慢病毒介导hHCN4基因体外转染骨髓间充质干细胞构建生物起搏器的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景:
     在过去的70年中,电子起搏器在心脏传导阻滞性疾病(病窦综合征、房室传导阻滞等)及顽固性心力衰竭、心室颤动等的治疗方面拯救了大量患者的生命。但是它也逐渐暴露出一些缺点:电池寿命有限(8~10年)、非生理性顺序激动、一些难以避免的并发症(感染、出血、心肌穿孔、电极脱位)等等。从心脏的生理功能和人体适应性的角度,理想的起搏器应该是“生物起搏器”。现有的生物起搏方法主要包括基因生物起搏及细胞生物起搏。前者主要集中在3个基因治疗策略上:①上调心肌细胞膜上的β2肾上腺素能受体表达;②抑制Kir2基因家族编码内向整流电流Ik1通道;③上调心肌细胞起搏电流的α(HCN2)和β(MiRP1)亚单位基因。但目前这些研究尚未取得突破性进展,且上述生物起搏靶基因也不是窦房结细胞自动去极化的特异性调控基因。
     大量研究表明,由超极化激活环核苷酸门控通道基因超家族编码的起搏电流(If),在窦房结起搏细胞舒张期自动除极化过程中发挥着至关重要的作用。If通道家族共有4个成员,即HCN1~HCN4,其中HCN4在窦房结中表达最高,是调控If电流及维持窦房结起搏细胞电生理功能的特异性基因,是一种理想的生物起搏靶基因。骨髓间充质干细胞(MSCs)具有多向分化潜能及其对外源基因的高转染效率和高效稳定表达,不少学者利用MSCs的上述特性将其作为基因转染的细胞平台,导入目的片段基因,把细胞工程和基因治疗进行有机结合。例如,将mHCN2转染到骨髓间充质干细胞,发现MSCs能产生高水平的类似If的电流;将转染了mHCN2起搏基因的MSCs进行体内移植,可明显提高心室的“自律性”。但是HCN2亚型的生理功能在于稳定静息状态下起搏细胞的舒张期膜电位,从而起到稳定起搏节律的作用,而对于运动和交感刺激状态下的节律稳定性则无明显影响;而HCN4不仅对产生正常起搏电位和基础心率至关重要,而且也参与交感神经对心率的调节作用。
     研究目的:
     我们设想以hHCN4为生物起搏的靶基因,应用猪骨髓间充质干细胞(MSCs)作为细胞生物起搏的平台,通过慢病毒载体转染以获取稳定高表达hHCN4基因的MSCs,并对转染细胞的起搏通道蛋白的表达及If电流动力学特性进行检测,为建立新型有效的细胞生物起搏治疗奠定实验基础。
     研究方法:
     1.猪间充质干细胞的分离与纯化
     采用密度梯度离心法分离纯化猪骨髓间充质干细胞,培养采用直接贴壁法培养;用倒置显微镜进行活细胞形态学的动态观察。
     2.慢病毒hHCN4基因转染MSCs
     hHCN4慢病毒载体(Lentiv-EGFP-hHCN4)和不含hHCN4的慢病毒对照载体(Lentiv-EGFP)对第2代MSCs进行转染。荧光显微镜观察绿色免疫荧光蛋白表达情况;免疫组化染色检测hHCN4蛋白表达情况;
     3. Western blot印迹检测hHCN4转染MSCs各组的hHCN4通道蛋白表达情况;
     4.全细胞膜片钳技术对重组hHCN4通道进行动力学测定。
     研究结果:
     1.倒置显微镜可见,经原代培养的MSCs多数为成纤维样的梭形细胞,呈克隆样生长;
     2.成功将hHCN4慢病毒载体(Lentiv-EGFP-hHCN4)和不含hHCN4的慢病毒对照载体(Lentiv-EGFP)转染至猪MSCs,获得了稳定表达hHCN4基因的MSCs。
     3.荧光显微镜可见,两组绿色荧光蛋白表达及分布无明显差异,转染效率约为90%。
     4.转染后免疫细胞化学染色可见,hHCN4组细胞hHCN4抗体染色为阳性,GFP组及对照组细胞则呈弱阳性;
     5. Western blot印迹检测可见hHCN4组有一条约170kDa的条带,而GFP组及对照组条带不明显;
     6.全细胞膜片钳技术记录到IHCN4,得到电流密度-电压曲线,其激活电压约为-70±5mV,此电流可以被4mmol/L CsCl阻断。GFP组和对照组的MSCs细胞均无IHCN4。
     结论:
     1.密度梯度离心法可以成功分离纯化猪骨髓间充质干细胞。
     2.以hHCN4作为生物起搏的靶基因,通过慢病毒载体可以成功转染MSCs,并表达通道蛋白。
     3.转染后的MSCs表达的hHCN4通道与生理性起搏离子流通道具有相同的动力学特性。
Background:In the past 70 years, artificial ectrioc ardiac pacemaker has rescued many patients who sufferred with the heart block disease(sick sinus syndrome,atrial ventricular block) and intractable heart failure,ventricular fibrillation.However,gradually it snagged some shortage,such as limited batery life(8-10 years), the need for permanent catheter implantation into the heart, non-physiological excited procedure,lack of response to autonomic neurohumors and complications(infection,bleeding,myocardial perforation,loose electrode placement),and so on.Ideal pacemaker should be the“biological pacemaker”,considenring phusiologic function of heart and adaptability of human body.Biological Pacemakers include gene therapy and cell therapy.Gene therapy has 3 kinds of strategies: (1) overexpression ofβ2-adrenergic receptors. (2) Inhibition of Kir2 gene family encoding inward rectifier current Ik1. (3) overexpression ofα(HCN2) andβ(MiRP1) subunit genes of inward depolarizing curent.There search in gene therapy have not get breakthrough.And the target genes of gene therapy are not pivotal moduIation gene of spontaneous depolarization of sinoatrial cells.
     Lots of studys indicated that,Funny Current (If), encoded by the hyperpolarization- activated cyclic-nucleotide-modulated (HCN1~4) channel gene family,plays a significant role in the process of spontaneous diastolic depolarization of sinoatrial cells. Especially,expression of HCN4 in sinoatrial node(SAN) is highest.Therefore, HCN4 is a optimal bioIogical pacemaker target gene because it is essential for modulation If and maintenance of electri-physiologic function of spontaneous cell in SAN.The bone mesenchymal stem cells not only have pluripotent differentiation potential,but aslo show high transfection and high stability under inducement of foreign gene.Many scholars used those characteres of MSCs as a platform for delievery of genes.The strategy take profits of cell engieneer and gene therapy.Obvious If-like current occur in mesenchymal stem cells(MSCs) transfected with mHCN2,and the vebtricular spontaneous rhythms got evident improvement after implantation of this MSCs in vivo.the physiological function of subtype HCN2 is to stabilize membrane potential in diastolic phase under quiescent condition,but fails to response to exercise and adrenergic nerve.While,the HCN4 not only play an important role in normal pacemaker potential and basal heart rate,but also participates in regulation of heart rate by adrenergic nerve.
     Objective:We adopted the hHCN4 as the target gene of biological pacemaker,utilized the platform of MSCs and obtained the MSCs that had stably high expression of hHCN4 through lentivirus vector transfection.Then we detected the expression of channel protein, and determine the kinetics characters of If channal in this MSCs transfected.The aim of this study was to establish a research base of the neotype and effective cell pacemaker therapy.
     Methods :
     1. Isolation and purification of swine mesenchymal stem cells were established by the density gradient centrifugation and the adherent method.Living cell morphology was observed by the invert microscope dynamically.
     2. hHCN4 lentivirus vector transfects MSCs: The hHCN4 lentivirus vector (Lentiv-EGFP- hHCN4) and the control vector(Lentiv-EGFP) respectively transfected the second filial generation MSCs.After transfected, the green fluorescent protein(GFP) was observed by fluorescence microscope and the expression of hHCN4 channel protein was detected by immunocytochemical stain.
     3. The expression of hHCN4 channel protein was detected by Western blot.
     4. Whole-cell patch clamp detected ionic currents kinetics of transfected hHCN4 and got density-voltage curves.
     Results:
     1. Under the invert microscope,most MSCs in primary culture were fibroblast-like spindle cells ,cloning growth.
     2. The hHCN4 lentivirus vector (Lentiv-EGFP- hHCN4) and the control vector (Lentiv-EGFP) respectively transfected MSCs successfully.and the cells stably express the gene of hHCN4.
     3. The expression and distribution of the Green fluorescent protein(GFP) were without the difference in the MSCs of two groups,observed by fluorescence microscope.Both vectors got 90% successful ratio of transfection on MSCs.
     4. After transfected, the HCN4 antibody stain was positive in group HCN4 cells, while weakly positive in group GFP and the control, in immunocytochemical stain.
     5. After transfected, the MSCs in group HCN4 were highly expressed hHCN4 channel protein (a strap about 170kDa), while weakly in group GFP and the control, in the Western blot.
     6. Whole-cell patch clamp recorded ionic currents of transfected hHCN4 and got density-voltage curves.The threshold for activation of IhHCN4 was -70±5mV. IHCN4 is blocked by 4mmol/L CsCl.The group GFP and the control has not IHCN4.
     Conclusion:
     1. The method of density gradient centrifugation Isolated and purificated swine mesenchymal stem cells.
     2. hHCN4 as a target gene of biological pacemaker,successfuly transfected MSCs by retrovirus vector, expressing hHCN4 channel protein.
     3. hHCN4 channel in transfected cell has the same kinetic characters as physiologic If current.
引文
[1] Edelberg JM,Aird WC,Rosenberg RD. Enhancement of murine cardiac chronotropy by the molecular transfer of the human beta-adrenergic receptor cDNA. J Clin Invest 1998; 101 (9): 337-343.
    [2] Edelberg JM, Huang DT, Josephson ME, Rosenberg RD. Molecular enhancement of porcine cardiac chronotropy. Heart, 2001, 86(5):559-562.
    [3] Qu J, Barbuti A, Protas L, Santoro B, Cohen IS, Robinson RB.HCN2 over expression in new-born and adult ventricular myocytes:distinct effects on gating and excitability.Circ Res, 2001, 89(l):e8-e14.
    [4] Yu H, Wu J, Potapova I, Wymore RT, Holmes B, Zuckerman J, Pan Z, Wang H, Shi W, Robinson RB, El-Maghrabi MR, Benjamin W, Dixon J, McKinnon D, Cohen IS, Wymore R. MinK-related peptide 1: A beta subunit for the HCN ion channel subunit family enhances expression and speeds activation. Circ Res, 2001, 88(12):e84-e87.
    [5] Edelberg JM,Huang DT,Josephson ME,et a1.Molecular enhancement of porcine cardiac chronotropy[J].Heart, 2001, 86(5):559-562.
    [6] Rodefeld, M.D.et al.β-adrenergic and muscarinic cholinergic receptor densities in the human sinoatrial node: identification of a highβ2-adrenergic receptor density [J].J Cardiovasc Electrophysiol, 1996, 7 (11):1039-1049.
    [7] Miake J, Marban E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression [J]. J Clin Invest, 2003, 111 (10):1529-153.
    [8] Kehat I, Khimovich L, Caspi O, et a1. Electromechanical integration of cardiomy- ocytes derived from human embryonic stem cells [J]. Nat Biotechnol. 2004, 22(10): 1282-1289.
    [9] Huebach JF, Graf EM, Leutheuser J, et a1. Electrophysiological properties of human mesenchymal stem cells [J]. J Physiol, 2004, 554(Pt 3): 659-672.
    [10]任晓庆,浦介麟,张澍等.自体骨髓间叶干细胞诱导分化移植重建窦房结起搏功能的实验研究[J],中国循环杂志, 2004, 19(6):462-465.
    [11] Difrancesco, D. The contribution of the‘pacemaker’current (If) to generation of spontaneous activity in rabbit sino-atrial node myocytes [J]. J. Physiol, 1991, 434:23-40.
    [12] Ludwig A, Zong X, et.al. A family of hyperpolarization-activated mammalian cation channels [J]. Nature, 1998, 393 (6685):587-591.
    [13] Shi W. et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues [J].Circ, Res, 1999, 85 (1):e1-e6.
    [14] Liu, J.et al. Organisation of the mouse sinoatrial node: structure and expression of HCN channels [J].Cardiovasc, Res, 2007, 73 (4):729-738.
    [15] Biel M, et al. Hyperpolarization-activated cation channels: a multi-gene family [J]. Rev Physiol Biochem Pharmacol, 1999, 136: 165-181.
    [16] Ludwig A. et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2 [J]. EMBO J, 2003, 22 (2):216-224.
    [17] Stieber J, Herrmann S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart [J]. Proc Natl Acad Sci US A, 2003, 100 (29):15235-15240.
    [18] Bucchi A, PlotnikovAN, Shlapakova IN, et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker [J]. Circulation, 2006, 114 (10): 992-999.
    [19] Cockrell AS, Kafri T. Gene delivery by lentivirus vectors [J ]. Mol Biotechnol, 2007, 36 (3):184-204.
    [20] Martin Biel, Angela Schneider, Christian Wahl. Cardiac HCN Channels, Structure, Function, and Modulation [J].Trends in Cardiovascular Medicine, 2002; 12(5): 206.
    [21] Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function [J].Ann RevPhysiol, 2003, 65: 453-480.
    [22] Richard RB, Siegelbaum SA. Hyperpolarization2activated cation currents: From Molecules to Physiological Function [J]. Annual Review of Physiology, 2003; 65:453.
    [23] Jun Chen, David R. Piper and Michael C. Voltage Sensing and Activation Gating of HCN Pacemaker Channels [J]. Trends in Cardiovascular Medicine, 2002; 12(1):42.
    [24]徐有秋.If离子流和心脏起搏[J].中华心律失常学杂志, 2001;5(4): 252.
    [25] Santoro B, Grant SG, Bartsch D, et al. Interactive cloning with the SH3 domain of Nsrci dentifies a new brain specific ion channel protein, with homology to Eag and cyclic nucleotide gated channels[J]. Proc N atl Acad Sci USA, 1997, 94 (26):14815-14820.
    [26] Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function [J].Ann RevPhysiol, 2003, 65: 453-480.
    [27] Claudia A, Annalisa B, Eva C, et al. Integrated allosteric model of voltage gating of hcn channels [J]. J Gen Physiol, 2001, 117(6) :519-532.
    [28] Mannikko R, Elinder F, Larsson HP. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages [J]. N ature, 2002, 419 (6909):837-884.
    [29] Baukrowitz T,Yellen G. Use-dependent blockers and exit rate of the last ion from the multiion pore of a K十channel[J ]. Science, 1996, 271 (5249):653-656.
    [30] DiFrancesco D, Ducouret P, Robinson RB. Robinson. Muscarinic modulation of cardiac rate at low acetylcholine concentrations [J]. Cience, 1989, 243 (4891):669-671.
    [31] Difrancesco D, Tromba C. Acetylcholine inhibits activation of the cardiac hyperpolarizing-activated current, If [J].Pflugers Arch, 1987, 410 (1-2):139-142.
    [32] Monte F, Kaumann AJ, et al.Coexistence of functioningβ1- andβ2- adrenoceptors in single myocytes from human ventricle[J]. Circulation, 1993, 88 (3):854-863.
    [33] Levy FO.et al. Efficacy ofβ1-adrenergic receptors is lower than that ofβ2-adrenergic receptors [J]. Proc Natl Acad Sci U S A, 1993, 90:10798-10802.
    [34] Rodefeld, M.D.et al.β-adrenergic and muscarinic cholinergic receptor densities in the human sinoatrial node: identification of a highβ2-adrenergic receptor density [J].J Cardiovasc Electrophysiol, 1996, 7 (11):1039-1049.
    [35] Brodde OE, et al. Coexistence of beta 1- and beta 2-adrenoceptors in the rabbit heart: quantitative analysis of the regional distribution by (-)-3H-dihydroalprenolol binding [J]. J Cardiovasc Pharmacol, 1982, 4 (1): 34-43.
    [36] Brodde OE. et al. Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart[J].Basic Res Cardiol,2001, 96 (6):528-538.
    [37] Rybin VO, et al. Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway [J]. J Biol Chem, 2000, 275 (52): 41447-41457.
    [38] Li S. et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin [J]. J Biol Chem, 1995, 270 (26): 15693-15701.
    [39] Steinberg SF.β2-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts [J]. J Mol Cell Cardiol, 2004, 37 (2): 407-415.
    [40] Barbuti A. et al. Localization of f-channels to caveolae mediates specificβ2- adrenergic receptor modulation of rate in sinoatrial myocytes [J]. J Mol Cell Cardiol, 2007, 42 (1): 71-78.
    [41] Ludwig A, Zong X, et.al. A family of hyperpolarization-activated mammalian cation channels [J]. Nature, 1998, 393 (6685):587-591.
    [42] Santoro B, Tibbs GR. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels [J]. Ann N Y Acad Sci, 1999, 868:741-64
    [43] Moosmang S, Stieber J, et al. Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues [J]. Eur J Biochem, 2001, 268 (6):1646-1652.
    [44] Yasui K, Liu W, Opthof T, Kada K, Lee JK, Kamiya K, Kodama I. I(f) current and spontaneous activity in mouse embryonic ventricular myocytes. Circ Res, 2001, 88(5): 536-542.
    [45] Stieber J, Herrmann S, Feil S, Loster J, Feil R, Biel M, Hofmann F, Ludwig A. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA. 2003; 100(25): 15235-15240.
    [46] Qu J, Plotnikov AN,et al .Expression and function of a biological pacemaker in canine heart [J]. Circulation, 2003, 107 (8): 1106-1109.
    [47] Rasmusson I, Ringden O, Sundberg B, et a1. Mesenehymal stem cells inhibit the formation of cytotoxic T lymphocytes,but not activated cytotoxic T lymphocytes or natural killer cells[J].Transplantation.2003, 76 (8): 1208-1213.
    [48] Kawabata K, Sakurai F, Koizumi N, Hayakawa T, Mizuguchi H. Adenovirus vector-mediated gene transfer into stem cells.Mol Pharm. 2006; 3(2): 95-103.
    [49] Zhou H, Ramiya VK, Visner GA. Bone marrow stem cells as a vehicle for delivery of heme oxygenase-1 gene. Stem Cells Dev. 2006; 15(1): 79-86.
    [50] Takahashi T, Kato S, Suzuki N, Kawabata N, Takagi M. Autoregulatory mechanism of Runx2 through the expression of transcription factors and bone matrix proteins in multipotential mesenchymal cell line, ROB-C26.J Oral Sci. 2005; 47(4): 199-207.
    [51] Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. IX infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.Neuroscience. 2005; 136(1):161-169.
    [52] Aluigi M, Fogli M, Curti A, Isidori人Gruppioni E, Chiodoni C, Colombo MP,Versura P, D'Errico-Grigioni A, Ferri E, Baccarani M, Lemoli RM. Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells.Stem Cells. 2006; 24(2): 454-461.
    [53] Cockrell AS, Kafri T. Gene delivery by lentivirus vectors [J]. Mol Biotechnol, 2007, 36 (3): 184-204.
    [1] Difrancesco, D. The contribution of the‘pacemaker’current (If) to generation of spontaneous activity in rabbit sino-atrial node myocytes [J]. J. Physiol, 1991, 434:23-40.
    [2] Accili, E.A.et al. From funny current to HCN channels: 20 years of excitation [J]. News Physiol Sci, 2002, 17:32-37.
    [3] Baruscotti, M, Bucchi, A. Difrancesco D. Physiology and pharmacology of the cardiac pacemaker ("funny") current. Pharmacol [J].Ther. 2005, 107 (1): 59-79.
    [4] Barbuti, A, Baruscotti M. Difrancesco D. The pacemaker current: from basics to the clinics.J.Cardiovasc [J].Electrophysiol, 2007, 18 (3):342-347.
    [5] Brown HF, Difrancesco D, Noble SJ. How does adrenaline accelerate the heart? [J]. Nature 1979,280 (5719):235-236.
    [6] Brown, H, Difrancesco D. Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node[J].J Physiol, 1980, 308: 331-351.
    [7] Difrancesco D.et al. Properties of the hyperpolarizing-activated current (If) in cells isolated from the rabbit sino-atrial node [J]. J Physiol, 1986, 377:61-88.
    [8] Difrancesco D.Pacemaker mechanisms in cardiac tissue [J]. Annu Rev Physiol, 1993, 55:455-472.
    [9] Del Monte F, Kaumann AJ, et al.Coexistence of functioningβ1- andβ2- adrenoceptors in single myocytes from human ventricle[J]. Circulation, 1993, 88 (3):854-863.
    [10] Levy FO.et al. Efficacy ofβ1-adrenergic receptors is lower than that ofβ2-adrenergic receptors [J]. Proc Natl Acad Sci U S A, 1993, 90:10798-10802.
    [11] Rodefeld, M.D.et al.β-adrenergic and muscarinic cholinergic receptor densities in the human sinoatrial node: identification of a highβ2-adrenergic receptor density [J].J Cardiovasc Electrophysiol, 1996, 7 (11):1039-1049.
    [12] DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels byintracellular cyclic AMP[J].Nature, 1991, 351 (6322):145-147.
    [13] Difrancesco D, Mangoni M. Modulation of single hyperpolarization-activated channels (If) by cAMP in the rabbit sino-atrial node [J]. J Physiol, 1994, 474 (3):473-482.
    [14] Santoro B.et al. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels [J]. Proc Natl Acad Sci USA, 1997, 94 (26):14815-14820
    [15] Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization- activated channel in sea urchin sperm [J].Nature, 1998. 393 (6685):583-587.
    [16] Ludwig A, Zong X, et.al. A family of hyperpolarization-activated mammalian cation channels [J]. Nature, 1998, 393 (6685):587-591.
    [17] Ludwig A, Zong X, et.al. Two pacemaker channels from human heart with profoundly different activation kinetics [J]. Embo J. 1999, 18 (9):2323-2329.
    [18] Ishii, TM, et al. Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node[J].J Biol Chem, 1999, 274 (18): 12835- 12839.
    [19] Seifert R, Scholten A, et al. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis [J]. Proc Natl Acad Sci U S A, 1999, 96 (16):9391-9396.
    [20] Vaccarti T. et al. The human gene coding for HCN2, a pacemaker channel of the heart [J]. Biochim Biophys Acta, 1999, 1446 (3):419-425.
    [21] Santoro B, Liu DT. et al. Identification of a gene encoding a hyperpolarization- activated pacemaker channel of brain[J]. Cell, 1998, 93 (5):717-729.
    [22] Santoro B, Tibbs GR. The HCN gene family: molecular basis of the hyperpolarize- ation-activated pacemaker channels [J]. Ann N Y Acad Sci, 1999, 868:741-764.
    [23] Santoro B, Chen S, et al. Molecular and functional heterogeneity of hyperpolarize- ation-activated pacemaker channels in the mouse CNS [J]. J Neurosci, 2000, 20 (14):5264-5275.
    [24] Moosmang S, Stieber J, et al. Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues[J]. Eur J Biochem, 2001, 268 (6):1646-1652.
    [25] Shi W. et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues [J].Circ, Res, 1999, 85 (1):e1-e6.
    [26] Liu, J.et al. Organisation of the mouse sinoatrial node: structure and expression of HCN channels [J].Cardiovasc, Res, 2007, 73 (4):729-738.
    [27] Ishii TM, Takano M, Ohmori H. Determinants of activation kinetics in mammalian hyperpolarization-activated cation channels [J]. J Physiol, 2001, 537 (Pt1):93-100.
    [28] Altomare C, Terragni B. et al. Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sino-atrial node [J]. J Physiol, 2003, 549 (Pt2):347-359.
    [29] Stieber J, Herrmann S, et al. The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart [J]. Proc Natl Acad Sci U S A, 2003, 100 (29):15235-15240.
    [30] Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological functionV Annu Rev Physiol, 2003, 65: 453-480.
    [31] Biel M, et al. Hyperpolarization-activated cation channels: a multi-gene family [J]. Rev Physiol Biochem Pharmacol, 1999, 136: 165-181.
    [32] Doyle DA, Morais Cabral J, et al. The structure of the potassium channel: molecular basis of K+conduction and selectivity [J]. Science, 1998, 280 (5360):69-77.
    [33] Yellen G. Premonitions of ion channel gating [J]. Nat Struct Biol, 1998, 5 (6):421.
    [34] Li RA, Tomaselli GF. Using the deadly mu-conotoxins asprobes of voltage-gated sodium channels [J]. Toxicon, 2004, 44 (2):117-122.
    [35] Ludwig A, Zong X, et al. Structure and function of cardiac pacemaker channels [J]. Cell Physiol Biochem, 1999, 9 (4-5):179-186.
    [36] Stevens DR, Seifert R, et al. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli [J]. Nature, 2004, 413 (6856):631-635.
    [37] Chen J, Piper DR, et al. Voltage sensing and activation gating of HCN pacemaker channels[J].Trends Cardiovasc Med, 2002, 12 (1):42-45.
    [38] Zagotta WN. Molecular mechanisms of cyclic nucleotide-gated channels [J]. J Bioenerg Biomembr, 1996, 28 (3):269-278.
    [39] Wainger BJ, DeGennaro M, et al. Molecular mechanism of cAMP modulation of HCN pacemaker channels [J]. Nature, 2001, 411 (6839):805-810.
    [40] Yellen G. The moving parts of voltage-gated ion channels [J].Q Rev Biophys, 1998, 31 (3):239-295.
    [41] Bezanilla F. The voltage sensor in voltage-dependent ion channels [J]. Physiol Rev. 2000, 80:555-592.
    [42] Mannikko R, Elinder F, Larsson, HP. Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages [J]. Nature, 2002, 419 (6909):837-841.
    [43] Bell, DC, Yao H, et al. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels [J]. J Gen Physiol, 2004, 123 (1):5-19.
    [44] Latorre R, Olcese R., et al. Molecular coupling between voltage sensor and pore opening in the Arabidopsis inward rectifier K+ channel KAT1[J]. J Gen Physiol, 2003, 122 (4):459-469.
    [45] Long SB, Campbell EB, Mackinnon R. Voltage sensor of Kv1.2: structural basis of electromechanical coupling [J]. Science, 2005, 309 (5736):903 -908.
    [46] Prole DL, Yellen G. Reversal of HCN Channel Voltage Dependence via Bridging of the S4-S5 Linker and Post-S6 [J]. J Gen Physiol, 2006, 128 (3):273-282.
    [47] Dekker JP, Yellen G. Cooperative gating between single HCN pacemakers channels [J]. J Gen Physiol, 2006, 128 (5): 561-567.
    [48] Heginbotham L, Lu Z, et al. Mutations in the K+ channel signature sequence [J]. Biophys J, 1994, 66 (4): 1061-1067.
    [49] Henrikson CA, Dong PH, et al. Molecular Basis of hyperpolarization-activated gating of pacemaker (HCN) channels [J]. Circulation, 2002, 106:226-237.
    [50] Vaca L, Stieber J, et al. Mutations in the S4 domain of a pacemaker channel alter its voltage dependence [J]. FEBS Lett, 2000, 479 (1-2):35-40.
    [51] Xue T, Li RA. An external determinant in the S5-P linker of the pacemaker (HCN) channel identified by sulfhydryl modification [J]. J Biol Chem, 2002, 277 (48): 46233-46242.
    [52] Azene E, Xue T, Li RA. Molecular basis of the effects of potassium of heterologously-expressed pacemaker (HCN) channels [J]. J Physiol, 2003, 547 (Pt 2): 349-356.
    [53] Azene EM, Sang D, et al. Pore-to-gate coupling of HCN channels revealed by a pore variant that contributes to gating but not permeation [J]. Biochem Biophys Res Commun, 2005, 327:1131-1142.
    [54] Henrikson CA, Xue T, et al. Identification of a surface charged residue in the S3-S4 linker of pacemaker (HCN) channel that influences activation gating [J]. J Biol Chem, 2003, 278 (16):13647-13654.
    [55] Lesso H, Li RA. 2003. Helical secondary structure of the external S3-S4 linker of pacemaker (HCN) channels revealed by site-dependent perturbations of activation phenotype [J]. J Biol Chem, 2003, 278 (25): 22290-22297.
    [56] Stieber J, Thomer A, et al. Molecular basis for the different activation kinetics of the pacemaker channels HCN2 and HCN4 [J]. J Biol Chem, 2003, 278 (36):33672-33680.
    [57] Tsang SY, Lesso H, Li RA. Critical intra-linker interactions of HCN1-encoded pacemaker channels revealed by interchange of S3-S4 determinants [J]. Biochem Biophys Res Commun, 2004, 322 (2): 652-658.
    [58] Tsang SY, Lesso H, Li RA. Dissecting the structural and functional roles of the S3-S4 linker of pacemaker (hyperpolarization-activated cyclic nucleotide-modulated) channels by systematic length alterations [J].J Biol Chem, 2004, 279 (42): 43752-3759.
    [59] Zagotta WN, Siegelbaum SA. Structure and function of cyclic nucleotide-gated channels [J].Annu Rev Neurosci, 1996, 19:235-263.
    [60] Xue T, Marban E, Li RA. Dominant-negative suppression of HCN1- andHCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure function elationships and multimerization [J]. Circ Res, 2002, 90 (12): 1267-1273.
    [61] Er F, Larbig R, et al. Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal ardiomyocytes[J]. Circulation, 2003, 107 (3): 485-489.
    [62] Shi N, Ye S, et al. Atomic structure of a Na+- and K+-conducting channel[J]. Nature, 2006, 440 (7083): 570-574.
    [63] Qu J, Barbuti A, et al. HCN2 overexpression in newborn and adult ventricular yocytes: distinct effects on gating and excitability [J]. Circ Res, 2001, 89 (1):E8-E14.
    [64] Xue T, Siu CW, et al. Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels[J]. Circulation, 2007, 115(14):1839-1850.
    [65] Miake J, Marban E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression [J]. J Clin Invest, 2003, 111 (10):1529-1532.
    [66] DiFrancesco D, Ducouret P, Robinson RB. Robinson.Muscarinic modulation of cardiac rate at low acetylcholine concentrations [J]. Cience, 1989, 243 (4891):669-671.
    [67] Difrancesco D, Tromba C. Acetylcholine inhibits activation of the cardiac hyperpolarizing-activated current, If [J].Pflugers Arch, 1987, 410 (1-2):139-142.
    [68] Brodde OE, et al. Coexistence of beta 1- and beta 2-adrenoceptors in the rabbit heart: quantitative analysis of the regional distribution by 3H-dihydroalprenolol binding [J]. J Cardiovasc Pharmacol, 1982, 4 (1): 34-43.
    [69] Brodde OE. et al. Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart[J].Basic Res Cardiol,2001, 96 (6):528-538.
    [70] Rybin VO, et al. Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate thecAMP signaling pathway [J]. J Biol Chem, 2000, 275 (52): 41447-41457.
    [71] Li S. et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin [J]. J Biol Chem, 1995, 270 (26): 15693-15701.
    [72] Steinberg SF.β2-Adrenergic receptor signaling complexes in cardiomyocyte caveolae/lipid rafts [J]. J Mol Cell Cardiol, 2004, 37 (2): 407-415.
    [73] Barbuti A. et al. Localization of f-channels to caveolae mediates specificβ2- adrenergic receptor modulation of rate in sinoatrial myocytes [J]. J Mol Cell Cardiol, 2007, 42 (1): 71-78.
    [74] Milanesi R, Baruscotti M, et al. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel [J]. N Engl J Med, 2006, 354 (2): 151-157.
    [75] Cerbai E, Barbieri M, Mugelli A. Characterization of the hyperpolarization- activated current, I(f), in ventricular myocytes isolated from hypertensive rats[J]. J Physiol, 1994, 481 (Pt 3): 585-591.
    [76] Cerbai E, Pino R, et al. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart[J]. Circulation, 1997, 95(3): 568-571.
    [77] Fernandez-Velasco M, Goren N, et al. Regional distribution of hyperpolarization- activated current (If) and hyperpolarization-activated cyclic nucleotide-gated channel mRNA expression in ventricular cells from control and hypertrophied rat hearts[J].J Physiol,2003, 553 (Pt 2): 395-405.
    [78] Zorn-Pauly K, Schaffer P, et al. If in left human atrium: a potential ontributor to atrial ectopy [J]. Cardiovasc Res, 2004, 64 (2):250-259.
    [79] Cerbai E, Sartiani L, et al. The properties of the pacemaker current I(F)in human entricular myocytes are modulated by cardiac disease[J]. J Mol Cell Cardiol,2001, 33 (3):441-448
    [80] Doan TN, Stephans K, et al. Differential distribution and function of hyperpolarize- ation-activated channels in sensory eurons and mechanosensitive fibers [J]. J Neurosci, 2004, 24 (13): 3335-3343.
    [81] Ludwig A. et al. Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2 [J]. EMBO J, 2003, 22 (2):216-224.
    [82] Chaplan SR, Guo HQ, et al. Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain [J]. J Neurosci, 2003, 23(4): 1169-1178.
    [83] Bucchi A, PlotnikovAN, Shlapakova IN, et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker [J]. Circulation, 2006, 114 (10):992-999.
    [84] Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers [J].Circulation, 2005, 111 (1):11-20.
    [85] Potapova I, Plotnikov A, Lu Z, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers[J]..Circ Res, 2004, 94 (7):952-959.
    [86] Rosen MR. Biological pacemaking: a concept whose time has come. . . or is coming[J].. Heart, 2007, 9 3(2):145-146.
    [87] Qu J, Plotnikov AN,et al .Expression and function of a biological pacemaker in canine heart[J].Circulation,2003,107 (8):1106-1109.
    [88] Plotnikov AN,Sosunov EA,Qu J,et al. Biological pacemaker implanted in canine left bundle branch provides ventrlcular escape rhythms that have physiologically acceptable rates[J].Circulation,2004,109 (4): 506-512.
    [89]李继光,郭继鸿,张萍,等.起搏通道基因亚型HCN4重组腺病毒载体的构建及通道电流检测[J].中国心脏起搏与心电生理杂志, 2006, 20 (1):58-61.
    [90]钟幼民,郭继鸿,张萍,等.人类超极化激活环核苷酸门控阳离子通道基因亚型4导入大鼠心脏构建生物起搏点的初步研究[J],中国医学杂志, 2006, 86 (40):2831-2835.
    [91] Rasmusson I,Ringden O, Sundberg B,et a1.Mesenehymal stem cells inhibit the formation of cytotoxic T lymphocytes,but not activated cytotoxic T lymphocytes or natural killer cells[J].Transplantation.2003, 76 (8): 1208-12l3.
    [92]任晓庆,浦介麟,张澍,等.自体骨髓间叶干细胞诱导分化移植治疗房室阻滞的初步观察[ J ].中国心脏起搏与心电生理杂志,2005, 19 (1) : 48
    [93] Tse HF, Xue T, Lau CP, et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN channel reduces the dependence on electronic pacemaker in a Sick-Sinus Syndrome model [J]. Circulation, 2006, 114 (10): 1000-1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700