超极化激活环核苷酸门控(HCN)阳离子通道对大鼠海马突触传递功能及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study of Hyperpolarization-activated Cyclic Nucleotide-gated(HCN) Cation Channel on Synaptic Transmission in Rat Hippocampus
  • 作者:郑敏
  • 论文级别:博士
  • 学科专业名称:药理学
  • 学位年度:2006
  • 导师:郭莲军
  • 学科代码:100706
  • 学位授予单位:华中科技大学
  • 论文提交日期:2006-04-01
  • 答辩委员会主席:陈建国
摘要
目的
     研究超极化激活环核苷酸门控( hyperpolarization-activated cyclic nucleotide-gated,HCN)阳离子通道对穿通纤维通路(perforant pathway,PP)——海马CA3区突触传递的影响及氨基酸释放的调节作用,并探讨二者之间的内在联系。
     方法
     应用细胞外电生理记录技术记录电刺激PP诱发的CA3区群锋电位(population spike,PS);高效液相色谱(high performance liquid chromatography, HPLC)荧光检测技术测定海马组织及培养海马神经元细胞外液中谷氨酸、天冬氨酸、甘氨酸及γ-氨基丁酸(γ-aminobutyric acid,GABA)含量;透射电子显微镜技术观察大鼠海马组织CA3区突触超微结构的改变;建立新生大鼠海马神经元原代培养技术,应用荧光钙成像系统观察单个海马神经元细胞内钙的变化。
     结果
     第一部分HCN通道对PP—海马CA3区突触通路正常低频突触传递及海马组织氨基酸释放的影响
     HCN通道阻滞剂ZD7288及CsCl对低频刺激PP(0.5Hz)后90 min内海马CA3区PS幅值的的影响及海马组织氨基酸含量的变化。生理盐水对照组(Control组,施与低频刺激,微注射生理盐水1μL), ZD7288 (20,100,200 nmol)组(施与低频刺激,注药容积为1μL)及CsCl(1,5,10μmol)组(施与低频刺激,注药容积为1μL);各组大鼠于电生理记录完毕迅速处死、取材、冻存备测氨基酸含量。结果如下:
     ①特异性HCN通道阻滞剂ZD7288 20、100及200 nmol可剂量依赖降低CA3区PS幅值。90 min内PS幅值分别为基础值的69.72±1.79 %、45.23±1.5 %、28.07±4.65 %,较给药前平均下降约30.28 %, 54.77%和71.94 %(P < 0.01) ,并显著低于生理盐水对照组(P < 0.01),给药后5 min即起效,作用维持90 min以上。
     ②非特异性HCN通道阻滞剂CsCl 1和10μmol,亦可显著降低CA3区PS幅值。给药90 min内PS幅值分别为基础值的78.61±2.06 %、44.79±2.11%,较给药前平均下降了约21.38 %和55.2 %(P < 0.01)。微量注射5μmol CsCl,在开始30 min,PS幅值为基础值的58.4±1.37 %,下降显著(P < 0.01),此抑制效应随时间的延长而逐渐减弱,至90 min时,基本上与1μmol CsCl作用接近(P > 0.05)。
     ③HPLC测定氨基酸含量结果如下:正常组大鼠(未施与任何处理因素)谷氨酸、天冬氨酸、甘氨酸和GABA含量依次为:129.6±31.7, 117.3±22.6, 123.9±34.9和225.3±42.4μmol/g.protein;生理盐水对照组大鼠实验侧海马组织氨基酸含量依次为138.3±34.3 , 101.7±15.1, 113.3±40.5和227.4±41.9μmol/g.protein,与正常组比较无显著差异(P > 0.05)。ZD7288 100 nmol组上述四种氨基酸含量依次为:83. 5±15.6, 63.8±11.2, 73.1±28.2和124.7±23.6μmol/g.protein,均显著低于生理盐水对照组(all P < 0.01, except for glycine P < 0.05) ;CsCl 5μmol组大鼠则依次为75.9±10.3, 66.6±10.7, 80.4±15.2和157.4±26.2μmol/g.protein,亦显著低于对照组(all P < 0.01,except for glycine P < 0.05)。
     第二部分HCN通道对PP—CA3区突触通路长时程增强(LTP)的影响
     观察ZD7288及CsCl于强直刺激(tetanus stimulation, TS;刺激电压45 V,波宽0.15 ms,频率500 Hz, 4串,每串含50脉冲,串间隔2s)前及后给药对PP—CA3通路LTP PS幅值、起始潜伏期、峰潜伏期的变化,海马CA3区突触超微结构的变化及海马组织氨基酸含量变化。实验动物随机分为:对照组即control组(仅给予测试刺激不施加强直刺激)、LTP诱导组即TS处理组(给予强直刺激诱导LTP后持续观察90 min)、ZD7288—TS组(强直刺激前5 min于海马CA3区局部注入ZD7288 100 nmol)、CsCl—TS组(强直刺激前5 min于海马CA3区局部注入CsCl 5μmol)、TS—ZD7288组(强直刺激后30 min局部注入ZD7288 100 nmol)及TS—CsCl组(强直刺激后30 min局部注入CsCl 5μmol)。结果如下:
     ①强直刺激PP可诱导CA3区LTP形成,其后90 min内PS幅值持续升高并稳定在基础幅值的281.8±6.6 %水平,显著高于对照组(97.4±1.8 %)(P < 0.01);强直刺激前给予ZD7288、CsCl,LTP的诱导明显被抑制,90 min内PS相对幅值均数分别为89.5±9.4%、62.9±18.0 %,显著低于LTP组(P < 0.01)而与对照组无显著差异(P > 0.05);但CsCl在30 min后抑制LTP PS幅度增加作用呈减弱趋势。
     ②强直刺激PP诱导LTP形成30 min后,给予ZD7288、CsCl, LTP效应被翻转。5 min时PS幅值即明显下降,给药后1h内相对PS幅值均值分别为95.8±6.4 %、64.2±17.7 %均显著低于LTP组(P < 0.01),前者与对照组接近(P > 0.05)而后者显著低于对照组(P < 0.01);随时间延长,CsCl抑制作用逐渐减弱。
     ③LTP诱导组大鼠PS起始潜伏期基础值为5.154±0.350 ms,强直刺激后5 min PS起始潜伏期即显著缩短(4.368±0.254 ms,P < 0.01),90 min内起始潜伏期均值为4.386±0.029 ms,较强直刺激前平均缩短约0.768 ms;且各记录时间点PS起始潜伏期值均显著小于对照组(all P < 0.01)。强直刺激前分别给予ZD7288 100 nmol、CsCl 5μmol, PS起始潜伏期缩短幅度较LTP诱导组小,90 min内较强直刺激前基础值平均缩短约0.332 ms、0.267 ms,各时间点PS起始潜伏期值大于LTP诱导组(P < 0.05);而CsCl以20~60 min内作用最为显著。TS—ZD7288组大鼠施与强直刺激后,30 min内PS起始潜伏期较强直刺激前平均缩短约为0.725 ms(P < 0.01);30 min时给予ZD7288 100 nmol,强直刺激导致的PS起始潜伏期的缩短效应迅速被抑制,PS起始潜伏期延长达强直刺激前基础值水平而显著大于给药前值(P < 0.01),给药后5 min即有明显效应(P < 0.01),并可持续稳定60 min;60 min内各时间点PS起始潜伏期值均显著大于LTP诱导组(all P < 0.05)而与对照组接近(P > 0.05)。强直刺激后30 min给予CsCl 5μmol可产生与ZD7288类似的效应。
     ④LTP诱导组大鼠PS峰潜伏期基础值为7.833±0.585 ms,强直刺激后5 min PS起始潜伏期即显著缩短(6.767±0.578 ms,P < 0.01),90 min内峰潜伏期均值为6.832±0.107 ms,较强直刺激前平均缩短约1.001 ms;各记录时间点PS峰潜伏期值均显著低于对照组( P < 0.05)。强直刺激前给予ZD7288 100 nmol,90 min内PS峰潜伏期平均值较强直刺激前基础值缩短约0.579 ms,缩短幅度小于LTP诱导组(P < 0.05);强直刺激前给予CsCl 5μmol,30 min内PS峰潜伏期仍显著缩短,与LTP诱导组比无差异(P > 0.05),30 min后PS峰潜伏期逐渐延长与强直刺激前基础值水平接近甚至更长,与对照组比较无显著性差异(P > 0.05)。TS—ZD7288组大鼠施加强直刺激后,PS峰潜伏期较强直刺激前(7.291±1.602 ms)显著减小(P < 0.01),并持续稳定在6.415±0.006 ms,30 min内平均缩短约为0.876 ms;30 min时给予ZD7288 100 nmol,强直刺激所致的PS峰潜伏期缩短作用迅速被抑制,PS峰潜伏期延长达强直刺激前基础值水平而显著大于给药前值(P < 0.01),给药后5 min即产生明显效应(P < 0.01),该效应于给药后60 min内可持续稳定维持;强直刺激后30 min给予CsCl 5μmol可产生与ZD7288类似的效应。
     ⑤HPLC测定氨基酸含量结果如下:对照组(Control)、LTP诱导组、ZD7288—TS组、CsCl—TS组、TS—ZD7288组及TS—CsCl组大鼠海马组织中谷氨酸含量依次为:138.3±34.3、153.7±35.2、112.6±35.6、99.5±36.6、106.6±30.0及132.7±51.9μmol/g.protein,LTP诱导组谷氨酸水平较对照组呈增加趋势,但无统计学差异;ZD7288—TS组、TS—ZD7288组及CsCl—TS组谷氨酸含量显著低于LTP诱导组(P < 0.05);以上各组天冬氨酸含量依次为:96.7±21.0、95.2±31.2、87.3±27.0、70.0±23.0、69.4±15.6及89.2±29.0μmol/g.protein,各组之间天冬氨酸含量无显著差异(P > 0.05);以上各组甘氨酸含量依次为:113.4±40.5、60.1±17.4、105.6±44.5、62.7±19.8、91.8±39.6及88.1±31.7μmol/g.protein,LTP诱导组甘氨酸含量显著低于对照组(P < 0.01),而ZD7288—TS组甘氨酸含量较LTP诱导组增加(P < 0.05)而与对照组接近(P > 0.05);各组GABA含量依次为:206.4±65.4、119.3±30.6、189.6±48.1、176.3±40.0、171.7±10.9及200.6±26.7μmol/g.protein , LTP诱导组GABA含量显著低于对照组(P < 0.01), ZD7288—TS组、CsCl—TS组、TS—ZD7288组及TS—CsCl组GABA含量较LTP诱导组显著增加(P < 0.05 or P < 0.01)。
     ⑥对照组大鼠海马CA3区突触结构以突触连接面为平直型的突触较为多见,也可见少数凸面突触,突触前膜和突触后膜清晰,突触间隙清楚,突触前终末端聚集较多圆形的突触囊泡,突触前膜胞浆面附有少数锥形雾样致密物质即突触前致密突起(presynaptic dense projection),突触后膜胞浆面有一层浓密的电子致密物质附着即突触后致密物(postsynaptic membrance density, PSD)。LTP诱导组可见平直型突触数目明显增加,同一神经元轴突可与其他同一神经元或多个神经元形成多个突触联系即突触小球形成,突触前胞浆内可见突触囊泡聚集,显示囊泡的轴浆运输活跃;突触后致密物较对照组显著增厚,突触间歇变模糊,似有雾状物存在;凸面突触多见,突触前终末端可见大量圆形囊泡聚集成葡萄串状,突触间歇变模糊,突触后致密物亦明显增厚。与LTP诱导组比较,透射电镜视野下ZD7288—TS组大鼠海马CA3区突触数目减少,可发现较少的平直型突触及凸面突触,未发现突触小球,突触后致密物变薄,突触前囊泡数目减少,轴浆运输受抑制,突触间歇变清晰;CsCl—TS组突触结构呈现与ZD7288—TS组类似变化。
     第三部分HCN通道对培养海马神经元氨基酸释放及谷氨酸引起的钙内流的影响
     在细胞水平,研究HCN通道对体外培养海马神经元氨基酸释放以及谷氨酸所致钙内流的影响。结果如下:
     ①正常细胞对照组、cAMP 5μM、50μM组、ZD7288 5μM及50μM组细胞外液谷氨酸含量依次为99.2+17.7、136.1±25.7、188.1±47.7、31.4±7.1及4.4±1.0μmol/L,天冬氨酸含量依次为0.181±0.0517、0.190±0.0884、0.214±0.1243、0.203±0.0905及0.288±0.0747μmol/L,甘氨酸含量依次为13.01±4.32、265.1±37.1、397.8±50.7、3.20±1.56及1.65±0.94μmol/L,GABA含量依次为3.256±0.2925、3.061±0.322,3.227±0.422,0.852±0.297及0.297±0.052μmol/L,显示cAMP可显著增加海马神经元细胞外液中谷氨酸及甘氨酸含量并随剂量增大,作用增强(P < 0.01);对天冬氨酸及GABA含量则无显著影响。ZD7288可使谷氨酸及GABA水平下降并呈现量效关系(P < 0.01);同时降低细胞外液中甘氨酸水平(P < 0.01),对天冬氨酸含量无显著影响。
     ②海马神经元置于标准外液中,向细胞灌流槽内加入谷氨酸50μM时,数秒内可引起F340/380荧光比值显著增加,并迅速出现尖锐高耸的钙峰,此后较长时间维持在一稳态高钙水平,给药后钙增加率为78.01±10.32%;换为无钙外液时,比值则无明显影响。表明谷氨酸引起培养海马神经元[Ca2+]i上升过程中,细胞外Ca2+的大量内流起着主导作用。
     ③海马神经元置于标准外液中,荧光值稳定后,分别加入终浓度为25μM、50μM、100μM ZD7288,孵育20 min后荧光值无明显变化; ZD7288分别25μM、50μM、100μM孵育20 min后再加入谷氨酸50μM(终浓度);发现F340/380荧光比值增加较谷氨酸50μM处理组显著降低,钙峰出现缓慢而低平;对应的钙荧光增加率分别为59.22±8.72%,41.35±7.25%,21.01±4.41%,各组之间有显著差异(P < 0.01),表明ZD7288可剂量依赖性抑制谷氨酸诱导的细胞内钙增加。
     ④海马神经元置于标准外液中,荧光值稳定后,分别加入终浓度为5μM,50μM cAMP孵育5 min后再加入谷氨酸50μM(终浓度),F340/380荧光比值迅速增加且高于谷氨酸50μM处理组(P < 0.01),并在较长时间内维持在较高的水平;对应的钙荧光增加率分别为101.33±9.89,125.36±11.04%(P < 0.01);50μM ZD7288孵育20 min后,加入50μM cAMP, F340/380荧光比值增加幅度、钙峰出现的时间和形状与仅加入谷氨酸50μM时相近,钙荧光增加率为86.23±10.53%,与谷氨酸50μM处理组无显著差异(P > 0.05),表明HCN通道对谷氨酸诱导钙内流具有调节作用。
     结论
     1 HCN通道参与PP—海马CA3区通路正常低频突触传递过程,其机制可能与其对氨基酸类神经递质释放的调节有关。
     2 HCN通道参与PP—海马CA3区突触通路LTP的诱导和形成,其机制可能为:
     ①促进突触前谷氨酸的释放而抑制GABA及甘氨酸的释放
     ②促进谷氨酸引起的突触后细胞内钙的增加
     ③调节突触前、后超微结构的改变。
OBJICTIVE
     To study the contribution of HCN channel to synaptic transmission at perforant pathway (PP)---CA3 region pathway and its regulation on the release of amino acids, and the relationship between them.
     METHODS
     Evoked population spike (PS) was recorded in hippocampal CA3 region in vivo, and high-performance liquid chromatography (HPLC) with fluorescence detection was applied to measure the contents of glutamate (GLU), aspartate (ASP), glycine (GLY) and gamma-aminobutyric acid (GABA) in hippocampal tissue and in the cultured hippocampal neurons. Electron microscopy was applied to explore ultrastructural pathologic features of the CA3 region of hippocampus. Fluorescence calcium imaging technique was used to observe the change of intracellular calcium in cultured hippocampal neurons.
     RESULTS
     PARTⅠ
     Effect of HCN channel on the normal low frequency synaptic transmission at PP --- CA3 region synaptic pathway and release of amino acids in rat hippocampus
     To observe the effects of specific HCN cation channel blocker ZD7288 and non-specific blocker CsCl on the synaptic transmission in the patheway from perforant pathway fibers to CA3 region in hippocampus and the contents of amino acid in hippocampal tissue, the experimental rats were divided into different groups as follows: Saline group (receiving low frequency electrical stimulation); ZD7288 group (20,100,200nmol; receiving low frequency electrical stimulation and 1μL different concentration ZD7288); CsCl group(1,5,10μmol; receiving low frequency electrical stimulation and 1μL different concentration CsCl ). After the electrophysiological test, the rats in saline、ZD7288(100 nmol) and CsCl(5μmol) groups were immediately decollated and the experimental isolateral hippocampus were carefully dissociated from the rat’s cerebrain, washed with ice cold saline solution, and frozen in–75 oC, then concentrations of the amino acids were determined by HPLC with fluorescence detection. Results are shown as follows:
     ①Specific HCN channels blocker ZD7288(20,100,200 nmol) could decrease the amplitudes of population spikes (PS) in CA3 region in hippocampus evoked by stimulating PP fibers in a dose-dependently matter. The average relative PS amplitude was 69.72%, 45.23% and 28.1%, obviously lower than saline group (P < 0.01), decreased by 30.3%, 54.8% and 71.9% respectively (P < 0.01). This inhibition effect began at 5min and could sustain at least 90min.
     ②Nonspecific HCN channels blocker CsCl 1 and 10μmol could also significantly decrease the amplitudes of PS at hippocampal CA3 region . During the 90 min period after microinjetion of CsCl, the average relative PS amplitude fall to 69.72%、28.1%,decreased by 21.38% and 55.2% respectively than baseline (P < 0.01). Microinjection CsCl 5μmol into CA3 region, at first 30min, the PS amplitude was 58.4 %of baseline and strongly deceased (P < 0.01). The inhibitory effects attenuated with time extension, at the 90min point, were similar to the CsC l 1μmol(P > 0.05).
     ③After the low frequency stimulating PP and administration drug, the contents of glutamate, aspartate, glycine and GABA in hippocampal tissue were measured by HPLC. The concentrations of glutamate,aspartate,glycine and GABA in normal group(without low frequency electrical stimulation) were 129.6±31.7, 117.3±22.6, 123.9±34.9 and 225.3±42.4μmol/g.protein; which in saline group were 138.3±34.3,101.7±15.1,113.4±40.5 and 227.4±41.9μmol/g.protein respectively and showed no significant difference compared with normal group(P > 0.05). In the rats treated with ZD7288 100nmol, the contents of glutamate, aspartate, glycine and GABA in hippocampus were 83.5±15.6, 63.8±11.2, 73.1±28.2 and 124.7±23.6μmol/g.protein respectively, significantly decreased compared with control group (P < 0.01). In the rats treated with CsCl 5μmol, the glutamate, aspartate,glycine and GABA contents were 75.9±10.3,66.6±10.7, 80.4±15.2 and 157.4±26.2μmol/g.protein, markedly lower than control group (all P < 0.01,except for glycine P < 0.05).
     PARTⅡContribution of HCN channel to long-term potentiation at PP ---CA3 region synaptic pathway
     To study the contribution of HCN channel on the induction and sustain of LTP in PP-CA3 pathway, the effects of administration of ZD7288 and CsCl before/after the tetanic stimulation (Tetanic stimulation, TS; consisted of 50 trains at 0.5 Hz each composed of 4 pulses at 500Hz) on the PS amplitudes of LTP, the onset and peak latency were observed. The synaptic ultrastructure at hippacampal CA3 region and the concentration of amino acids in hippocampus tissues were also observed. The experimental animals were divided randomly into six groups:①control group, i.e saline group (receiving test stimulation, without TS );②LTP induction group (receiving TS and being observed for 90 minutes);③ZD7288 -TS group (local administration of 100nmol ZD7288 in CA3 region at the 5 min point before TS);④CsCl—TS group(local administration of 5μmol CsCl in CA3 region at the 5 min point before TS );⑤TS—ZD7288 group (local administration of 100nmol ZD7288 in CA3 region at the30 min point after TS);⑥TS—CsCl group(local administration of 5μmol CsCl in CA3 region at the 30 min point after TS). The results are as follows:
     ①LTP could been induced in CA3 region by stimulating PP fibers, the PS amplitudes sustain at 281.8±6.6% level of the baseline, which last stably at least 90 minutes and was higher than the control group (97.4±1.8%)(P < 0.01). Local administration of 100nmol ZD7288 and CsCl before TS could inhibit the induction of LTP in CA3 region, the PS amplitudes were 89.5±9.4%、62.9±18.0% of the baseline respectively, which were lower than the LTP group(P < 0.01)and has no significant difference compared with the control group(P > 0.05), but the inhibitory effect of CsCl attenuated after 30 min.
     ②Local administration of ZD7288 and CsCl at the 30min after the induction of LTP could reverse the LTP. The PS amplitudes decreased at the 5 min after the administration of ZD7288 and CsCl. The PS amplitudes sustain at 95.8±6.4%、64.2±17.7% level of the baseline in 1 hour after the administration, the former was similar to the level of the control group(P > 0.05) , the latter was lower than the control group(P < 0.01).With the extension of the time, the inhibition of CsCl was attenuated.
     ③The baseline of onset latency period was 5.154±0.350ms.5 minutes after the TS, the onset latency , began to decrease(4.368±0.254ms, P < 0.01), the average value was 4.386±0.029 ms in 90 min period, which attenuated averagely 0.768 ms. At the different time point, the onset latency was lower than the control group (all P < 0.01). Local administration of ZD7288 100 nmol and CsCl 5μmol before TS could decrease the onset latency, which attenuated 0.332ms、0.267ms.The onset latency at all time points were higher than LTP induction group(P < 0.05); The effects of CsCl was obvious in the period of 20~60 min. After TS, the onset latency of PS in the TS—ZD7288 group rats reduce 0.725ms(P < 0.01) in 30 minutes; Administration of ZD7288 100 nmol at the 30 min could attenuate the decreasing effects on onset latency, and the onset latency reached the baseline level before TS, which was higher than the value before administration. There were obvious effects at 5 min after administration, and sustain at least 60 minutes. The onset latency of PS at all time points were higher than which in LTP induction group (all P < 0.05) and were similar to the control group (P > 0.05). There were similar effects after administration of CsCl after TS at 30 min, and there was an increasing tendency after 30 minutes.
     ④The baseline of peak latency were 7.833±0.585ms in LTP induction group. Five minutes after the TS the peak latency begin to decrease (6.767±0.578ms,P < 0.01),and sustain stably at least 90 minutes. In 90 minutes, the average value of the peak latency period were 6.832±0.107 ms,which decreased 1.001 ms compared with the value before TS; The peak latency of different time points was obviously lower than control (all P < 0.05). Administration of 100 nmol ZD7288 before TS could decrease the peak latency, which reduced 0.579 ms compared with the baseline, the decrease extent was less than the LTP induction group (P < 0.05). Administration of 5μmol CsCl before TS could decrease the peak latency in 30 minutes, there were no significant difference compared with LTP induction group. After 30 minutes the peak latency of PS extended and was similar to or longer than the baseline before TS, which had no significant difference compared with control group (P > 0.05). After TS in TS—ZD7288 group, the peak latency of PS were lower than before TS(7.291±1.602 ms)(P < 0.01),which sustained at the level of 6.415±0.006 ms, reduced averagely 0.876 ms; Administration of 100 nmol ZD7288 at the 30 min after TS could reverse the effect of TS-induced peak latency decurtation, which regained to the level before TS and were longer than the level before administration (P < 0.01). Five minutes later, there were obvious effects (P < 0.01), which sustained stably 60 minutes; Administration of CsCl 5μmol after TS at the 30 min could exert similar effects to the ZD7288, and the effects could increase after 15 minutes.
     ⑤The content of glutamate in control group, LTP induction group,ZD7288-TS group, CsCl—TS group, TS—ZD7288 group and TS—CsCl group were 138.3±34.3,153.7±35.2,112.6±35.6, 99.5±36.6,106.6±30.0 and 132.7±51.9μmol/g.protein, the content of glutamate in LTP induction group was higher than control group, but has no significance difference; The content of aspartate were 96.7±21.0,95.2±31.2,87.3±27.0,70.0±23.0, 69.4±15.6 and 89.2±29.0μmol/g.protein in different group, there were no significance difference between them; The content of glycine were 113.4±40.5,60.1±17.4,105.6±44.5,62.7± 19.8,91.8±39.6 and 88.1±31.7μmol/g.protein in different groups, which in the LTP induction group was lower than the control group (P < 0.01) and in ZD7288—TS group was higher than LTP induction group( P < 0.05),but similar to the control group(P > 0.05); The content of GABA were 206.4±65.4,119.3±30.6,189.6±48.1,176.3±40.0,171.7±10.9 and 200.6±26.7μmol/g.protein, which in LTP induction group was lower than control group(P < 0.01),but in ZD7288—TS group,CsCl—TS group,TS—ZD7288 group and TS—CsCl group which were higher than LTP induction group (P < 0.05 or P < 0.01) .
     ⑥There were abundant flat synapse conjunction and a few convex synapse conjunctions in the control group. The presynaptic, postsynaptic membrane and synapse gap were clear. In the presynaptic end, there were abundant synaptic vesicles and a few presynaptic dense projection and postsynaptic membrance density (PSD). In the LTP induction group, flat synapse conjunction increased and there were many synaptic glomerulus. There were many synaptic vesicles in presynaptic endochylema, which indicated the active axoplasmic transport. PSD was thicker than that in control groups, and the synapse gap was dim; there were many convex synapses and many synaptic vesicles like thyrsiform in the presynaptic end. The synaptic end was dim and the PSD became thicker. The number of the synaptic vesicles in the ZD7288—TS group decreased compared with the LTP induction group. A few flat synapse conjunction and convex synapse conjunction could be observed, but there were no synaptic glomerulus. The PSD became thinner and the number of synaptic vesicles reduced, which indicated that the axoplasmic transport was inhibited. The synapse gap was clear. The synapse constitution in the CsCl—TS group was similar to that in ZD7288—TS group.
     PARTⅢEffects of HCN channel on release of amino acids and calcium influx of hippocampal neuron by glutamate in vivo
     To explore the effects of HCN channel on efflux of amino acid and glutamate induced calcium influx of hippocampal neuron in vivo. Cells were treated with HCN channel specific blocker ZD7228 and agonist cAMP; we measured the content of glutamate, aspatate, glycine and GABA in extracellular fluid, and observed the effects of ZD7228 and cAMP on calcium influx induced by glutamate. Results as follows:
     ①The contents of glutamate in extracellular fluid of control, cAMP 5μM, cAMP 50μM, ZD7288 5μM and ZD7288 50μM were 99.2±17.7, 136.1±25.7, 188.1±47.7, 31.4±7.1 and 4.4±1.0μmol/L individually, the contents of aspartate were 0.181±0.0517, 0.190±0.0884, 0.214±0.1243, 0.203±0.0905 and 0.288±0.0747μmol/L, the contents of glycine were 13.01±4.32, 265.1±37.1, 397.8±50.7, 3.20±1.56 and 1.65±0.94μmol/L, the contents of GABA were 3.256±0.2925, 3.061±0.322, 3.227±0.422, 0.852±0.297 and 0.297±0.052. These data revealed that cAMP could dose-dependently increase the content of glutamate and glycine (P<0.01) and had no significant effect on the content of aspartate and GABA. In addition, ZD7288 could dose-dependently decrease the content of glutamate and GABA (P<0.01), decreased the content of glycine simultaneously, but showed no significant effect on the content of aspartate.
     ②Adding glutamate (50μM) into hipocampal neurons exposed to standard extracellular fluid, we found that the F340/380 of hippocampal neuron were increased significantly, appeared a steep calcium peak, and maintained a high level of calcium during a long period. The increasing rate of calcium was 78.01±10.32%. While adding glutamate (50μM) into extracellular fluid without calcium, the F340/380 was unvaried. Thus, the influx of extracellar calcium by glutamate-induced played an important role in intracellar calcium increasing.
     ③There was no change of the F340/380 of hippocampus neuron pretreated with ZD7288 25μM, 50μM, 100μM for 20min. However, adding glutamate 50μM into standard extracellular fluid pretreated with ZD7288 25μM, 50μM, and 100μM for 20min respectively, we found the F340/380 markedly decreased compared with glutamate 50μM group and the calcium peak was flat. The corresponding increasing rates of calcium of different concentrations were 59.22±8.72, 41.35±7.25, 21.01±4.41% (compared with glutamate 50μM group, P < 0.01), which indicated that ZD7288 could dose-dependently inhibit the calcium influx induced by glutamate.
     ④Adding glutamate 50μM into standard extracellular fluid pretreated with cAMP 5μM and 50μM for 5min respectively, we found the F340/380 significantly increased compared with glutamate 50μM group (P<0.01), the calcium peak was steep, and maintained a high level of calcium during a long period. The corresponding increasing rates of calcium were 101.33±9.89, 125.36±11.04% (compared with glutamate 50μM group, P < 0.01), which indicated that cAMP could dose-dependently reinforce the glutamate-induced calcium influx. However, incubating cells with ZD7288 50μM for 20 min before adding cAMP 50μM, we found that the increasing argument of the F340/380 and the time and the shape of the calcium peak were nearly the same with glutamate 50μM group. The increasing rate of calcium was 86.23±10.53% (compared with glutamate 50μM group, P > 0.05), which indicated that HCN channel may participate in the regulation of calcium influx by glutamate.
     CONCLUSIONS
     1 HCN channel contributed to the process of lower frequency synaptic transmission in PP-CA3 pathway, the mechanism of which may be associated with facilitating the release of amino acids neurotransmitter.
     2 HCN channel participated in the formation of LTP in PP-CA3 pathway, the mechanism of which was associated with the presynaptic composition and postsynaptic composition. The possible pathways are as follows:
     ①Facilitating the synaptic release of glutamate and inhibiting the release of GABA and glycine;
     ②Facilitating the release of intracellular calcium caused by glutamate;
     ③Altering the presynaptic composition and postsynaptic composition through the mechanism above and other possible mechanisms, and furthering to impact the physiological and biochemistry process in the induction and maintenance of LTP.
引文
1 Huang CC, Hsu KS. Reexamination of the role of hyperpolarization-activated cation channels in short- and long-term plasticity at hippocampal mossy fiber synapses [J]. Neuropharmacology. 2003; 44: 968–981.
    2 Lupica CR, Bell JA, Hoffman AF, et al. Contribution of the hyperpolarization-activated current (Ih) to membrane potential and GABA release in hippocampal interneurons[J]. J Neurophysiol. 2001; 86: 261-268.
    3 Higuchi H, Funahashi M, Miyawaki T, et al. Suppression of the hyperpolarization-activated inward current contributes to the inhibitory actions of propofol on rat CA1 and CA3 pyramidal neurons [J]. Neurosci Res. 2003; 45: 459-472
    4 Viscomi C, Altomare C, Bucchi A, et al. C terminus-mediated control of voltage and cAMP gating of hyperpolarization-activated cyclic nucleotide-gated channels[J]. J Biol Chem. 2001; 276: 29930-29934
    5 Monteggia LM, Eisch AJ, Tang MD, et al. Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain [J]. Mol Brain Res. 2000; 81: 129–139.
    6 Moosmang S, Stieber J, Zong XG., et al. Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues[J]. Euro J Biochem .2001;268 :1646 –1652.
    7 Santoro B, Chen S, Lüthi A, et al.Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS[J]. J Neurosci. 2000 ;20: 5264-5275.
    8 Biel M, Ludwig A, Zong XG, et al. Hyperpolarization-activated cation channels: a multi-gene family[J]. Rev Physiol Biochem Pharmacol. 1999; 136:165-181
    9 Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function[J]. Annu Rev Physiol. 2003; 65: 453-480
    10 Chen YL, Huang CC, Hsu KS. Time-dependent reversal of long-term potentiation by low-frequency stimulation at the hippocampal mossy fiber - CA3 synapses[J]. J Neurosci. 2001; 21: 3705–3714.
    11 Chan CS, Shigemoto R, Mercer JN, et al. HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons[J]. J Neurosci. 2004 ; 24(44):9921–9932
    12 Beaumont V, Zucker RS. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels[J]. Nat Neurosci. 2000; 3: 133–141
    13 Magee JC. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons [J]. J Neurosci.1998; 18: 7613–7624
    14 Berzhanskaya J, Urban NN, Barrionuevo G. Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3[J]. J Neurophysiol. 1998; 79: 2111–2118
    15 Do V, Martinez CO, Martinez-Jr JL, et al. Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo[J].J Neurophysiol. 2002; 87: 669-678
    16 Martinez CO, Do VH, Martinez-Jr JL, et al. Associative long-term potentiation (LTP) among extrinsic afferents of the hippocampal CA3 region in vivo[J]. Brain Res. 2002; 940: 86-94
    17 Kandel ER, Schwartz JH, Jessell TM. Essentials of Neural Science and Behavior [M]. China Science Press. Beijing . 2003
    18 Mellor J, Nicoll RA, Schmitz D. Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels [J]. Science. 2002; 295:143–147
    19 Ludwig A, Budde T, Stieber J, et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2[J]. EMBO J. 2003; 22:216-224
    20 Nolan MF, Malleret G, Lee KH, et al. The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells[J]. Cell .2003; 115: 551-564
    21 Nolan MF, Malleret G, Dudman JT, et al. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons[J].Cell. 2004;119: 719-732
    22 Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain[J]. J Comp Neurol. 2004; 471: 241-276
    23 Paxinos G, Watson C. The Rat Brain in Stererotaxic Coordinates. 4th ed. San Diego[J]. Academic Press. 1999;96~101
    24 Bianchi L, Colivicchi MA, Bolam JP, et al. The realease of amino acids from rat neostriatum and substantia nigra in vivo: a adult microdialysis probe analysis[J]. Neuroscience.1998; 87: 171-180
    25 张均田,张庆柱 主编. 神经药理学研究技术与方法[M].第1版. -北京:人民卫生出版社,2005: 307
    26 Sun T, Hu HZ, Xu XL, et al. Effects of glutamic acid and its recepter antagonist on evoked potentials in hippocampus CA3 region in rats [J]. Chin Pharmacol Bulletin 2004; 20:414-417
    27 Xu XL, Hu HZ, Sun T, et al. Effects of GABA on synaptic transmission of hippocampus CA3 neurons after brain ischemia in rats [J]. Chin Pharmac J. 2004; 39: 666-669
    1. 韩太真,吴馥梅. 学习与记忆的神经生物学[M]. 第 1 版. -北京:北京医科大学 中国协和医科大学联合出版社. 1998 :221,231,208,209
    2. Huang CC, Hsu KS. Reexamination of the role of hyperpolarization-activated cation channels in short- and long-term plasticity at hippocampal mossy fiber synapses [J]. Neuropharmacology. 2003; 44: 968–981
    3. Mellor J, Nicoll RA, Schmitz D. Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels [J]. Science. 2002; 295:143–147
    4. Lupica CR, Bell JA, Hoffman AF, et al. Contribution of the hyperpolarization-activated current (Ih) to membrane potential and GABA release in hippocampal interneurons [J]. J Neurophysio., 2001; 86: 261-268
    5. 张均田,张庆柱. 神经药理学研究技术与方法[M]. 第 1 版. -北京:人民卫生出版社. 2005: 306,307
    6. 陈宜张. 神经系统电生理学[M]. 第 1 版.-北京:人民卫生出版社. 1983:247
    7. Pongs, O. Structural basis of voltage-gated K+ channel pharmacology [J]. Trends in Pharmacological Science. 1992; 13:359–365
    8. Berzhanskaya J,Urban NN, Barrionuevo G. Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3[J]. J Neurophysiol. 1998; 79 (4): 2111–2118
    9. Davies CH, Starkey SJ, Pozza MF, et al. GABA autoreceptors regulate the induction of LTP[J]. Nature. 1991; 349(6310): 609-611
    10. Mellor J, Nicoll RA, Schmitz D. Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels [J]. Science. 2002; 295:143–147
    11. Notomi T, Shigemoto R. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain [J]. J Comp Neurol . 2004; 471: 241-276
    12. Higuchi H, Funahashi M, Miyawaki T, et al. Suppression of the hyperpolarization-activated inward current contributes to the inhibitory actions of propofol on rat CA1 and CA3 pyramidal neurons [J]. Neurosci Res. 2003; 45: 459-472
    13. McNair K, Davies CH, Cobb SR. Plasticity-related regulation of the hippocampal proteome [J]. Eur J Neurosci. 2006; 23(2): 575-580
    14. Leite JP, Neder L, Arisi GM, et al. Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? [J]. Epilepsia. 2005; 46 Suppl 5:134-141
    1. 韩太真,吴馥梅. 学习与记忆的神经生物学[M]. 第 1 版. -北京:北京医科大学 中国协和医科大学联合出版社.1998 :223
    2. Calabresi P, Centonze D, Pisani A, et al. Synaptic plasticity in the ischaemic brain. Lancet Neurol. 2003; 2(10): 622-9
    3. 杨雄里等译. 神经生物学——从神经元到脑/(美)尼克尔斯(Nicholls, J.G.). —北京:科学出版社. 2003:264
    4. 韩济生主编. 神经科学原理.第 2 版。北京:北京医科大学出版社,1999:929
    5. Potter SM, Demarse TB. A new approach to neural cell culture for long–term studies[J] .J Neurosci Methods.2001;110(1—2):17~24
    6. Bianchi L, Colivicchi MA, Bolam JP, et al. The realease of amino acids from rat neostriatum and substantia nigra in vivo: an adult microdialysis probe analysis [J]. Neuroscience. 1998; 87: 171-180
    7. 蒋春雷,徐荻,由振东, et al.白细胞介素-2 中枢镇痛作用途径的探讨.生理学报. 1996; 48 (3): 243
    8. Huang CC, Hsu KS. Reexamination of the role of hyperpolarization-activated cation channels in short- and long-term plasticity at hippocampal mossy fiber synapses [J]. Neuropharmacology. 2003; 44: 968–981
    9. Lupica CR, Bell JA, Hoffman AF, et al. Contribution of the hyperpolarization-activated current (Ih) to membrane potential and GABA release in hippocampal interneurons[J]. J Neurophysiol.2001; 86: 261-268
    10. Biel M, Schneider A, Wahl C. Cardiac HCN Channels, structure, function, and modulation [J]. Trends in Cardiovascular Medicine . 2002;12(5): 206-213
    11. Vemana S, Pandey S, Larsson HP. S4 Movement in a mammalian HCN channel [J]. J Gen Physiol. 2004; 123(1): 21-32
    12. Seifert R, Scholten A, Gauss R, et al. Benjamin Kaupp.Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis [J]. Neurobiology.1999; 96(16): 9391-9396
    13. Accili EA, Proenza C, Baruscotti M,et al. From Funny Current to HCN Channels: 20 Years of Excitation [J]. News Physiol Sc. 2002; 17: 32-37
    14. Richard RB, Siegelbaum SA. Hyperpolarization-activated cation currents: From Molecules to Physiological Function [J]. Annual Review of Physiology. 2003; 65:453-480
    15. Wang J, Chen S, Steven A, et al. Regulation of Hyperpolarization-activated HCN Channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions [J]. J General Physiol. 2001; 118 (3): 237-250
    16. DiFrancesco D, Tortora, P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP [J]. Nature.1991; 351: 145–147
    17. Zhong N, Beaumont V, Zucker RS. Calcium influx through HCN channels does not contribute to cAMP-enhanced transmission. J Neurophysiol. 2004; 92(1): 644-647
    1 Bliss TVP and Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus[J]. Nature. 1993; 361:31~39
    2 Maroun M.and Richter-Levin G. Local circuit plasticity in the rat dentate gyrus: characterization and aging-related impairment[J]. Neuroscience. 2002; 112(4) : 1001-7
    3 Do V, Martinez CO, Martinez-Jr JL, Derrick BE. Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo[J]. J Neurophysiol . 2002; 87(2): 669-78
    4 Martinez CO, Do VH, Martinez-Jr JL, Derrick BE. Associative long-term potentiation (LTP) among extrinsic afferents of the hippocampal CA3 region in vivo[J]. Brain Re, 2002; 940(2): 86-94
    5 Sun T(孙铁), Hu HZ, Xu XL,Yu SB, Ou-yang CH, Qu L, Lv Q, Guo LJ. Effects of glutamic acid and its recepter antagonist on evoked potentials in hippocampus CA3 region in rats[J], Chin.Pharmacol. Bulletin(中国药理学通报). 20 (2004) 414-417, (Chinese, English abstract).
    6 Xu XL(徐旭林), Hu HZ, Sun T, Yu SB, Ou-yang CH, Qu L, Lv Q, Guo LJ. Effects of GABA on synaptic transmission of hippocampus CA3 neurons after brain ischemia in rats[J]. Chin. Pharmac. J(中国药学杂志). 39 (2004) 666-669, (Chinese, English abstract).
    7 Paxinos G, Watson C. The Rat Brain in Stererotaxic Coordinates. 4th ed. San Diego: [J]. Academic Press. 1999, 96~101
    8 Bianchi L, Colivicchi MA, Bolam JP, Della CL. The realease of amino acids from rat neostriatum and substantia nigra in vivo: an adult microdialysis probe analysis[J]. Neuroscience. 87 (1998): 171-180
    9 Berzhanskaya J,Urban NN, Barrionuevo G. Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3[J], J. Neurophysiol. 79 (4) (1998): 2111–2118
    1 刘娜,左萍萍,周凯,等. 连二亚硫酸钠致 PC12 和 NG108-15 细胞拟缺血性损伤研究[J]. 中国药理学通报. 1998;14(6): 525~529
    2 Potter SM, Demarse TB. A new approach to neural cell culture for long–term studies[J] .J Neurosci Methods. 2001,110(1—2):17~24
    3 徐叔云,卞如濂,陈修. 药理实验方法学[M]. 第三版. 北京:人民卫生出版社,.2001: 1784-1785
    4 司徒镇强 吴军正. 细胞培养[M]. 第一版. 北京.广州.上海.西安: 世界图书出版公司. 1996:138,186
    5 Gwag BJ, Lobner D, Koh JY, et al. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vivo [J]. Neurosci. 1995; 3:615~619
    1. Malenka RC, Nicoll RA. Long-term potentiation: a decade of progress? [J]. Science.1999; 285: 1870–1874
    2. Lynch MA. Long-term potentiation and memory [J]. Physiol Rev.2004; 84: 87-136
    3. Crepel V, Epsztein J, Ben-Ari Y. Ischemia induces short- and long-term remodeling of synaptic activity in the hippocampus [J]. J Cell Mol Med.2003; 7: 401-407
    4. Otani H, Togashi H, Jesmin S, et al. Temporal effects of edaravone, a free radical scavenger, on transient ischemia-induced neuronal dysfunction in the rat hippocampus [J]. Eur J Pharmacol.2005; 512: 129-137
    5. Quintana P, Alberi S, Hakkoum D, et al. Glutamate receptor changes associated with transient anoxia/hypoglycaemia in hippocampal slice cultures [J]. Eur J Neurosci. 2006; 23:975-983
    6. Farkas B, Tantos A, Schlett K, et al. Ischemia-induced increase in long-term potentiation is warded off by specific calpain inhibitor PD150606[J]. Brain Res. 2004; 1024: 150-158
    7. Ben-Ari Y. Cell death and synaptic reorganizations produced by seizures [J]. Epilepsia.2001; 42(suppl 3): 5–7
    8. Calabresi P, Centonze D, Bernardi G. Cellular factors controlling neuronal vulnerability in the brain: a lesson from the striatum [J]. Neurology.2000; 55: 1249–1255
    9. Centonze D, Marfia GA, Pisani A, et al. Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons [J]. Prog Neurobiol. 2001; 63:687–696
    10. Calabresi P, Marfia GA, Centonze D, et al. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons[J].Stroke. 1999; 30: 171–179
    11. Wang S, Kee N, Preston E, et al. Electrophysiological correlates of neural plasticity compensating for ischemia-induced damage in the hippocampus [J]. Exp Brain Res. 2005; 165:250-260
    12. F Plum, Neuroprotection in acute ischemic stroke [J]. JAMA. 2001; 13: 1760–1761
    13. Labiche LA, Grotta JC. Clinical trials for cytoprotection in stroke [J]. NeuroRx. 2004; 1:46-70
    14. Crepel V,Ben-Ari Y, Intracellular injection of a Ca2+ chelator prevents generation of anoxic LTP[J]. J Neurophysiol. 1996; 75: 770–779
    15. Gozlan H,Ben-Ari Y. NMDA receptor redox sites: are they targets for selective neuronal protection? [J] Trends Pharmacol Sci. 1995; 16:368–374
    16. Hsu KS,Huang CC. Characterization of the anoxia-induced long-term synaptic potentiationin area CA1 of the rat hippocampus [J]. Br J Pharmacol. 1997; 122: 671–681
    17. Hsu KS,Huang CC. Protein kinase C inhibitors Block generation of anoxia-induced long-term potentiation [J]. Neuroreport. 1998; 9: 3525–3529
    18. Huang CC,Hsu KS. Nitric oxide signalling is required for the generation of anoxia-induced longterm potentiation in the hippocampus [J]. Eur J Neurosci. 1997; 9: 2202–2206
    19. Tekkok S,Krnjevic K. Long-term potentiation in hippocampal slices induced by temporary suppression of glycolysis [J]. J Neurophysiol. 1995; 74: 2763–2766
    20. Tekkok S ,Krnjevic K. Calcium dependence of LTP induced by 2–deoxyglucose in CA1 neurons [J]. J Neurophysiol. 1996; 76:2343–2352
    21. Zhao YT ,Krnjevic K. 2–Deoxyglucose-induced long-term potentiation in CA1 is not prevented by intraneuronal chelator [J].J Neurophysiol. 2000; 83:177–180
    22. Berke JD,Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory[J]. Neuron. 2000; 25:515–532
    23. Calabresi P, Saulle E, Centonze D, et al. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability [J]. Brain. 2002; 125:844–860
    24. Calabresi P, Saulle E, Marfia GA, et al. Activation of metabotropic glutamate receptor subtype 1/protein kinase C/mitogen-activated protein kinase pathway is required for postischemic long-term potentiation in the striatum [J]. Mol Pharmacol. 2001; 60:808–815
    25. Meretoja A, Tatlisumak T. Thrombolytic therapy in acute ischemic stroke - basic concepts [J]. Curr Vasc Pharmacol. 2006; 4:31-44
    26. Kidwell CS, Saver JL, Starkman S, et al. Late ischemic injury in patients receiving 32 intraarterial thrombolysis [J]. Ann Neurol. 2002; 52: 698–703
    27. Nicole, Docagne F, Ali C, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling [J]. Nat Med. 2001; 7:59–64
    28. Centonze D, Saulle E, Pisani A, et al. Tissue plasminogen activator is required for striatal postischemic synaptic potentiation [J]. Neuroreport. 2002; 13:115–118
    29. Yuste R,Bonhoeffer T. Morphological changes associated with long-term synaptic plasticity [J]. Annu Rev Neurosci. 2001; 24: 1071–1089
    30. Piccini A ,Malinow R. Transient oxygen-glucose deprivation induces rapid morphological changes in rat hippocampal dendrites [J]. Neuropharmacology. 2001; 41:724–729
    31. Jourdain P, Nikonenko I, Alberi S, et al. Remodeling of hippocampal synaptic networks by abrief anoxia-hypoglycemia [J]. J Neurosci. 2002; 22:3108–3016
    32. Martone ME, Jones YZ, Young SJ, et al. Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study [J]. J Neurosci. 1999; 19: 1988–1997
    33. Martone ME, Hu BR and Ellisman MH. Alterations of hippocampal postsynaptic densitiesfollowing transient ischemia [J]. Hippocampus. 2000; 10:610–616
    34. Gao TM, Pulsinelli WA and Xu ZC. Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo [J]. Neuroscience. 1998; 87:371–383
    35. Gajendiran M, Ling GY, Pang Z, et al. Differential changes of synaptic transmission in spiny neurons of rat neostriatum following transient forebrainischemia [J]. Neuroscience. 2001; 105:139–152
    36. Pang ZP, Deng P, Ruan YW, et al. Depression of fast excitatory synaptic transmission in large aspiny neurons of the neostriatum after transient forebrain ischemi [J] a. J Neurosci. 2002; 22: 10948–10957
    37. Bolay H ,Dalkara T. Mechanisms of motor dysfunction after transient MCA occlusion. Persistent transmission failure in cortical synapses is a major determinant [J]. Stroke. 1998; 29:1988–1994
    38. Bolay H, Gürsoy-?zdemir Y, Sara Y, et al. Persistent defects in transmitter release and synapsin phosphorylation in cerebral ortex after transient moderate ischemic injury [J]. Stroke. 2002; 33:1369–1375
    39. Dryhurst G. Are dopamine, norepinephrine, and serotonin precursors of biologically reactive intermediates involved in the pathogenesis of neurodegenerative brain disorders? [J]. Adv Exp Med Biol. 2001; 500: 373–396
    40. Kumral E, Evyapan D and Balkir K. Acute caudate vascular lesions [J]. Stroke. 1999; 30:100–108
    41. Bokura H and Robinson RG. Long-term cognitive impairment associated with caudate stroke[J]. Stroke. 1997; 28:970–975
    42. Buyukuysal RL and Mete B. Anoxia-induced dopamine release from rat striatal slices: involvement of reverse transport mechanism [J]. J Neurochem. 1999; 72: 1507–1515
    43. Kondoh T, Lee SH and Low WC. Alterations in striatal dopamine release and reuptake under conditions of mild, moderate, and severe cerebral ischemia [J]. Neurosurgery. 2005;37: 948–954
    44. Calabresi P, Pisani A, Mercuri NB, et al. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia [J]. Trends Neurosci. 1996; 19:19–24
    45. Saulle E, Centonze D, Martin AB, et al. Endogenous dopamine amplifies ischemic long-lerm potentiation via D1 receptors [J]. Stroke. 2002; 33: 2978–84
    46. Korten A, Lodder J, Vreeling F, et al. Stroke and idiopathic Parkinson's disease: does a shortage of dopamine offer protection against stroke? [J]. Mov Disord. 2001; 16:119–123
    47. Furukawa N, Arai N, Goshima Y et al. Endogenously released DOPA is a causal factor for glutamate release and resultant delayed neuronal cell death by transient ischemia in rat striata [J]. J Neurochem. 2001; 76:815–824
    48. Toner CC,Stamford JA. “Real time” measurement of dopamine release in an in vitro model of neostriatal ischemia [J]. J Neurosci Methods. 1996; 67:133–40
    49. Buisson A, Callebert J, Mathieu E, et al. Striatal protection induced by lesioning the substantia nigra of rats subjected to focal ischemia [J]. J Neurochem. 1992; 59:1153–1157
    50. T Kirino. Ischemic tolerance [J]. J Cereb Blood Flow Metab. 2002; 22: 1283–1296
    51. Kawai K, Nakagomi T, Kirino T, et al. Preconditioning in vivo ischemia inhibits anoxic long-term potentiation and functionally protects CA1 neurons in the gerbil [J]. J Cereb Blood Flow Metab. 1998; 18:288–296
    52. Lee J, Duan W,Mattson MP. Evidence that rainderived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice [J]. J Neurochem. 2002; 82:1367–1375
    53. Duan W, Guo Z, Jiang H, et al. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice [J]. Proc Natl Acad Sci USA. 2003; 100:2911–2916
    54. Mattson MP, Duan W and Guo Z. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms [J]. J Neurochem. 2003; 84: 417–431
    55. Hallett M. Plasticity of the human motor cortex and recovery from stroke [J]. Brain Res Brain Res Rev. 2001; 36:169–174
    56. Rijntjes M ,Weiller C. Recovery of motor and language abilities after stroke: the contribution of functional imaging [J]. Prog Neurobiol. 2002; 66:109–122
    57. Hagemann G, Redecker C, Neumann-Haefelin T, et al. Increased long-term potentiation in the surround of experimentally induced focal cortical infarction [J]. Ann Neurol. 1998; 44: 255–258
    58. Reinecke S, Lutzenburg M, Hagemann G, et al. Electrophysiological transcortical diaschisis after middle cerebral artery occlusion in rats [J]. Neurosci Lett. 1999; 261:85–88
    59. Que M, Schiene K, Witte OW,et al. Widespreadup-regulation of N-methyl-D-aspartate receptors after focal photothrombotic lesion in rat brain[J]. Neurosci Lett. 1999; 73:77–80
    60. Buchkremer-Ratzmann I, August M, Hagemann G, et al. Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain [J]. Stroke. 1996; 27:1105–1111
    61. Rossini PM, Calautti C, Pauri F, et al. Poststroke plastic reorganisation in the adult brain [J]. Lancet Neurology. 2003; 2:493–502
    62. Johansson BB , Belichenko PV. Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain [J]. J Cereb Blood Flow Metab. 2002; 22:89–96
    63. Biernaskie J,Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury [J]. J Neurosci. 2001;21:5272–5280
    64. Scheidtmann K, Fries W, Muller F, et al. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study [J]. Lancet. 2001; 358:787–790
    65. Hossmann KA.Viability threshold and the penumbra of focal ischemia [J]. Ann Neurol. 1994; 36:557–565
    66. Heiss WD. Ischemic penumbra: evidence from functional imaging in man [J]. J Cereb Blood Flow Metab. 2000; 20:1276–1293
    67. Warach S. New imaging strategies for patient selection for thrombolytic and neuroprotective therapies [J]. Neurology. 2001; 57: S48–S52
    68. Keir SL and Wardlaw JM. Systematic review of diffusion and perfusion imaging in acute ischemic stroke [J]. Stroke. 2000; 31: 272– 331
    69. Roy and Sapolsky R. Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? [J]. Trends Neurosci. 1999; 22:419–422
    70. Colbourne F, Li H, Buchan AM, et al. Continuing postischemic neuronal death in CA1: influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats [J]. Stroke. 1999; 30: 662–668
    71. Lee J-M, Zipfel GJ and Choi DW. The changing landscapes of ischaemic brain injury mechanisms [J]. Nature. 1999; 399(suppl 1): A7 –A14
    72. Ghosh A,Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences [J]. Science. 1995; 268: 239–247
    73. Mattson MP, LaFerla FM, Chan SL, et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders [J]. Trends Neurosci. 2000; 23:222–229
    74. Legos JJ, Tuma RF and Barone FC. Pharmacological interventions for stroke: failures and future [J]. Exp Opin Invest Drugs. 2002; 11:603– 614
    75. Aarts M, Liu Y, Liu L et al., Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions [J]. Science. 2002; 298:846–850.
    76. Mattson MP. Apoptotic and anti-apoptotic synaptic signaling mechanisms [J]. Brain Pathol. 2000; 10:300–312
    77. Gillardon F, Kiprianova I, Sandkuhler J, et al. Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia [J].Neuroscience. 1999; 93:1219–1222
    1 Vemana S, Pandey S, Larsson HP. S4 Movement in a Mammalian HCN Channel [J]. J Gen Physiol. 2004; 123(1): 21-32
    2 Biel M, Schneider A, Wahl C. Cardiac HCN Channels, Structure, Function, and Modulation [J]. Trends in Cardiovascular Medicine . 2002;12(5): 206-213
    3 Seifert R, Scholten A, Gauss R, et al. Benjamin Kaupp. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis [J]. Neurobiology. 1999; 96(16): 9391-9396
    4 Accili EA, Proenza C, Baruscotti M,et al. From Funny Current to HCN Channels: 20 Years of Excitation [J]. News Physiol Sci. 2002; 17: 32-37
    5 Richard RB, Siegelbaum SA. Hyperpolarization-activated cation currents: From Molecules to Physiological Function [J]. Annual Review of Physiology. 2003; 65:453-480
    6 Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm [J]. Nature. 1998; 393 (6685): 583–587
    7 Gloss B, Trost S, Bluhm W, et al. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor or [J]. Endocrinology. 2001; 142(2): 544–550
    8 Zagotta WN, Olivier NB, Black KD, et al. Structural basis for modulation and agonist specificity of HCN pacemaker channels [J]. Nature. 2003; 425(6954): 200-205
    9 Chen J, Piper DR, Sanguinetti MC. Voltage Sensing and Activation Gating of HCN Pacemaker Channels [J]. Trends in Cardiovascular Medicine. 2002; 12(1): 42-45
    10 Stieber J, Herrmann S, Feil S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart [J]. Proc Natl Acad Sci USA. 2003; 100(25): 15235-15240
    11 Vasilyev DV, Barish ME. Postnatal development of the hyperpolarization-activated excitatory current Ih in mouse hippocampal pyramidal neurons [J]. J Neurosci. 2002; 22(20): 8992-9004
    12 Kim IB, Lee EJ, Kang TH, et al. Morphological analysis of the hyperpolarization-activated cyclic nucleotide-gated cation channels 1(HCN1) immunoreactive bipolar cells in the rabbit retina [J]. J Comp Neurol. 2003; 467(3): 389-402
    13 Muller F, Scholten A, Ivanova E, et al. HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminals [J]. Eur J Neurosci. 2003; 17(10): 2084-2096
    14 Bender RA, Soleymani SV, Brewster AL, et al. Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus [J]. J Neurosci. 2003; 23(17): 6826-6836
    15 徐有秋. I f 离子流和心脏起搏[J].中华心律失常学杂志. 2001;5(4): 252-3
    16 Ludwig A, Zong X, Jeglitsch M, et al. A family of hyperpolarization-activated mammalian cation channels [J]. Nature. 1998; 393(6685): 587–591
    17 Ludwig A, Zong X, Stieber J, et al. Two pacemaker channels from human heart with profoundly different activation kinetics [J]. EMBO J. 1999; 18(9): 2323–2329
    18 Moroni A, Gorza L, Beltrame, M, et al. Hyperpolarization-activated cyclic nucleotide-gated channel 1 is a molecular determinant of the cardiac pacemaker current If [J]. J Biol Chem. 2001; 276(29): 233–241
    19 Wang J, Chen S, Siegelbaum SA. Regulation of hyperpolarization-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions [J]. J Gen Physiol. 2001; 118(3): 237-250
    20 Decher N, Chen J, Sanguinetti MC. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels molecular coupling between the s4-s5 and c-linkers [J]. J Biol Chem. 2004; 279(14): 13859-13865
    21 Tsang SY, Lesso H, Li RA. Dissecting the structural and functional roles of the S3-S4 linker of pacemaker (hyperpolarization-activated cyclic nucleotide-modulated) channels by systematic length alternations [J]. J Biol Chem. 2004; 279(42): 43752-43759
    22 Henrikson CA, Xue T, Dong P, et al. Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating [J]. J Biol Chem. 2003; 278(16): 13647-13654
    23 Wainger BJ, DeGennaro M, Santoro B, et al. Molecular mechanism of cAMP modulation of HCN pacemaker channels [J]. Nature. 2001; 411 (6839): 805–810
    24 Chen J, Mitcheson, JS, Tristani-Firouzi M, et al. The S4–S5 linker couples voltage sensing and activation of pacemaker channels [J]. Proc Natl Acad Sci USA. 2001; 98(11): 277–282
    25 Chen S, Wang J, Siegelbaum SA. Properties of hyperpolarization-activated pacemaker current defined by coassembly of HCN1 and HCN2 subunits and basal modulation by cyclic nucleotide [J]. J Gen Physiol. 2001; 117(5): 491–504
    26 Ishii TM, Takano M, Ohmori H. Determinants of activation kinetics in mammalian hyperpolarization-activated cation channels [J]. J Physiol. 2001; 537 (Pt 1): 93–100
    27 Rothberg BS, Shin KS, Phale PS, et al. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel [J]. J Gen Physiol. 2002; 119 (1): 83–91
    28 Shin KS, Rothberg BS, Yellen G. Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate [J]. J Gen Physiol. 2001; 117(2): 91–101
    29 Wainger BJ, DeGennaro M, Santoro B, et al. Molecular mechanism of cAMP modulation of HCN pacemaker channels [J]. Nature. 2001; 411 (6839): 805–810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700