Silicon Chameleon. Nature,1993, 365(6448):695-695
    [22]Sakai A., Fukazawa T.Baba T. Estimation of polarization crosstalk at a micro-bend in Si-photonic wire waveguide. Journal of Lightwave Technology,2004,22(2): 520-525
    [23]Pauzauskie P. J.Yang P. Nanowire photonics. Materials Today,2006,9(10):36-45
    [24]Preble S. F., Xu Q. F.Lipson M. Changing the colour of light in a silicon resonator. Nature Photonics,2007,1(5):293-296
    [25]Jackson J. B.Halas N. J. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proceedings of the National Academy of Sciences of the United States of America,2004,101(52):17930-17935
    [26]Liu Z. W., Steele J. M., Srituravanich W., et al. Focusing surface plasmons with a plasmonic lens. Nano Letters,2005,5(9):1726-1729
    [27]Xia Y. N.Halas N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. Mrs Bulletin,2005,30(5):338-344
    [28]Gopinath A., Boriskina S. V., Premasiri W. R., et al. Plasmonic Nanogalaxies: Multiscale Aperiodic Arrays for Surface-Enhanced Raman Sensing. Nano Letters, 2009,9(11):3922-3929
    [29]Kim H., Park J., Cho S. W., et al. Synthesis and Dynamic Switching of Surface Plasmon Vortices with Plasmonic Vortex Lens. Nano Letters,2010,10(2):529-536
    [30]Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters,1987,58(20):2059-2062
    [31]John S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters,1987,58(23):2486-2489
    [32]Yablonovitch E., Gmitter T. J., Meade R. D., et al. DONOR AND ACCEPTOR MODES IN PHOTONIC BAND-STRUCTURE. Physical Review Letters,1991, 67(24):3380-3383
    [33]Meade R. D., Rappe A. M., Brommer K. D., et al. Nature of the Photonic Band-Gap-Some Insights from a Field Analysis. Journal of the Optical Society of America B-Optical Physics,1993,10(2):328-332
    [34]Johnson S. G, Fan S. H., Villeneuve P. R., et al. Guided modes in photonic crystal slabs. Physical Review B,1999,60(8):5751-5758
    [35]Kosaka H., Kawashima T., Tomita A., et al. Self-collimating phenomena in photonic crystals. Applied Physics Letters,1999,74(9):1212-1214
    [36]Johnson S. G, Villeneuve P. R., Fan S. H., et al. Linear waveguides in photonic-crystal slabs. Physical Review B,2000,62(12):8212-8222
    [37]Notomi M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B, 2000,62(16):10696-10705
    [38]Baba T. Silicon gets the green light. Nature Photonics,2009,3(4):187-190
    [39]Notomi M., Kuramochi E.Tanabe T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photonics,2008,2(12):741-747
    [40]Rinne S. A., Garcia-Santamaria F.Braun P. V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nature Photonics,2008,2(1):52-56
    [41]Skryabin D. V.Knight J. C. Photonic Crystal Waveguides Compressing Slow Solitons. Nature Photonics,2010,4(12):806-807
    [42]Wulbern J. H., Prorok S., Hampe J., et al.40 GHz electro-optic modulation in hybrid silicon-organic slotted photonic crystal waveguides. Optics Letters,2010, 35(16):2753-2755
    [43]侯金,郜定山,周治平.光子晶体器件进展.光学技术,2009,35(1):93-97
    [44]Soljacic M.Joannopoulos J. D. Enhancement of nonlinear effects using photonic crystals. Nature Materials,2004,3(4):211-219
    [45]Koshel D., Beaudoin F., Barba D., et al. One step towards the fabrication of a nanoscale Si-nc based laser cavity. Journal of Luminescence,2011,131(1): 159-163
    [46]Corcoran B., Monat C., Grillet C., et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nature Photonics,2009,3(4):206-210
    [47]Park H. G., Barrelet C. J., Wu Y. N., et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photonics,2008,2(10): 622-626
    [48]Rakich P. T., Dahlem M. S., Tandon S., et al. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal. Nature Materials, 2006,5(2):93-96
    [49]Tanaka Y., Upham J., Nagashima T., et al. Dynamic control of the Q factor in a photonic crystal nanocavity. Nature Materials,2007,6(11):862-865
    [50]Lin C. Y., Wang X. L., Chakravarty S., et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Applied Physics Letters,2010,97(9):093304
    [51]Han S. E.Chen G. Toward the Lambertian Limit of Light Trapping in Thin Nanostructured Silicon Solar Cells. Nano Letters,2010,10(11):4692-4696
    [52]Di Falco A., O'Faolain L.Krauss T. F. Chemical sensing in slotted photonic crystal heterostructure cavities. Applied Physics Letters,2009,94(6):063503
    [53]Notomi M., Yamada K., Shinya A., et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Physical Review Letters,2001, 87(25):253902
    [54]Vlasov Y. A., O'Boyle M., Hamann H. F., et al. Active control of slow light on a chip with photonic crystal waveguides. Nature,2005,438(7064):65-69
    [55]Chutinan A.Noda S. Waveguides and waveguide bends in two-dimensional photonic crystal slabs. Physical Review B,2000,62(7):4488-4492
    [56]Witzens J., Loncar M.Scherer A. Self-collimation in planar photonic crystals. Ieee Journal of Selected Topics in Quantum Electronics,2002,8(6):1246-1257
    [57]Wu L. J., Mazilu M.Krauss T. F. Beam steering in planar-photonic crystals:From superprism to supercollimator. Journal of Lightwave Technology,2003,21(2): 561-566
    [58]Matthews A. F., Morrison S. K.Kivshar Y. S. Self-collimation and beam splitting in low-index photonic crystals. Optics Communications,2007,279(2):313-319
    [59]Yu X. F.Fan S. H. Bends and splitters for self-collimated beams in photonic crystals. Applied Physics Letters,2003,83(16):3251-3253
    [60]Gao D. S., Zhou Z. P.Citrin D. S. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice. Journal of the Optical Society of America a-Optics Image Science and Vision,2008,25(3): 791-795
    [61]Ogawa Y., Omura Y.Iida Y. Study on self-collimated light-focusing device using the 2-D photonic crystal with a parallelogram lattice. Journal of Lightwave Technology, 2005,23(12):4374-4381
    [62]Chen H. B., Li Z. F., Wei L., et al. Line defect splitters for self-collimated beams in photonic crystals. Optics Communications,2006,262(1):120-124
    [63]Rowson S., Chelnokov A.Lourtioz J. M. Two-dimensional photonic crystals in macroporous silicon:From mid-infrared (10 mu m) to telecommunication wavelengths (1.3-1.5 mu m). Journal of Lightwave Technology,1999,17(11): 1989-1995
    [64]Netti M. C., Charlton M. D. B., Parker G. J., et al. Visible photonic band gap engineering in silicon nitride waveguides. Applied Physics Letters,2000,76(8): 991-993
    [65]Birner A., Wehrspohn R. B., Gosele U. M., et al. Silicon-based photonic crystals. Advanced Materials,2001,13(6):377-388
    [66]Chow E., Lin S. Y., Johnson S. G., et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature,2000,407(6807):983-986
    [67]Qiu M. Band gap effects in asymmetric photonic crystal slabs. Physical Review B, 2002,66(3):033103
    [68]Kurt H.Citrin D. S. Annular photonic crystals. Optics Express,2005,13(25): 10316-10326
    [69]Wen F., David S., Checoury X., et al. Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations. Optics Express, 2008,16(16):12278-12289
    [70]Shi P., Huang K., Kang X. L., et al. Creation of large band gap with anisotropic annular photonic crystal slab structure. Optics Express,2010,18(5):5221-5228
    [71]Marsal L. F., Trifonov T., Rodriguez A., et al. Larger absolute photonic band gap in two-dimensional air-silicon structures. Physica E-Low-Dimensional Systems & Nanostructures,2003,16(3-4):580-585
    [72]Poborchii V., Tada T., Kanayama T., et al. Silver-coated silicon pillar photonic crystals:Enhancement of a photonic band gap. Applied Physics Letters,2003,82(4): 508-510
    [73]Toader O.John S. Photonic band gap enhancement in frequency-dependent dielectrics. Physical Review E,2004,70(4):046605
    [74]Fu H. K., Chen Y. F., Chern R. L., et al. Connected hexagonal photonic crystals with largest full band gap. Optics Express,2005,13(20):7854-7860
    [75]Abrarov S. M.Abrarov R. M. Broadening of band-gap in photonic crystals with optically saturated media. Optics Communications,2008,281(11):3131-3136
    [76]Estevez J. O., Arriaga J., Blas A. M., et al. Enlargement of omnidirectional photonic bandgap in porous silicon dielectric mirrors with a Gaussian profile refractive index. Applied Physics Letters,2009,94(6):061914
    [77]Baba T. Slow light in photonic crystals. Nature Photonics,2008,2(8):465-473
    [78]Boyd R. W.Gauthier D. J. "Slow" and "fast" light. Progress in Optics,2002,43: 497-530
    [79]Krauss T. F. Why do we need slow light? Nature Photonics,2008,2(8):448-450
    [80]Engelen R. J. P., Sugimoto Y., Watanabe Y., et al. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Optics Express,2006,14(4):1658-1672
    [81]Petrov A. Y.Eich M. Zero dispersion at small group velocities in photonic crystal waveguides. Applied Physics Letters,2004,85(21):4866-4868
    [82]Li J., White T. P., O'Faolain L., et al. Systematic design of flat band slow light in photonic crystal waveguides. Optics Express,2008,16(9):6227-6232
    [83]De La Rue R. M. OPTICAL DELAY Slower for longer. Nature Photonics,2008, 2(12):715-716
    [84]Changhong L., Huiping T., Cui Z., et al. Improved line defect structures for slow light transmission in photonic crystal waveguide. Optics Communications,2007, 279(1):214-218
    [85]Mao X. Y., Zhang G.Y., Huang Y. D., et al. Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides. Chinese Physics Letters, 2008,25(12):4311-4313
    [86]Ma J.Jiang C. Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides. Ieee Photonics Technology Letters,2008,20(13-16): 1237-1239
    [87]Yanik M. F.Fan S. H. Stopping light all optically. Physical Review Letters,2004, 92(8):083901
    [88]Ma J.Jiang C. Hatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion. Ieee Journal of Quantum Electronics,2008,44(7-8):763-769
    [89]Chigrin D. N., Enoch S., Torres C. M. S., et al. Self-guiding in two-dimensional photonic crystals. Optics Express,2003,11(10):1203-1211
    [90]Schonbrun E., Wu Q., Park W., et al. Polarization beam splitter based on a photonic crystal heterostructure. Optics Letters,2006,31(21):3104-3106
    [91]Xu Y., Chen X. J., Lan S., et al. Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry. Optics Express,2009,17(6): 4903-4912
    [92]Zhao D. Y., Zhang J., Yao P. J., et al. Photonic crystal Mach-Zehnder interferometer based on self-collimation. Applied Physics Letters,2007,90(23):231114
    [93]Yablonovitch E. Photonic crystals:What's in a name? Optics & Photonics News, 2007,18(3):12-13
    [94]Johnson S. G.Joannopoulos J. D. Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap. Applied Physics Letters,2000, 77(22):3490-3492
    [95]Johnson S. GJoannopoulos J. D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Optics Express,2001,8(3):173-190
    [96]Oskooi A. F., Roundy D., Ibanescu M., et al. MEEP:A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications,2010,181(3):687-702
    [97]Yee K. S. Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media. Ieee Transactions on Antennas and Propagation,1966, Ap14(3):302-307
    [98]Berenger J. P. Improved PML for the FDTD solution of wave-structure interaction problems. Ieee Transactions on Antennas and Propagation,1997,45(3):466-473
    [99]Gao D. S.Zhou Z. P. Nonlinear equation method for band structure calculations of photonic crystal slabs. Applied Physics Letters,2006,88(16):163105
    [100]Adibi A., Xu Y, Lee R. K., et al. Properties of the slab modes in photonic crystal optical waveguides. Journal of Lightwave Technology,2000,18(11):1554-1564
    [101]Kubo S., Mori D.Baba T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Optics Letters,2007,32(20):2981-2983
    [102]Wei E. B., Song J. B.Gu G. Q. Effective dielectric response of nonlinear composites with external ac and dc electric field. Journal of Applied Physics,2004,95(3): 1377-1381
    [103]Wei E. B.Poon Y. M. Dielectric response of graded composites having general power-law-graded cylindrical inclusions. Journal of Applied Physics,2005,98(1): 014104
    [104]Qiu M. Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals. Applied Physics Letters,2002,81(7): 1163-1165
    [105]Akahane Y., Asano T., Song B. S., et al. Fine-tuned high-Q photonic-crystal nanocavity. Optics Express,2005,13(4):1202-1214
    [106]Kurt H., Hao R., Chen Y., et al. Design of annular photonic crystal slabs. Optics Letters,2008,33(14):1614-1616
    [107]Saynatjoki A., Mulot M., Vynck K., et al. Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator. Photonics and Nanostructures-Fundamentals and Applications,2008,6(1):42-46
    [108]Cicek A.Ulug B. Polarization-independent waveguiding with annular photonic crystals. Opt. Express,2009,17(20):18381-18386
    [109]Jagerska J., Le Thomas N., Zabelin V., et al. Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides. Optics Letters, 2009,34(3):359-361
    [110]Chang K. P., Yang S. L., Shen L. F., et al. Photonic band gaps of polygonal and circular dielectric rods in square lattices. Journal of Applied Physics,2008,104(11): 113109
    [111]Hou J., Gao D. S., Wu H. M., et al. Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals. Optics Communications, 2009,282(15):3172-3176
    [112]Mulot M., Saynatjoki A., Arpiainen S., et al. Slow light propagation in photonic crystal waveguides with ring-shaped holes. Journal of Optics a-Pure and Applied Optics,2007,9(9):S415-S418
    [113]Feng J. B., Chen Y, Blair J., et al. Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching. Journal of Vacuum Science & Technology B,2009,27(2):568-572
    [114]Srinivasan K.Painter O. Momentum space design of high-Q photonic crystal optical cavities. Optics Express,2002,10(15):670-684
    [115]Hernandez S., Pellegrino P., Martinez A., et al. Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition. Journal of Applied Physics,2008,103(6):064309
    [116]Mori D.Baba T. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. Optics Express,2005,13(23):9398-9408
    [117]Yamamoto N., Ogawa T.Komori K. Photonic crystal directional coupler switch with small switching length and wide bandwidth. Optics Express,2006,14(3): 1223-1229
    [118]Huang S. C., Kato M., Kuramochi E., et al. Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides. Optics Express,2007,15(6):3543-3549
    [119]Baba T., Kawasaki T., Sasaki H., et al. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide. Optics Express,2008, 16(12):9245-9253
    [120]Wang F. H., Ma J.Jiang C. Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides. Journal of Lightwave Technology,2008,26(9-12): 1381-1386
    [121]Sugisaka J., Yamamoto N., Jeong S. H., et al. Photonic Band Engineering of Coupled Waveguide Using Geometrical Modulation. Japanese Journal of Applied Physics,2008,47(12):8829-8833
    [122]Yamada K., Morita H., Shinya A., et al. Improved line-defect structures for photonic-crystal waveguides with high group velocity. Optics Communications, 2001,198(4-6):395-402
    [123]Jacobsen R. S., Lavrinenko A. V., Frandsen L. H., et al. Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides. Optics Express,2005,13(20):7861-7871
    [124]Frandsen L. H., Lavrinenko A. V., Fage-Pedersen J., et al. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006,14(20):9444-9450
    [125]Khayam O.Benisty H. General recipe for flatbands in photonic crystal waveguides. Optics Express,2009,17(17):14634-14648
    [126]White T. P., O'Faolain L., Li J. T., et al. Silica-embedded silicon photonic crystal waveguides. Optics Express,2008,16(21):17076-17081
    [127]Adachi J., Ishikura N., Sasaki H., et al. Wide Range Tuning of Slow Light Pulse in SOI Photonic Crystal Coupled Waveguide via Folded Chirping. Ieee Journal of Selected Topics in Quantum Electronics,2010,16(1):192-199
    [128]Brosi J. M., Koos C., Andreani L. C., et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express,2008,16(6):4177-4191
    [129]Kosaka H., Kawashima T., Tomita A., et al. Superprism phenomena in photonic crystals. Physical Review B,1998,58(16):10096-10099
    [130]Zabelin V, Dunbar L. A., Le Thomas N., et al. Self-collimating phatonic crystal polarization beam splitter. Optics Letters,2007,32(5):530-532
    [131]Lee S. G., Choi J. S., Kim J. E., et al. Reflection minimization at two-dimensional photonic crystal interfaces. Optics Express,2008,16(6):4270-4277
    [132]Liu N., Guo H. C., Fu L. W., et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Materials,2008,7(1):31-37
    [133]Narimanov E. Photonics-Metamaterials to beat the static. Nature Materials,2008, 7(4):273-274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700