光纤激光器自混合散斑实时速度传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
出射激光照射在粗糙物体表面上,被粗糙面反射或散射的部分光会按原路返回,重新进入激光腔内与原光混合,调制激光器的输出光功率,形成自混合散斑。输出光探头与粗糙物面的距离不同,或粗糙面的粗糙度不同,或粗糙面非静止时,速度不同等都会引起自混合散斑信号的改变。利用自混合散斑传回的信息来分析被测物面的相关属性是近几年光纤激光器传感研究的热点之一。选择一定粗糙度的待测物面,固定激光输出探头与被测物面的距离,控制被测面移动的速度,利用光电探测器探测不同速度下的散斑信号,在计算机上对信号进行分析处理,可以得出速度与散斑信号的属性值相关关系,利用二者的这种关系可以组建自混合散斑速度传感系统。
     本文首先介绍了目前对1550nm的环形掺铒光纤激光器已有的理论基础,并基于此对光纤激光器进行了改进,分别提出了等效F-P腔光纤激光器和Q型腔光纤激光器。同时对不同腔型输出的光功率作了理论推导,得到了输出光功率的表达式。然后,基于不同的掺铒光纤激光器搭建了两套自混合散斑速度传感系统,分别采用两种不同的信号处理方法----频谱能量密度法和分形盒数法对不同系统采集的自混合散斑信号分析处理,得出散斑频谱能量密度与被测目标速度成近似的线性关系,散斑信号的分形盒数与速度成近似的指数关系。利用实验中的经验公式,基于Labview软件编写虚拟仪器,实现自混合散斑信号的快速采集,实时处理,及被测目标速度的实时测量。接着,利用Matlab语言编写了滤波程序,采用自适应滤波器对信号进行滤波,提高了测速的精度。最后,通过编程对速度传感系统进行了优化,实现了速度实时测量结果的自动存档,速度大小的实时监控及报警系统,并且通过以太网实现了速度传感系统的远程监控。
When light out from laser illuminates the rough surface of the measured target, part of light reflected or scattered reenter the laser cavity, mixing with the original one. Then the laser output power is modulated, and self-mixed speckle can be detected. The amplitude and the frequency of speckle is influenced on the different distance between measured target and the laser fan-out, the dissimilar roughness of measured target, and the distinct velocity the target moved at. Studing objects' property by self-mixing speckle is one hotspot in recent years. If our target of certain roughness is chosen, and the distance detected is fixed, changing the velocity of target, analyzing the self-mixing speckle output, a relationship between speckle and velocity can be obtained. Based on this, a velocity measured system of self-mixed speckle will be built.
     In this paper, the basic theory of a ring cavity laser with1550nm erbium-doped fiber (EDF) is reviewed firstly. Grounded on this, two new fiber lasers are showed: the equivalent Fabry-Perot cavity fiber laser and the Q cavity fiber laser. The theory about the new cavities is studied, and the power expression of output laser is gained. Secondly, two velocity measured systems of different EDF laser are built. Self-mixed speckle signal which is collected from two systems is processed by two ways--energy density of speckle frequency spectrum and the number of box-counting (NBC). In our study, the linear dependence between energy density of speckle frequency spectrum and velocity is received. The index relationship between NBC and velocity is obtained. According to the experiential formula, a program is wrote by labview, where the signal is fastly collected and processed, and the target velocity is showed real time. Thirdly, to improve the measured precision, a programme of adaptive noise caceller is wrote by matlab to filter. Finally, some melioration is taken for our velocity measured system by additional program:the velocity measured real time can be saved automatically; the value of velocity is inspected real time, and if it exceeds the bound set at the beginning the system will give an alarm; the measured system can be controlled remotely by Ethernet.
引文
[1]T. Kanada and K. Nawata. Injection laser characteristics due to reflected optical power[J]. IEEE Quantum Electron,1979,15:559-565.
    [2]J. Sacher, W. Elsasser and E. Gobel. Intermittency in the coherence collapse of a semiconductor laser with external feedback[J]. Phys. Rev. Lett,1989,63:2224-2227.
    [3]L. Goldberg et al.1982. Spectral characteristics of semiconductor lasers with optical feedback[J]. IEEE J. Quantum Electron,1982,18:555-563.
    [4]P. G. R. King, Metrology with an optical master [J], Rev. Sci.,1963,17:180-182.
    [5]M. J. Rudd, A laser doppler velocimeter Employing the Laser as a Mixer Oscillator [J], J. Phys. E,1968(1),723-726.
    [6]R. Lang, K. Kobayashi, External optical feedback effects on semiconductor injection laser properties [J], IEEE J. Quant. Electron.,1980,16(3):347-355.
    [7]Edson T. Shimizu, Directional Discrimination in the Self-mixing Type Laser Doppler Velocimeter [J]. Applied Optics,1987,26(2):4541-4544.
    [8]H. w. Jentink, Small laser doppler velocimeter Based on the self-mixing effect in a diode laser[J], Applied Optics,1988,27(2):379-385.
    [9]W. M. Wang, W. J. O. Boyle, K. T. V. Grattan et al.. Self-mixing interference in a diode laser: experimental observation and theoretical analysis [J]. Appl. Opt-LP,1993,32 (9):1551-1558
    [10]Takaali Shibata, Shigenobu Shinohara, Hiroaki Ikeda et al.. Laser speckle velocimeter using self-mixing laser diode[J], IEEE Transactions on Instrumentation and Measurement,1996, 45(2):499-503.
    [11]Min Lu, Ming Wang, Hui Hao, et al. Self-mixing speckle interference generated in laser diode[J].Guangxue xuebao/Acta Optica Sinica,2004,24(9):1229-1234.
    [12]Min Lu, Ming Wang, Hui Hao, etal. Measurement of flow velocity using self-mixing speckle interference generated in laser diode [J]. Guangxue Xuebao/Acta Optica Sinica,2005,25(2): 190-194.
    [13]Ming Wang, Min Lu, Hui Hao et al.. Statistics of the self-mixing speckle interference in a laser diode and its application to the measurement of flow velocity [J]. Optics Communications,2006,60(1):242-247.
    [14]Daofu Hana, Ming Wang and Junping Zhou. Self-mixing speckle interference in DFB lasers[J]. Optics Express,2006,14(8):3312-3317.
    [15]Lili Zhou, Xuezeng Zhao. Real-time measurement of surface roughness based on dynamic speckles [J]. Optical Design and Testing Ⅱ,2005,5638:395-403.
    [16]Yasuaki Watanabe, Sunao Ishii, Masahiko Kato, et al. Absolute vibrational displacement measurements based on laser speckle method with burst resonator driving[J], IEEE,2006, 554-558.
    [17]Hisashi Hirabayashi, Tsukasa Matsuo, Hiroaki Ishizawa, et al. Surface roughness evaluation by laser speckle[C], SICE-ICASE International Joint Conference,2006,18(21):5809-5812.
    [18]Ersin Kayahan, Ozcan Gundogdu, Autocorrelation analysis of spectral dependency of surface roughness speckle patterns[J], IEEE,2009,235-240.
    [19]Glayol Nazari Golpayegani, Keivan Maghooli. Laser Doppler and laser speckle techniques for blood flow measurement[J], IEEE,2008,1555-1560.
    [20]K. Meigas, H. Hinrikus, R. Kattai, et al. Coherent photodetection for pulse profile registration[J]. Proc. SPIE,1999,3598:195-202.
    [21]陈世佳,韩道福,马力.环形光纤激光器自混合散斑自相关测速的研究[J].激光与光电子学进展.2011,48,030601.
    [22]Daofu Han, Shijia Chen, Dongmei Guo. Velocity measurement by speckle modulating an Erbium-doped fiber ring laser[C].2010, Proc. Of SPIE.
    [23]郭雅群,韩道福,马力等.偏振散斑的速度传感数值模拟[J].南昌大学学报(理科版).2010,34(2):160-163.
    [24]韩道福,俞进,马力等.环形掺饵光纤激光器自混合散斑及动态目标距离测量[J].激光与光电子学进展,2010,47(2):020601.
    [25]左秀婷,韩道福,马力.环形光纤激光器自混合散斑数值模拟及频谱性能分析[J],南昌大学学报,2009,33(5):472-475.
    [26]D.Han.S.Chen, L.Ma. Autocorrelation of self-mixing speckle in an EDFR laser and velocity measurement[J]. Appl Phys B,2011,103:695-700.
    [27]廖延彪,黎敏,张敏等.光纤传感技术与应用[M],北京,清华大学出版社,2009.
    [28]Xiajuan Dai, Ming Wang, Yi Zhao et al.. Self-mixing interference in fiber ring laser and its application for vibration measurement [J], Optics Express,2009,17(19):16543-16548.
    [29]D. Han, M. Wang and J. Zhou. Fractal analysis of self-mixing speckle signal in velocity sensing [J]. Opt. Express,2008,16(5):3204-3211.
    [30]D. Han, M. Wang and J. Zhou. Self-mixing speckle in an EDFR laser and its application to velocity sensing [J].IEEE Photon. Technol. Lett.,2007,19(18):1398-1400.
    [31]郭冬梅,谈苏庆,王鸣.正弦相位调制自混合干涉微位移测量精度分析[J].光学学报,2006,26(6):845-850.
    [32]郭冬梅.相位调制型激光自混合干涉测量微纳米技术的研究(博士论文)[D],南京师范大学,2006.
    [33]Sahin Kaya Ozdemir, Tatsuya Takasu, Shigenobu Shinohara et al.. Simultaneous measurement of velocity and length of moving surfaces by a speckle velocimeter with two self-mixing laser diodes [J]. Applied Optics,1999,38(10):1968-1974.
    [34]陆光华,彭学愚,张林让等.随机信号处理[M],西安,西安电子科技大学出版社,2002.
    [35]King P. G. R., Metrology with an optical master [J], Rev. Sci.,1963,17:180-182.
    [36]韩道福.基于光纤的激光自混合散斑理论及应用研究(博士论文)[D],南京师范大学,2007.
    [37]Peter D. Dragic. Analytical model for injection-seeded erbium-doped fiber ring lasers[J]. IEEE Photon. Technol. Lett.,2005,17(8):1629-1631.
    [38]A. Bananej, C.Li., Controllable all-optical switch using an EDF-ring coupled M-Z interferometer[J], IEEE Photon. Technol. Lerr.2004,16:2102-2104.
    [39]Preecha P. Yupapin, Poramate Chunpang. A quantum-chaotic encoding system using an erbium-doped fiber amplifier in a fiber ring resonator[J]. Optik,120(2009):976-979.
    [40]S.E. Skipetrov, J. Peuser, R. Cerbino.Noise at el.. Noise in laser speckle correlation and imaging techniques [J], Optical Society of America,2010,18(14):14519-14534.
    [41]S. K. Ozdemir, S. Ito, S. Shinohara et al.. Correlation-based speckle velocimeter with self-mixing interference in a semiconductor laser diode [J]. Appl. Opt.,1999,38(33):6859-6865.
    [42]O. K. Sahin, I. Satoshi, T. Sotetsu et al.. Velocity measurement by a self-mixing laser diode using speckle correlation [C]. IEEE Instrumentation and Measurement Technology Conference,1999,38(10):1756-1760.
    [43]Guy Plantier, Noel Servagent, Thierry Bosch et al.. Real-time tracking of time-varying velocity using a self-mixing laser diode[J], IEEE Transactions on Instrumentation and Measurement,2004,53(1):109-115.
    [44]B.B. Mandelbrot, The fractal geometry of nature[M], Freeman, San Francisco,1982.
    [45]Guy Plantier, Anthony Sourice, Thierry bosch and noel servagent. Accurate and real-time doppler frequency estimation with multiplicative noise for velocity measurements using optical feedback interferometry [J], IEEE,2002,97-101.
    [46]Guy Plantier, Noel Servagent, Anthony Sourice et al.. Real-time parametric estimation of velocity using optical feedback interferometry [J]. Transactions on Instrumentation and Measurement [J], IEEE,2001,50(4):915-919.
    [47]Guy Plantier, Noel Servagent, Thierry Bosch et al.. Real-time tracking of time-varying velocity using a self-mixing laser diode[J], IEEE Transactions on Instrumentation and Measurement,2004,53(1):109-115.
    [48]Masaaki Kawahashi, Hiroyuki Hirahara. Velocity and density field measurements by digital speckle method [J]. Optics & Laser Technology,2001,32(2000):575-582.
    [49]T. Asakura, N. Takai. Dynamic laser speckles and their application to velocity measurements of the diffuse object [J]. Appl. Phys.,1981,25:179-194.
    [50]汪敏生等译著LABVIEW基础教程[M].北京,电子工业出版社,2002.
    [51]Goldberg L. Spectral characteristics of semiconductor laser with optical feedback [J]. IEEE J. Q. E,1982,18(6):555-563.
    [52]Chartier T., Mezine B., Sanchez F., et al. Optical feedback effects in Nd-doped fiber laser with broadband spectra [J]. Appl. Opt,1996,35(12):2016-2022.
    [53]Fujiwara M., Kubota K. and Long R. Low-frequency intensity flutuation in laser diode with external optical feedback [J]. Appl. Phys. Lett,1981,38(4):217-220.
    [54]Yasaka H., Yoshikuni Y., Kawaguchi H. FM noise and spectral line width reduction by incoherent optical negative feedback [J]. IEEE J. Q. E,1991,27(2):193-204.
    [55]徐梅花,王福明.基于MATLAB的自适应噪声抵消器的设计与实现[J].电子测试.2009,11:43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700