含氟丙烯酸酯对真丝的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用含氟丙烯酸酯通过接枝共聚对真丝进行化学改性,如甲基丙烯酸三氟乙酯(G01)、甲基丙烯酸六氟丁酯(G02)、丙烯酸六氟丁酯(G03)、甲基丙烯酸十二氟庚酯(G06)、丙烯酸十二氟庚酯(G07)。此外,本文还合成了甲基丙烯酸八氟戊酯(G04)和丙烯酸八氟戊酯(G05)以及考察了上述7种接枝单体对真丝的反应性。同时,根据真丝的力学性能和热性能、染色性能、X-射线衍射、红外、拉曼光谱、双折射、扫描电镜、核磁共振、X–射线光电子能谱、氨基酸、折皱回复、白度、表面接触角等分析的结果来研究接枝真丝的结构与性能。
     用甲苯和对甲苯磺酸分别作为溶剂和催化剂,甲基丙烯酸或丙烯酸和八氟戊醇酯化分别合成出G04和G05。在较佳的合成条件下,G04和G05的收率分别是:42.5%和50%。这些产品的化学结构通过红外、核磁、气相色谱和元素分析获得了较好的结果,G04和G05的纯度分别高达96.46%和97.49%左右。
     含氟单体对真丝的接枝在过硫酸钾(KPS)为引发剂的复配乳化液中进行。实验中,综合预乳化液三种稳定性的测定结果,预乳化实验较佳配方为:氟碳表面活性剂FSO 12%(owm)、DF-10 8%(owm)、吐温80 30%。接枝条件如单体、引发剂、PH、温度和时间对接枝率的影响进行了测试。较佳的接枝条件是:单体100~150%(owm)、KPS 1~3.5%(owm)、pH 3、75~80℃、100~120min。在50~80℃接枝的表观活化能对于G01、G02、G03、G04、G05、G06和G07分别为:8.99、13.97、15.28、11.96、14.21、15.66和23.8 kJ/mol。根据实验数据得到了动力学接枝方程。
     用含氟单体接枝真丝的吸湿性与接枝率成线性反比例关系,而其细度与接枝率成线性正比例关系。接枝能提高真丝织物折皱回复性,特别是湿态的情况下更明显,根据接枝前后织物在NaOH水溶液中的溶解度,接枝提高了真丝的耐碱性。真丝织物接枝后引起其酸性和活性染料上染性与白度下降。真丝织物白度值的下降与引发剂浓度和温度的提高有关,表明引发剂促使大分子自由基的形成,对织物白度下降起了主要作用。同时,接枝处理后,真丝的断裂强度、断裂伸长率和透气性均有所下降。DSC和TG分析结果表明接枝真丝的分解峰的位置向高温移动,说明接枝真丝的热稳定性提高。由于真丝的大分子和含氟单体交联限制了大分子的运动,因此动态粘弹谱测定的损耗模量(E’’)的峰随着接枝率的增加而变低,并且峰的初始位置向高温移动。氨基酸分析结果表明含氟单体接枝主要在真丝大分子中酪氨酸、精氨酸和谷氨酸的-NH2、-OH和-NH-活性基团上。通过X射线衍射和双折射分析,含氟单体接枝真丝并不直接影响真丝的结晶区,但引起真丝大分子平均取向度的下降。接枝真丝的红外光谱显示出真丝具有β折叠结构和单体高聚物的结构特征峰,从而说明单体接枝在纤维的无定型区内部进行。在低接枝率(小于35%)范围,真丝经单体接枝后纵向表面形态和横向表面形态与没有接枝真丝相比无明显的变化,仅横截面变大,而在高接枝率范围内,真丝纤维周围覆盖了一层高聚物,并且出现分纤现象,随着接枝率的提高,这种现象更加明显。
     此外,真丝接枝后的核磁共振谱(19F)图表明,化学位移δ为-78.16ppm处、-215.71ppm和-122.51ppm处的吸收峰分别显示出分子具有–CF3、–CF2–和–CFH–结构,且经XPS谱图测定,改性后的真丝表面在结合能位于688.92ev处、284ev处、289ev处、291ev处和294ev处的峰分别归属于C–F键、C–H键、CFH键、CF2键和CF3键,这说明含氟单体已经和真丝发生了接枝反应,含氟侧链已经覆盖或分布在织物表面上。随着单体接枝率的逐渐升高,织物表面接触角逐渐增大,但趋势逐渐放缓,当接枝率过高时,反而会使接触角下降。此外,还发现带甲基的单体在相近接枝率下比不带甲基单体的接触角大,随着含氟碳链的增长,织物获得较高接触角所需要的接枝率也越来越低。经过多次水洗后,接枝后的真丝仍然具有较高的接触角,并且随着单体含氟碳链的增长,耐洗牢度进一步提高。总之,通过G04和G05的合成及七种含氟丙烯酸酯单体对真丝的接枝反应性以及接枝后真丝的结构与性能的研究,为真丝的化学改性及化学整理提供了基础。
Silk fibers were chemically modified by grafting copolymerization with acrylate series monomers containing fluorine such as trifluoroethyl methacrylate(G01), hexafluorobutyl methacryate(G02), hexafluorobutyl acrylate(G03), dodecafluoroheptyl methacrylate(G06), dodecafluoroheptyl acrylate(G07). In addition, we synthesized octafluoropentyl meth- acrylate (G04) and octafluoropentyl acrylate (G05) for modification of silk fibers and examined the reactivity of these above seven grafting agents toward silk fibers. Mean while, we investigated the structure and properties of these grafted silk fibers in relation to the graft yield on the basis of the results of mechanics properties as well as thermal properties, dyeing properties, X-ray diffraction, IR, Raman spectrum, birefringence(△n), SEM, NMR, XPS, amino acid, wrinkle recovery, whiteness, surface contact angle, and so on analyses.
     Using toluene and p-toluene sulphonic acid as solvent and catalyst respectively, Methacrylic acd or acrylic acd and octafluoropentanol were esterified respectively to produce G04 and G05. Under the optimum synthesis conditions the yields of G04 and G05 are 42.5% and 50% respectively. The chemical structures of these products were analyzed by IR, NMR, gas chromatography and elementary analysis so that good results were obtained.
     The grafting of acrylate monomers containing fluorine onto silk fibers in composite emulsified liquid system using potassium persulfate(KPS) as initiator was investigated. The formulation of the pre-emulsification was optimized by studying three stabilities of different pre-emulsification liquid, namely, fluorocarbon surfactant FSO 12% (owm), DF-10 8% (owm), Tween 80 30%(owm). Effects of grafting conditions, such as concentrations of monomers, initiators, pH, temperature and time, on the graft yield were determined. The optimum graft conditions were found (Monomer 100-150%(owm), KPS 1-3.5%(owm), pH 3, 75-80℃, 100-120min). The activation energy of grafting at 50~80℃was found to be 8.99 kJ/mol for G01, 13.97 kJ/mol for G02, 15.28 kJ/mol for G03, 11.96 kJ/mol for G04, 14.21kJ/mol for G05, 15.66 kJ/mol for G06, 23.8 kJ/mol for G07.
     Grafting equations also were counted. The moisture regain of silk fibers grafted with acrylate monomers containing fluorine decreased linearly as the graft yield, while the size of the silk fibers increased linearly as the graft yield. The grafted silk fabrics showed greatly improved wrinkle recovery behavior, especially in wet state and resistance to alkaline according to the solubility of the silk fibers in NaOH aqueous solution. The grafting of silk fabric caused a little reduction of acid and reactive dye uptakes as well as whiteness. By treating silk fabric with KPS, in the absence of a monomer the whiteness values decreased linearly with increasing both initiator concentration and treatment temperature, indicating that the initiator plays a specific role in decreasing silk whiteness through macro-free radical formation. At the same time, after the grafting treatment with fluoride monomers, the breaking strength, elongation at break and air permeability of grafted silk fibers all decreased. The DSC and TG results showed that the position of decomposition peak of grafted silk fibers shifted to higher temperatures, suggesting the more thermal stability. The cross-linkage between the molecule of silk fibers and fluoride monomers may limit macromolecular motion in silk fibers, so, the peak of loss modulus(E’’) determined by dynamic viscoelastic measurements become lower and the initial position of this peak shifted to higher temperature, when the silk fibers graft yield increased. The amion acid analysis indicated fluoride monomers were inclined to graft with TYR, ARG and GLU of silk fibers which had some reactive groups, i.e., the hydroxyl, amido and imine groups acting as the center of reactive activities. X-ray diffraction patterns and Birefringence(△n) of silk fibers suggested that the grafting of fluoride monomers does not affect directly the crystalline regions, but causes a decrease of macro-molecular average orientation in the amorphous regions. The IR of the grafted silk fibers had overlapped absorption bands due to the molecular conformation of this fiber and monomer polymers, giving evidence that the monomer grafting occurred inside the amorphous areas of silk fibers. When the graft yields are more than 35%, the surface of silk fibers showed the presence of several granules, consisting of monomer polymers, and the cross-sectional area of silk fibers showed the appearance of separating fiber.
     Moreover, the NMR spectrum(19F)of grafted fibers indicated the chemical shifts of -78.16ppm, -215.71ppm and -122.51ppm represented the structures of–CF3,–CF2– and–CFH– of macromolecules of grafted fibers respectively. Furthermore, the XPS spectrum(19F)of grafted fibers also showed the binding energy positions of 688.92ev, 284ev, 289ev, 291ev and 294ev belonged to C–F, C–H, CFH, CF2 and CF3 structures respectively, which gave evidence that acrylate monomers containing fluorine had grafted with silk fibers and side chain structures containing fluorine had been covered or distributed on the surface of fabrics. With the increase of graft yields gradually, the surface contact angle of fabrics increased correspondingly and showed the trend of a gradual slowdown. When the grafting yield reached a certain value, if it is further increased, the contact angle will decrease. Besides, the contact angles of monomers with methyl structure are bigger than those of non- methyl monomers under the condition of similar graft yields. With the growth of fluorocarbon chain, the higher contact angle of fabric is, the lower grafting yield is needed. After washing many times, the grafted silk fibers still took on higher contact angle and with the growth of fluorocarbon chain of monomer, the washing fastness was improved. In a word, through the syntheses of G04 and G05 and the study of seven acrylate monomers containing fluorine reacting to silk as well as the research of structure and properties of grafted silk, the paper provides a basis for chemical modification and finishing of silk.
引文
[1]李金宝,陈国强.蛋白质纤维织物的阻燃整理.江苏丝绸, 2003, (6): 8-10.
    [2]白刚,刘艳月.真丝织物防紫外线多功能整理.丝绸, 2002, (9): 20-23.
    [3]张幼珠,黄英.硝酸铈与8-羟基喹啉配合物的合成、表征及抗菌性能.印染助剂, 2003, 20(2): 12-14.
    [4]李维贤,师来明,田由海.TCL抗皱剂在真丝织物上的应用研究.印染, 2002, 28(7): 30-33.
    [5] De P, Sankhe M D, Chaudhari S S, et al.. UV-resist, water-repellent breathable fabric as protective textiles. Journal of Industrial Textiles, 2005, 34(4): 209-222.
    [6]狄剑锋.织物拒水拒油整理及其性能检测.上海纺织科技, 2003, 31(4): 52-54.
    [7] Aoru Tsujii et al. Super oil-repellent surface. Angew. Chem. Int. Eng, 1997, 36(9): 1011-1012.
    [8]杜文琴,狄剑锋.建筑用拒水顶篷纺织材料研制及处理剂稳定性研究.中国纺织大学学报, 2000, 26(3): 76-79.
    [9]王树根,马新安等.特种功能纺织品的开发.第1版.北京:中国纺织出版社, 2003: 61-80.
    [10] Piirma I, Dekker M. Polymeric Surfactants. New York: Surfactant Science Series. 1992: 42.
    [11]夏建明.真丝绸低温拒水工艺.丝绸, 1995, (5): 15-17.
    [12]汪澜,马贵敏,黄玉.真丝绸的拒水拒油氟化合物整理.浙江丝绸工学院学报, 1992 , 9(4) : 33-38.
    [13]程时远,陈艳军,王康丽.含氟丙烯酸酯三元共聚物乳液的研究.高分子学报, 2002, (5): 560-564.
    [14]杨栋梁.织物功能性整理技术的动态(中).染整科技, 1998, (6): 29-35.
    [15]樊迅.承前启后,继往开来开创我国丝绸行业发展新世纪.丝绸, 2001, (1): 1-3.
    [16]陈亦庆. 2000年茧丝绸产销形势回顾与2001年预测.丝绸, 2001, (1): 4-6.
    [17]钱国坻,梅士英等.国产家蚕丝素的化学组成研究.纺织学报, 1981, (2): 2-4.
    [18]盛家镛.蚕丝蛋白质的分子量与亚单位结构[二].丝绸, 1988, (10): 46-48.
    [19]梅士英,钱国坻,宋肇棠.国产家蚕丝素结晶部分和无定形部分氨基酸分布的研究.纺织学报, 1981, (2): 12-18.
    [20] Liu Y , Qian J, Liu H, Zhang X, Deng J, Yu T. Blend membrane of regeneratedsilk fibroin, poly(vinyl alcohol) and peroxidase and its application to a ferrocene- mediating hydrogen peroxide sensor. Journal of Applied Polymer Science, 61 (4): 641- 647.
    [21]于同隐,李光宪.丝蛋白纤维机理的模型—应力作用下丝蛋白构象的转变.高分子学报, 1993, (4): 415-421.
    [22]邵正中,吴冬,李光宪,彭励吾,于同隐,郑思定.用拉曼光谱研究蚕丝蛋白的结构与功能的关系.光散射学报, 1995, 7(1): 2-7.
    [23]李光宪,于同隐.丝蛋白纤维化机理(1)—中部丝腺内丝蛋白大分子的有序态.科学通报, 1989, 34( 21): 1656-1659.
    [24]全炳豪著,谢勤成等译.蚕丝加工学.成都:四川科学技术出版社,1989, 6.
    [25]陈国强.三氯化譬市存在下家蚕丝酸性染料染色热力学的研究.苏州丝绸工学院学报, 1990, 10(3): 41-48.
    [26]邓金华,王平.真丝绸单宁增重研究.丝绸, 1997, (5): 15-18.
    [27]杨斌.单宁酸增重真丝织物性能的研究.丝绸, 2000, (4): 11-12.
    [28]何中琴.用乙二醛系树脂/氨基甲酸乙酯树脂混合体系树脂整理丝织物的结构分析.印染译丛, 1998, (1): 35-41.
    [29]叶金兴.真丝用BTCA抗皱整理.丝绸, 1995, (4):53-56.
    [30]邢铁玲,杨百春.不饱和二元羧酸用于柞丝绸的无甲醛抗皱整理.苏州丝绸工学院学报, 1998, 18(1): 33-37.
    [31]李健,徐文曦,梅士英.柠檬酸防皱整理机理及丝/棉复合丝织物整理性能的研究.江苏丝绸, 1997, (6): 25-28.
    [32]余志成,杨斌,马延方.丝织物柠檬酸防皱整理的白度研究.丝绸, 1997, (6): 10-11.
    [33]仲竹尹,叶金兴.真丝织物用柠檬酸无甲醛抗皱整理.丝绸, 1996, (7): 50-54.
    [34]陈国强,周翔.一缩乙二醇二甲基丙烯酸酯改性真丝研究.纺织学报, 2002, 23(3): 169-170.
    [35]陈国强.甲基丙烯酸羟丙酯对真丝绸接枝.浙江丝绸工学院学报, 1998, (4): 277-279.
    [36]蔡再生,王福爱,杨绍军,蒋国川.真丝织物含硅环氧交联剂整理.丝绸, 2000, (5): 19-21.
    [37]叶金鑫.丝织物用环氧化物轧堆法抗皱整理.丝绸技术, 1997, 5(3): 41-45.
    [38]胡乃杰,武绍学.真丝绸抗皱整理的探讨.青岛大学学报, 1996, 11(1): 24-28.
    [39]赵国钧.二环氧三甘醇缩水甘油醚的研制及在真丝绸抗皱防缩上的应用试验.丝绸, 1993, (9):37-39.
    [40]陈真光.真丝绸防缩抗皱整理研究.纺织导报, 1994, (4): 47-49.
    [41]陈国强.甲基丙烯酸羟丙酯接枝交联真丝绸结构与性能的研究.浙江丝绸工学院学报, 1998, 15(4): 277-281.
    [42]刘剑洪,于同隐.丝素蛋白纤维的接枝聚合(Ⅱ)—无引发剂存在时丝素蛋白纤维接枝.复旦学报, 1994, 33(4): 371-377.
    [43]白秀娥,陈国强,孙雪梅,盛新华.甲基丙烯酸甲酯对丝素无引发剂接枝增重研究.纺织学报, 1999, 20(6): 45-47.
    [44]白秀娥,陈国强,邹丽亚,何健.无引发剂存在时丝素蛋白纤维的接枝.丝绸, 2000, (12): 22-23.
    [45]陈国强,姜建华,邢铁玲,黄才荣.真丝绸无甲醛抗皱整理.苏州丝绸工学院学报, 2000, 20(1): 30-35.
    [46]陈根荣.丝素整理剂的研究开发与应用.丝绸, 1996, (4): 32-34.
    [47]陈国强.改性壳多糖用于真丝绸防皱整理的研究.丝绸,1998, (12): 26-27.
    [48]朱顺根.含氟有机整理剂.有机氟工业, 1997, (4): 21-43.
    [49] Hare E F, Shafrin E G, Zisman W A. Properties of films adsorbed fluorinated acids. J. Phys.Chem., 1954, 58: 236-239.
    [50] Sheiko S, Lermann E, Moller M. Self-dewetting of perfluoroalkyl methacrylate films on glass, Langmuir,1996, 12: 4015-4024.
    [51] Reid T S. Chromium coordination complexes of saturated perfluoro-monocarboxylic acids and articles coated therewith, U.S.Pat.2662835, 1953.
    [52] Olson M H. Chromium complexes of fluorocarbon acids, U.S.Pat. 2693458, 1954.
    [53] Ahlbrecht A H, Brown H A. Fluorocarbon vinyl-type esters and polymers, U.S. Pat. 2841573, 1958.
    [54] Jean C P. Process for preparing polymethyl siloxanes and product, U.S.Pat. 2642411, 1953.
    [55] Grajeck E J, Peterson W H. 3-M oil repellency test. Textile Research Journal, 1960, 32: 320-331.
    [56]杨栋梁.含氟整理剂的动向.上海丝绸, 2002, (1): 4-8.
    [57] Sergei S, Alexei T, Jens H, et al. Molecular organization of polystyrene and polymethylmethacrylate with fluorocarbon side chains Macromolecular Engineering, edited by.MK Mishra et al., Plenum Press, New York, 1995,17: 219-227.
    [58] Safronov V, Feigin L A, Budovskaya L D, Ivanova V N. Lngmuir-blodgett films of random copolymers fluoroalkyl(meth)acrylate and methacrylic acid: fabrication and X-ray diffraction study. Materials Sci.Eng.,C2,1996,205-207.
    [59] Chuji Y O, Hiraiwa A K, Kobayashi H I. Synthesis of fluorine-containing graft copolyamides by using condensation-type macromonomers. Journal of Polymer Science, Part A: Polymer Chemistry,1988,26(1):2991-2996.
    [60] Park I J, Lee S B, et al. Synthesis of fluorine-containing graft copolymers of perfluoroalkylethyl methacrylate-g-poly(methyl methacrylate) by the macro- monomer technique and emulsion copolymerization method. Polymer, 1997, 38(10): 2523-2527.
    [61] Greenwood E J, Lore A L. Oil and water-repellent copolymers. U.S.Pat. 4742140, 1988.
    [62] Michels G, Ehlert H A. Fluoring-containing copolymers and aqueous dispersion prepared therefrom. U.S.Pat.5387640, 1995.
    [63]张治军,谷国团,党鸿辛.含氟织物整理剂的发展概况及展望.高分子材料科学与过程, 2004, 20(5): 24-28.
    [64]王秀霞,曹成波,冯圣玉.有机氟织物整理剂的研究进展.化工进展, 2002, 21(12): 908-911.
    [65]姜志钢,冯圣玉,王秀霞,曹成波.含氟整理剂的发展方向.化工中间体, 2003, (5): 10-11, 18.
    [66]狄剑锋.织物拒水拒油整理及其性能检测.上海纺织科技, 2003, 31(4):52-54.
    [67] Tsujii A, et al.. Super Oil-repellent Surface. Angew. Chem. Iint. Engl, 1997, 36(9): 1011-1012.
    [68]杜文琴,狄剑锋.建筑用拒水顶篷纺织材料研制及处理剂稳定性研究.中国纺织大学学报, 2000, 26(3) : 76-79.
    [69]郭正伟,田存桂.超细纤维织物防水防油整理工艺探讨.印染,2000, 26(5):34-35.
    [70] Takahashi S, Kasemura T, et al. Surface molecular mobility for copolymers having perfluorooctyl and/or polyether side chains via dynamic contact angle, Polymer, 1997, 38(9): 2107-2111.
    [71] Zisman, W A. Relation of the equilibrium contact angle to liquid and solid construction. In contact angle, wettability and adhesion, ACS advances in Chemistry series, 1964, 43 (Edited by Fm Fowkes): 1-51.
    [72]久保元伸.含氟防水防油剂(Ⅰ) :关于防水防油性能的机理.印染, 1995, 21(12): 37-41.
    [73]宁世光.物质结构.济南,山东教育出版社, 1982: 30-34.
    [74]汪澜,马贵敏,黄玉.真丝绸的拒水拒油氟化合物整理.浙江丝绸工学院学报, 1992, 9(4) : 33-38.
    [75]夏建明.真丝绸低温拒水工艺.丝绸, 1995, (5) : 15-17.
    [76]张治军,谷国团,党鸿辛.含氟织物整理剂的发展概况及展望.高分子材料科学与工程, 2004, 20(5): 24-28.
    [77]王维林.国内外含氟织物整理剂发展概况.有机氟工业, 1995, (3): 22-29.
    [78]周向东,梅士英,曹志庄,等.涤纶细旦丝织物有机氟树脂耐久性拒水拒油整理.印染助剂, 1996, 13 (4) : 7-14.
    [79]杨琪芬,钱国洪,徐伟等.蚕丝棉交织(复合)织物拒水拒油多功能整理技术.染整技术, 2001, 23(1): 5-8.
    [80] Kassis C M, Steehler J K, Betts D E, et al. XPS studies of fluorinated acrylate polymers and block copolymer with polystyrene. Macromolecules, 1996, 29: 3247- 3254.
    [81]谢孔良,高殿权.有机氟织物整理剂与其它助剂的联合增效研究.纺织科学研究, 2001, (3): 19-24.
    [82]周宏湘.国外织物整理差别化技术进展.上海印染, 1994, (3):14-30.
    [83] Kiuru M, Alakoski E. Low sliding angles in hydrophobic and oleophobic coatings prepared with plasma discharge method. Materials Letters, 2004, 58(16): 2213-2216.
    [84]曾毓华.氟碳表面活性剂.第1版.北京:化学工业出版社, 2001: 337-374.
    [85] Shao H, Sun J Y, Meng W D, et al. Water and oil repellent and durable press finishes for cotton based on a perfluoroalkyl-containing multi-epoxy compound and citric acid. Textile Research Journal, 2004, 74(10): 851-855.
    [86] Usmanov K U, Yul,chibayev A A, Vaidaliev T, et al. Synthesis and Properties of graft copolymers of vinyl fluoride on natural silk. Polymer Science USSR, 1978, 20(6): 1363-1371.
    [87] Arai T, Freddi G, Innocenti R, et al. Preparation of water-repellent silks by a reaction with octadecenylsuccinic anhydride. Journal of Applied Polymer Science, 2003, 89(2): 324-332.
    [88] Arai T, Freddi G, Innocenti R, et al. Acylation of silk and wool with acid anhydrides and preparation of water-repellent fibers. Journal of Applied Polymer Science, 2001, 82(11): 2832-2841.
    [89]杜文琴.荷叶效应在拒水自洁织物上的应用.印染, 2001, (9): 36-43.
    [90] Barthlott W, Neinhuis G. l'effet lotus: surfaces au tonettoyantes selon l' exemple de la nature. International Textile Bulletin, 2001, (1): 8-12.
    [91] Shibuichi S, Yamamoto T, Onda T, et al. Super water- and oil-repellent surfaces resulting from fractal structure. Journal of Colloid and Interface Science, 1998, 208(1): 287.
    [92] Tsukada M, Arai T, Freddi G, et a1. Grafting vinyl monomers onto silk (Bombyx mori) using different initiators: Properties of grafted silk. Journal of Applied Polymer Science, 2001, 81(6): 1401-1409.
    [93] Freddi G, Massafra M R, Beretta S, et a1. Structure and properties of Bombyx mori silk fibers grafted with methaerylamide(MAA) and 2-hydmxyethyl methaerylate(HEMA). Journal of Applied Polymer Science, 1996, 60(11): 1867-1876.
    [94] Tsukada M, Freddi G, Moti P. Physical properties of 2-hydroxy-ethyl metha- crylate-grafted silk fibers. Journal of Applied Polymer Science, 1993, 49(10): 1835-1844.
    [95] Czemy A R, Uber A M, Schindler W. A new process for weighting silk fabrics. Melliand Textilberichte, 1990, (3): 211-213.
    [96] Ramadan A M, Mosleh S, Gawish S M. Weighting and improvement of silk properties. Journal of Applied Polymer Science, 2004, 93: 1743-1747.
    [97] Tsukada M, Yamammoto T, Kakabayashi N, Ishikawa H, Freddi G. Grafting of methacrylate onto silk fibers initiated by tri-n-butylborance. Journal of Applied Polymer Science, 1991, 43: 2115-2117.
    [98]张荣莉,杨建洲,杜艳芬.含氟防水防油防污剂的研究进展.西部皮革, 2003, (2): 29-31.
    [99]范明海,王寿泰,赵祥臻,徐传骧.以含氟自由基引发聚合MMA塑料光纤.光纤与电缆及其应用技术, 1997, (2): 27-29.
    [100]朱洪吉.含氟聚合介质、引发剂和链转移剂选用探讨.有机氟工业, 2004, (4): 35-37.
    [101] Chen I I, Sheu Y L, et al. Morphology of perfluoroalkylacrylate/stearyl methacrylate polymers and their effect on water /oil repellency. Journal of Applied Polymer Science, 1997, 63(7): 903-909.
    [102] Shimizu T, Tanaka Y, Kutsumizu S, Yano S. Ordered structure of poly (1H,1H- fluoroalkyl alpha-fluoroacrylate)s. Macromolecules, 1996, 29:156-164.
    [103] Meraa A E, Goodwin M, Pike J K, Wynne K J. Synthesis, characterization and surface analysis using dynamic contact angle measurements of graft copolymers: poly(methyl methacrylate)-g-poly(dimethylsiloxane) and poly(methyl methacrylate) -g-poly(trifluoropropylmethylsiloxane). Polymer, 1999, 40(2): 419-427.
    [104] Shimizu T, Tanaka Y, Kutsumizu S, Yano S. Structure studies of poly(1H,1H -fluoroalkyl alpha-fluoroacrylate)s by infrared spectroscopic analysis. Macro-mo lecules, 1996, 29:3540-3544.
    [105]陈怡译.含氟化合物用作纺织整理剂.国外纺织技术, 1999, (10): 27-28.
    [106] Leo Gehlhoff.含氟的特种表面活性剂.有机氟工业, 1999, (2): 56-59.
    [107]袁世炬,邓振强.含氟表面活性剂结构、特性及应用.湖北造纸, 2001, (3):29-31.
    [108]周晓东.含氟表面活性剂的结构、特性及应用研究.有机氟工业, 2004, (2): 14-18.
    [109]蔡振良.含氟表面活性剂的分类及应用介绍.有机氟工业, 1999, (4): 28-34.
    [110]朱顺根.含氟表面活性剂.化工生产与技术, 1997, (3): 1-9.
    [111]王维林.国内外含氟织物整理剂发展概况.有机氟工业, 1995, (3): 22-29.
    [112]毛淑才,张会平等.丙烯酸酯化学改性含氟聚合物涂料的新进展.现代化工, 2003, 23: 68-71.
    [113]邱光鸿.预乳化在乳液聚合中的应用.涂料工业, 1994, (1): 20-21.
    [114]王健业,陈国强,王克纳,等.真丝织物阳离子接枝共聚.印染, 2001, (2): 12-14.
    [115]杨丹.从真丝人造血管和手术缝线说起.江苏丝绸, 2001, (1): 47-50.
    [1]王秋莹,路宝田,管盘铭,方旭升.固体酸催化丙烯酸一缩二乙二醇的酯化反应.涂料工业, 1983, (2): 6-9.
    [2]陈行琦,杨力工,万奕,谢建军.缩乙二醇系列甲基丙烯酸双酯的合成及其结构分析.石油化工, 1987, 16(10): 720-724.
    [3]蒋惠亮,赵丽燕.酯交换法合成二缩三乙二醇双甲基丙烯酸酯.江南大学学报(自然科学版), 2006, (6): 721-724.
    [4]杨新华,解成喜,陈兆慧.聚丙烯酸高碳醇酯的合成、表征及性能.精细石油化工, 2006, 23(3): 3-5.
    [5]宋林花,姜翠玉,韩哲茵.丙烯酸高碳醇酯的制备.石油化工, 2002, 31(12): 991-993.
    [6]文福姬,王文涛,赵庆韬.甲基丙烯酸高碳醇酯的合成.吉林化工学院学报, 2004, 21(4): 32-33.
    [7]孟繁梅,赵淑艳,王际东,孙景辉,薛华,员建华.甲基丙烯酸高碳酯的制备[J].精细化工中间体, 2001, 31(2): 31-34.
    [8]武跃,刘秀梅,姜佳一,李炜,郭洪明.甲基丙烯酸十四酯的合成及表征.辽宁师范大学学报(自然科学版), 2003,26(2): 168-170.
    [9]王克纳,陈国强等.缩乙二醇甲基丙烯酸双酯的合成.印染助剂, 2001, 18(1): 14-18.
    [10]何金兰,杨克让,李小戈.仪器分析原理.北京:科学出版社. 2002.
    [11]孙凤霞.仪器分析.北京:化学工业出版社. 2004.
    [12]邓芹英,刘岚,邓慧敏.波谱分析教程.北京:科学出版社. 2003.
    [13] Yoon S C, Ratner B D. Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders. 2. FTIR, DSC, and X-ray photoelectron spectroscopic studies. Macromolecules, 1988, 21: 2392-2400.
    [14] Das A, Saikia C N. Graft copolymerization of methylmethacrylate onto non-mulberry silk-Antheraea assama using potassium permanganate-oxalic acid redox system. Bioresource Technology, 2000, 74: 213-216.
    [15] Turri S, Radice S, Canteri R, Speranza G, Anderle M. Surface study of perfluoropolyether–urethane cross-linked polymers. Surface and Interface Analysis, 2000, 29, 873-886.
    [16] Lim H, Lee Y, Park I J, Lee S B. Synthesis and surface property of aqueous fluorine-containing polyurethane. Journal of Colloid and Interface Science, 2001, 241: 269-274.
    [17] Ho T, Wynne K J. A new fluorinated polyurethane: Polymerization, characterization and mechanical properties. Macromolecules, 1992, 25: 3521.
    [1]白秀娥,陈国强,孙雪梅,盛新华.甲基丙烯酸甲酯对丝素无引发剂接枝增重研究.纺织学报, 1999, 20(6): 45-47.
    [2]白秀娥,陈国强,邹丽亚,何健.无引发剂存在时丝素蛋白纤维的接枝.丝绸, 2000, (12): 22-23, 36.
    [3] Tsukada M, Yamammoto T, Kakabayashi N, Ishikawa H, Freddi G. Grafting of metha- crylate onto silk fibers initiated by tri-n-butylborance. Journal of Applied Polymer Science, 1991, (43): 2115-2117.
    [4] Tsukada M, Freddi G, Moti P. Physical properties of 2-hydroxy-ethyl methaerylate- grafted silk fibers. Journal of Applied Polymer Science, 1993, 49(10): 1835-1844.
    [5] Tsukada M, Shiozaki H. Chemical and property modification of silk with dibasic acid anhydrides. Journal of Applied Polymer Science, 1989, 37: 2637-2640.
    [6]陈国强.甲基丙烯酸羟丙酯接枝交联真丝绸结构与性能的研究.浙江丝绸工学院学报, 1998, 15(4): 277-281.
    [7]吴自强,张旭东.含氟丙烯酸酯四元共聚乳液的制备.涂料工业, 2004, 34(3): 18-20.
    [8]程时远,陈艳军,王康丽.含氟丙烯酸酯三元共聚物乳液的研究.高分子学报, 2002, (5): 560-565.
    [9]秦总根,涂伟萍,夏正斌,沈良军.含氟乳液聚合反应稳定性的研究.合成材料老化与应用, 2004, 33(4): 11-14.
    [10]邱光鸿.预乳化在乳液聚合中的应用.涂料工业, 1994, (1): 20-21.
    [11]秦总根,夏正斌,沈良军,涂伟萍.含氟乳液制备中粘度的影响因素.化学建材, 2004, (2): 6-9.
    [12]邓宝祥,解如阜.含氟化合物的乳液聚合.天津纺织工学院学报, 1996,15(1): 6-9.
    [13]易长海,谢续明.含氟聚合物乳液的合成及应用.粘接, 2002, 23(5): 1-4.
    [14]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用.北京:化学工业出版社. 1997.
    [15]曾毓华.氟碳表面活性剂(第1版).北京:化学工业出版社. 2001.
    [16] Lim H, Lee Y, Park I J, Lee S B. Synthesis and Surface Property of Aqueous Fluorine-Containing Polyurethane. Journal of Colloid and Interface Science, 2001, 241: 269-274.
    [17] Lim C H, Choi H S, Noh S T. Surface modification with waterborne fluorinated anionic polyurethane dispersions. Journal of Applied Polymer Science, 2002, 86: 3322-3330.
    [18]刘瑞芹,谢雷东,盛康龙. 2-(dimethylamino)ethyl methacrylate光化学接枝真丝绸的pH效应研究.核技术, 2008, 31(3): 182-187.
    [19] Tsukada M, Arai T, Winkler S, et al. Physical properties of silk fibers grafted with vinyltrimethoxysilane. Journal of Applied Polymer Science, 2001, 79: 1764-1770.
    [20]陈国强,邢铁玲,黄才荣,周翔.一缩二乙二醇二甲基丙烯酸酯对真丝接枝的反应性.化学学报, 2002, 60(6): 1106-1110.
    [21]黄才荣,陈国强.己二醇二丙烯酸酯对真丝的接枝改性研究.印染助剂, 2002, 19(2): 15-18.
    [22]秦总根,涂伟萍,夏正斌,沈良军.含氟乳液聚合反应稳定性的研究.合成材料老化与应用, 2004, 33(4): 11-14.
    [23]刘瑞芹,谢雷东,姚思德,盛康龙.真丝绸的低压汞灯光引发接枝共聚研究.辐射研究与辐射工艺学报, 2008, 26(3): 134-140.
    [24]陈国强,黄才荣.双烯化合物对真丝的接枝反应性与抗皱性.南通纺织职业技术学院学报(综台版), 2002, 2(1): 1-7.
    [25]石铮,赵元磊,任静译.含氟单体接枝共聚聚酯纤维.国外纺织技术, 2000, (2): 5-8.
    [26] Buchenska J. Modification of polyamide fibers (PA6) by grafting polyacrylamide (PAM). Journal of Applied Polymer Science, 1995, 58: 1901-1911.
    [27] Chen G Q, Guan J P, Xing T L, Zhou X. Properties of silk fibers modifiedwith die- thylene glycol dimethacrylate. Journal of Applied Polymer Science, 2006, 102: 424-428.
    [28] Tsukada M, Arai T, Freddi G, Imai T, Kasai N. Grafting vinyl monomers onto silk (bombyx mori) using different initiators: Properties of grafted silk. Journal of Applied Polymer Science, 2001, 81: 1401-1409.
    [29] Anbarasan R, Jayaseharan J, Sudha M, Gopalan A. Free-radical grafting of 4-vinyl pyridine onto nylon 6 fiber. Journal of Applied Polymer Science, 2002, 86: 3108-3113.
    [30] Tsukada M, Imai T, Freddi G, Lenka S, Kasai N. Grafting of vinyl monomers onto silk using redox systems yellowing of silk. Journal of Applied Polymer Science, 1998, 69: 239-246.
    [31] Song Y, Jin Y, Sun J, Wei D. Graft copolymerization of methyl acrylate onto silk sericin initiated by tert-butyl hydroperoxide. Polymer International, 2006, 55: 1350-1354.
    [32]白秀娥,陈国强,孙雪梅,盛新华.甲基丙烯酸甲酯对丝素无引发剂接枝增重研究.纺织学报, 1999, 20(6): 45-47.
    [33]白秀娥,陈国强,邹丽亚,何健.无引发剂存在时丝素蛋白纤维的接枝.丝绸, 2000, (12): 22-23, 36.
    [34]刘高峰,王建庆,潘玮.自由基引发棉接枝丙烯酰胺的研究.湖南科技大学学报(自然科学版), 2008, 23(3): 108-112.
    [35]张丹丹,陈明清,倪忠斌,等.原子转移自由基聚合合成聚乙烯胺大分子单体及其共聚反应研究.化学学报, 2008, 66(17): 1995-2000.
    [36]何贵珍.甲基丙烯酸羟乙酯接枝改性真丝织物的研究.武汉科技学院学报, 2005, 18(10): 4-7.
    [37] DAS A, Saikia C N, Hussain S. Grafting of methyl methacrylate (MMA) onto antheraea assama silk fiber. Journal of Applied Polymer Science, 2001, 81: 2633-2641.
    [38] Ramadan A M, Mosleh S, Gawish S M. Weighting and improvement of silk properties. Journal of Applied Polymer Science, 2004, 93: 1743-1747.
    [39] Liu J Q, Shao J Z, Zheng J H. Radiation grafting/crosslinking of silk using electron-beam irradiation. Journal of Applied Polymer Science, 2004, 91: 2028-2034.
    [40] Peng Q, Xu Q, Sun D F, Shao Z Z. Grafting of methyl methacrylate onto antheraea pernyi silk fiber with the assistance of supercritical CO2. Journal of Applied Polymer Science, 2006, 100: 1299-1305.
    [41]王渝芳,黄光琳,等.含氟聚合物辐射气相接枝反应研究I. ESR研究PTFE预辐照接枝气相丙烯酸反应.四川大学学报(自然科学版), 1997, 34(1): 77-82.
    [42]高孝恢,蒋淑芬,李洁,汪浩.含氟铋系超导相形成的化学动力学定向研究.低温物理学报, 1994, 16(4): 308-313.
    [43] Furuzono T, Ishihara K, Nakabayashi N, Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and plate- lets. Biomaterials, 2000, 21: 327-333.
    [44] Furuzono T, Ishihara K, Nakabayashi N, Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine I. Graft-polymerization onto fabric using ammonium persulfate and interaction between fabric and platelets. Journal of Applied Polymer Science, 1999, 73: 2541-2544.
    [45] Sun Y, Shao Z, Zhou J, Yu T. Compatibilization of acrylic polymer-silk fibroin blend fibers. I. Graft copolymerzation of acrylonitrile onto silk fibroin. Journal of Applied Polymer Science, 1998, 69: 1089-1097.
    [46]李斌,陈文广,王晓工,周其庠.紫外光引发LDPE膜接枝含氟丙烯酸酯的研究.高分子学报, 2002, (6): 787-790.
    [47]刘晓洪,曾军河,易长海,陈明珍.聚酯纤维光接枝丙烯酸聚合反应动力学研究.纺织学报, 2008, 29(1): 1-4.
    [48]邓锋杰,李卫凡,徐少华,陈义旺.聚氨酯表面接枝丙烯酸甲酯改性研究.化工新型材料, 2008, 36(3): 68-70.
    [49]焦书科.高分子化学.北京:纺织工业出版社. 1983.
    [50]范雪荣.纺织品染整工艺学.北京:中国纺织出版社. 1999.
    [51]潘祖仁,于在璋.自由基聚合.北京:化学工业出版社. 1983.
    [1] Tsukada M, Arai T, Freddi G, et a1. Grafting vinyl monomers onto silk (bombyx mori) using different initiators: Properties of grafted silk. Journal AppliedPolymer Science, 2001, 81(6): 1401-1409.
    [2] Freddi G, Massafra M R, Beretta S, et a1. Structure and properties of bombyx mori silk fibers grafted with methaerylamide (MAA) and 2-hydmxyethyl methaerylate (HEMA). Journal of Applied Polymer Science, 1996, 60(11): 1867-1876.
    [3] Tsukada M, Freddi G, Moti P. Physical properties of 2-hydroxy-ethyl methaerylate- grafted silk fibers. Journal of Applied Polymer Science, 1993, 49(10): 1835-1844.
    [4] Czemy A R, Uber A M, Schindler W. A new process for weighting silk fabrics. Melliand Textilberichte, 1990, (3): 211-213.
    [5] Turri S, Radice S, Canteri R, Speranza G, Anderle M. Surface study of perfluoro- polyether-urethane cross-linked polymers. Surface and Iinerface Analysis, 2000, 29: 873-886.
    [6] Fowkes, F.M. Calculation of work of adhesion by pair potential summation. Colloids and Surfaces, 1968, 28: 493-505.
    [7] Shiozaki H, et al. Chemical structure and dynamic mechanical behavior of silk fiber modified with different kinds of epoxides. Journal of Applied Polymer Science, 1994, 52: 1037-1045.
    [8] Ferrero F, Periolatto M, Songia M B. Silk grafting with methacrylic and epoxy monomers: Thermal process in comparison with ultraviolet curing. Journal of Applied Polymer Science, 2008, 110: 1019-1027.
    [9] Furuzono T, Kishida A. Nano-scaled hydroxyapatite polymer composite I. Coating of sintered hydroxyapatite particles on poly(γ-methacryloxypropyl trimethoxysilane)- grafted silk fibroin fibers through chemical bonding. Journal of Materials Science: Materials in Medicine, 2004, 15: 19-23.
    [10] DAS A, Saikia C N, Hussain S. Grafting of methyl methacrylate (MMA) onto anthe- raea assama silk fiber. Journal of Applied Polymer Science, 2001, 81: 2633-2641.
    [11] Ramadan A M, Mosleh S, Gawish S M. Weighting and improvement of silk proper- ties. Journal of Applied Polymer Science, 2004, 93: 1743-1747.
    [12]张幼珠,王朝霞,吴徵宇,徐帼英.丙烯酸接枝丝素膜的结构及其性能研究.纺织学报, 2003, 24(2): 105-108.
    [13]陈国强.甲基丙烯酸羟丙酯接枝交联真丝绸结构与性能的研究.浙江丝绸工学院学报, 1998, 15(4): 277-281.
    [14]李斌,陈文广,王晓工,周其庠.紫外光引发LDPE膜接枝含氟丙烯酸酯的研究.高分子学报, 2002, (6): 787-790.
    [15]陈国强.一缩二乙二醇二甲基丙烯酸酯接枝真丝的结构.高分子学报, 2002, (3): 379-384.
    [16]王渝芳,冯文,等.含氟聚合物辐射气相接枝研究:Ⅱ. PTFE辐射气相接枝共聚物结构表征和性能测试.四川大学学报(自然科学版), 1997, 34(3): 335-339.
    [17]张丹丹,陈明清,倪忠斌,等.原子转移自由基聚合合成聚乙烯胺大分子单体及其共聚反应研究.化学学报, 2008, 66(17): 1995-2000.
    [18]白秀娥,陈国强,邹丽亚,何健.无引发剂存在时丝素蛋白纤维的接枝.丝绸, 2000, (12): 22-23, 36.
    [19] Zhang J. The Surface characterization of mulberry silk grafted with acrylamide by plasma copolymerization. Journal of Applied Polymer Science, 1997, 64: 1713-1717.
    [20] Peng Q, Xu Q, Sun D F, Shao Z Z. Grafting of methyl methacrylate onto antheraea pernyi silk fiber with the assistance of supercritical CO2. Journal of Applied Polymer Science, 2006, 100: 1299-1305.
    [21]何金兰,杨克让,李小戈.仪器分析原理.北京:科学出版社. 2002
    [22] Kameda T, Tsukada M. Structure and thermal analyses of MAA-grafted silk fiber using DSC and 13C solid-state NMR. Macromolecular Materials and Engineering, 2006, 291: 877-882.
    [23] Ojah R, Dolui S K. Graft copolymerization of methyl methacrylate onto Bombyx mori initiated by semiconductor-based photocatalyst. Bioresource Technology, 2006, 97: 1529-1535.
    [24] Song Y, Jin Y, Sun J, Wei D. Graft copolymerization of methyl acrylate onto silk sericin initiated by tert-butyl hydroperoxide. Polymer International, 2006, 55: 1350- 1354.
    [25] Tsukada M, Freddi G, Massafra M R, Beretta S. Structure and properties of tussah silk fibers graft-copolymerized with methacrylamide and 2-hydroxyethylmethacrylate. Journal of Applied Polymer Science, 1998, 67: 1393-1403.
    [26] Turri S, Radice S, Canteri R, Speranza G, Anderle M. Surface study of perfluoropolyether- urethane cross-linked polymers. Surface. Interface Analysis, 2000, 29: 873-886.
    [27] Yoon S C, Ratner B D. Surface structure of segmented poly(ether urethanes) and poly(ether urethane ureas) with various perfluoro chain extenders. An X-ray photoelectron spectroscopic investigation. Macromolecules, 1986, 19: 1068-1079.
    [28] Lim H, Lee Y, Park I J, Lee S B. Synthesis and surface property of aqueous fluorine- containing polyurethane. Journal of Colloid and Interface Science, 2001, 241: 269- 274.
    [29] Yoon S C, Ratner B D. Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders. 2. FTIR, DSC, and X-ray photoelectron spectroscopic studies. Macro- molecules, 1988, 21: 2392-2400.
    [30] Yoon S C, Ratner B D, et al. Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders: Incorporation of poly(dimethylsi1oxane) and polyisobutylene macroglycols. Macromolecules, 1994, 27(6): 1548-1554.
    [31]王渝芳,黄光琳,等.含氟聚合物辐射气相接枝反应研究I. ESR研究PTFE预辐照接枝气相丙烯酸反应.四川大学学报(自然科学版), 1997, 34(1): 77-82.
    [32]赵兴顺,丁小斌,郑朝晖,等.含氟丙烯酸酯共聚乳液的制备及表征.功能高分子学报, 2003, 16(4): 436-440.
    [33]陈沛智,陈艳军,严斌.甲基丙烯酸全氟烷基乙酯与丙烯酸酯共聚物乳液的制备.涂料工业, 2002, (10): 11-13.
    [34]施琴芬,关晋平.己二醇二丙烯酸酯改性蚕丝结构的研究.纺织学报, 2004, 25(2): 19-20.
    [35]秦总根,涂伟萍,夏正斌,沈良军.含氟乳液聚合反应稳定性的研究.合成材料老化与应用, 2004, 33(4): 11-14.
    [36]俞坚磊,刘今强,李永强,等.甲基丙烯酸羟乙酯接枝蚕丝的制备工艺及性能评价.蚕业科学, 2007, 33(4): 614-619.
    [37]黄晨,王红,许云辉,等.蚕丝织物辐射接枝丙烯酰胺的改性.纺织学报,2008, 29(3): 59-62.
    [38]刘高峰,王建庆,潘玮.自由基引发棉接枝丙烯酰胺的研究.湖南科技大学学报(自然科学版), 2008, 23(3): 108-112.
    [39] Tonelli C, Trombetta T, Scicchitano M, et al. New fluorinated thermoplastic elasto- mers. Journal of Applied Polymer Science, 1996, 59: 311-327.
    [40] Tsukada M. Structural characteristic of 2-hydroxyethylmethacrylate (HEMA)/methacrylamide (MAA) grafed silk fibers. Journal of Applied Polymer Science, 1988, 35: 2133-2140.
    [41] Hozumi A, Takai Q. Effect of hydrolysis groups in fluoro-alkyl silanes on water repellency of transparent two-layer hard-coatings. Applied Surface Science, 1996, 103: 431-441.
    [42] Leroux F, Campagne C, Perwuelz A, Gengembre L. Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol. Applied Surface Science, 2008, 254: 3902-3908.
    [43]周晓东,古国华,李伟华,等.含氟丙烯酸酯共聚物的制备及性能.精细化工, 2004, 21: 136-139.
    [44] Monti P, Freddi G, Sampaio S, Tsukada M, Taddei P. Structure modifications induced in silk fibroin by enzymatic treatments: A Raman study. Journal of Molecular Structure, 2005, 47: 685-690.
    [45] Tsukada M, et al. Effect of epoxide treatment on the fine structural changes of silk fibroin. J.Seric.Sci.Jpn., 1989, (1): 15-19.
    [46] Ho T, Wynne K J. A new fluorinated polyurethane: Polymerization, characterization and mechanical properties. Macromolecules, 1992, 25: 3521.
    [47] Chen Y, Chen L, Wang X, He X. Nanoporous silk dielectric films prepared from free-radical graft polymerization and thermolysis. Macromolecular Chemistry and Physics, 2005, 206: 2483-2489.
    [48]赵兴顺,丁小斌,张军华,等.含氟丙烯酸酯共聚乳液及其膜表面特性的研究.高分子学报, 2004, (2): 196-200.
    [49]王钧,杨三汉,傅杰,等.含氟苯胺树脂的合成及其用于环氧树脂固化研究.武汉工业大学学报, 1996, 18(3): 11-12.
    [50]李欣欣,房冰,林珊,等.丙烯酸全氟烷基乙基酯嵌段共聚物的组成结构表征.高分子学报, 2003, (6): 910-913.
    [51]史新梅,贺彩霞,周丽芳,等.含氟内酯的核磁共振结构分析.分析测试学报, 2003, 22(2): 37-39.
    [52]邓锋杰,李卫凡,徐少华,陈义旺.聚氨酯表面接枝丙烯酸甲酯改性研究.化工新型材料, 2008, 36(3): 68-70.
    [53] Liu J Q, Shao J Z, Zheng J H. Radiation grafting/crosslinking of silk using electron- beam irradiation. Journal of Applied Polymer Science, 2004, 91: 2028-2034.
    [54] Everaert E., Van Der Mei H C. Busscher H J. Adhesion of yeasts and bacteria to fluoro-alkylsiloxane layers chemisorbed on silicone rubber. Colloids and Surfaces B: Biointerfaces, 1998, 10: 179-190.
    [55] Okubo M, Tahara M, Saeki N, et al. Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft- polymerization. Thin Solid Films, 2007, 33: 1-6.
    [1] Ramadan A M, Mosleh S, Gawish S M. Weighting and improvement of silk properties. Journal of Applied Polymer Science, 2004, 93: 1743-1747.
    [2] Tsukada M, Arai T, Winkler S, et al. Physical properties of silk fibers grafted with vinyltrimethoxysilane. Journal of Applied Polymer Science, 2001, 79: 1764-1770.
    [3] Tsukada M, Freddi G, Massafra M R, Beretta S. Structure and properties of tussah silk fibers graft-copolymerized with methacrylamide and 2-hydroxyethyl metha- crylate. Journal of Applied Polymer Science, 1998, 67: 1393-1403.
    [4]陈国强.甲基丙烯酸羟丙酯接枝交联真丝绸结构与性能的研究.浙江丝绸工学院学报, 1998, 15(4): 277-281.
    [5]白秀娥,陈国强,邹丽亚,何健.无引发剂存在时丝素蛋白纤维的接枝.丝绸, 2000, (12): 22-23, 36.
    [6]白秀娥,陈国强.无引发剂接枝聚合对丝素蛋白纤维性能的影响.蚕业科学, 2002, 28 (4): 349-351.
    [7]王健业,陈国强,王克纳,等.真丝织物阳离子接枝共聚.印染, 2001, (2): 12-14.
    [8] Liu J Q, Shao J Z, Zheng J H. Radiation grafting/crosslinking of silk using electron- beam irradiation. Journal of Applied Polymer Science, 2004, 91: 2028-2034.
    [9] Maji T K, Basu D, Datta C, et al. Studies of mechanical and moisture regain proper- ties of methyl methacrylate grafted silk fibers[J]. Journal of Applied Polymer Science, 2002, 84: 969-974.
    [10]施琴芬,关晋平.己二醇二丙烯酸酯改性蚕丝结构的研究.纺织学报, 2004, 25(2): 19-20.
    [11]黄才荣,陈国强.己二醇二丙烯酸酯对真丝的接枝改性研究.印染助剂, 2002, 19(2): 15-18.
    [12]田恬,蒋春兰.含氟拒水拒油整理剂AG-4000的性能及应用.染整技术, 2003, 25(4): 33-37.
    [13]陈国强,周翔.一缩乙二醇二甲基丙烯酸酯改性真丝研究.纺织学报, 2002, 23(3): 169-170.
    [14] Grampel R V D, Geldrop J V, Laven J, Linde R V D. P[CF3(CF2)5CH2MA-co-MMA] and P[CF3(CF2)5CH2MA-co-BA] copolymers: reactivity ratios and surface proper- ties. Journal of Applied Polymer Science, 2001, 79: 159-165.
    [15] Chen G Q, Guan J P, Xing T L, Zhou X. Properties of silk fibers modified with dieth- ylene glycol dimethacrylate. Journal of Applied Polymer Science, 2006, 102: 424- 428.
    [16]陈国强,黄才荣.双烯化合物对真丝的接枝反应性与抗皱性.南通纺织职业技术学院学报(综台版), 2002, 2(1): 1-7.
    [17]何贵珍.甲基丙烯酸羟乙酯接枝改性真丝织物的研究.武汉科技学院学报, 2005, 18(10): 4-7.
    [18]张幼珠,王朝霞,吴徵宇,徐帼英.丙烯酸接枝丝素膜的结构及其性能研究.纺织学报, 2003, 24(2): 105-108.
    [19] Tsukada M. Structural characteristic of 2–hydroxyethylmethacrylate (HEMA) /metha- crylamide (MAA) grafed silk fibers. Journal of Applied Polymer Science, 1988, 35: 2133-2140.
    [20] Ferrero F, Periolatto M, Songia M B. Silk grafting with methacrylic and epoxy monomers: Thermal process in comparison with ultraviolet curing. Journal of Applied Polymer Science, 2008, 110: 1019-1027.
    [21] DAS A, Saikia C N, Hussain S. Grafting of methyl methacrylate (MMA) onto antheraea assama silk fiber. Journal of Applied Polymer Science, 2001, 81: 2633-2641.
    [22] Yoon S C, Ratner B D. Surface structure of segmented poly(ether urethanes) and poly(ether urethane ureas) with various perfluoro chain extenders. An X-ray photoelectron spectroscopic investigation. Macromolecules, 1986, 19: 1068-1079.
    [23] Yoon S C, Ratner B D. Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders. 2. FTIR, DSC, and X-ray photoelectron spectroscopic studies. Macro- molecules, 1988, 21: 2392-2400.
    [24] Peng Q, Xu Q, Sun D F, Shao Z Z. Grafting of methyl methacrylate onto antheraea pernyi silk fiber with the assistance of supercritical CO2. Journal of Applied Polymer Science, 2006, 100: 1299-1305.
    [25] Yoon S C, Ratner B D, et al. Surface and bulk structure of segmented poly(ether urethanes) with perfluoro chain extenders: Incorporation of poly(dimethylsi1oxane) and polyisobutylene macroglycols. Macromolecules, 1994, 27(6): 1548-1554.
    [26] Raes M C, Boudakian M M, Urs S V. Polyurethanes with long fluorinated side chains. Journal of Applied Polymer Science, 1970, 14: 699-711.
    [27] Lim C H, Choi H S, Noh S T. Surface modification with waterborne fluorinated anionic polyurethane dspersions. J Journal of Applied Polymer Science Journal of Applied Polymer Science, 2002, 86: 3322-3330.
    [28] Kameda T, Tsukada M. Structure and thermal analyses of MAA-grafted silk fiber using DSC and 13C solid-state NMR. Macromolecular Materials and Engineering,2006, 291: 877-882.
    [29] Ojah R, Dolui S K. Graft copolymerization of methyl methacrylate onto Bombyx mori initiated by semiconductor-based photocatalyst. Bioresource Technology, 2006, 97: 1529-1535.
    [30]刘瑞芹,谢雷东,盛康龙. 2-(dimethylamino)ethyl methacrylate光化学接枝真丝绸的pH效应研究.核技术, 2008, 31(3): 182-187.
    [31] Das A, Saikia C N. Graft copolymerization of methylmethacrylate onto non-mulberry silk- Antheraea assama using potassium permanganate-oxalic acid redox system. Bioresource Technology, 2000, 74: 213-216.
    [32] Chen Y, Chen L, Wang X, He X. Nanoporous silk dielectric films prepared from free-radical graft polymerization and thermolysis. Macromolecular Chemistry and Physics, 2005, 206: 2483-2489.
    [33] Tonelli C, Trombetta T, Scicchitano M, et al. New fluorinated thermoplastic elastomers. Journal of Applied Polymer Science, 1996, 59: 311-327.
    [34]石铮,赵元磊,任静译.含氟单体接枝共聚聚酯纤维.国外纺织技术, 2000, (2): 5-8.
    [35]王钧,杨三汉,傅杰等.含氟苯胺树脂的合成及其用于环氧树脂固化研究.武汉工业大学学报, 1996, 18(3): 11-12.
    [36]李斌,陈文广,王晓工,周其庠.紫外光引发LDPE膜接枝含氟丙烯酸酯的研究.高分子学报, 2002, (6): 787-790.
    [37]秦总根,涂伟萍,夏正斌,沈良军.含氟乳液聚合反应稳定性的研究.合成材料老化与应用, 2004, 33(4): 11-14.
    [38]刘瑞芹,谢雷东,姚思德,盛康龙.真丝绸的低压汞灯光引发接枝共聚研究.辐射研究与辐射工艺学报, 2008, 26(3): 134-140.
    [39]刘高峰,王建庆,潘玮.自由基引发棉接枝丙烯酰胺的研究.湖南科技大学学报(自然科学版), 2008, 23(3): 108-112.
    [40]陈国强,赵建平,邢铁玲,周翔.甲基丙烯酸双酯改性真丝的热性质.高分子学报, 2003, (6): 902-905.
    [41]何平笙.高聚物的力学性能.合肥:中国科技大学出版社. 1997.
    [42]平村洁.丝素的化学结构和物理性质.国外丝绸, 1985, (4): 19,68.
    [43] T.穆腊亚马.聚合物材料的动态力学分析.北京:轻工业出版社. 1988.
    [44] Li G, Li X, Shen Y, Ren Q. Effect of hydrophilic monomer on the surface properties of cationic polyurethane-fluorinated acrylate hybrid dispersions. Journal of Applied Polymer Science, 2006, 99: 2721-2725.
    [45] Ganghui Li, Yiding Shen, Qinghai Ren, Effect of Fluorinated Acrylate on the Surface Properties of Cationic Fluorinated Polyurethane-Acrylate Hybrid Dispersions. Journal of Applied Polymer Science, 2005, 97, 2192–2196 .
    [46] Nakarnae K, Miyata T, Ootsuki N. Evaluation of surface characteristics of polymers in water: Measurement of surface free energy in water. Makromol. Chem., Rapid Commun. 1993, 14: 413- 420.
    [47] Leroux F, Campagne C, Perwuelz A, Gengembre L. Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol. Applied Surface Science, 2008, 254: 3902-3908.
    [48]赵兴顺,丁小斌,张军华,等.含氟丙烯酸酯共聚乳液及其膜表面特性的研究.高分子学报, 2004, (2): 196-200.
    [49]夏建汉.丙烯酸含氟共聚物的表面性能研究.广州化学, 2004, 29(2): 25-28.
    [50]王渝芳,冯文,等.含氟聚合物辐射气相接枝研究:Ⅱ.PTFE辐射气相接枝共聚物结构表征和性能测试.四川大学学报(自然科学版), 1997, 34(3): 335-339.
    [51]久保元伸.含氟防水防油剂(Ⅰ):关于防水防油性能的机理.印染, 1995, 21(12): 37-41.
    [52]梁治齐,陈傅等.氟表面活性剂.北京:中国轻工业出版社. 1998.
    [53] Shafrin E.G., Zisman W.A. Constitive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. Phys. Chem., 1960, 64(5): 519-524.
    [54] Corpart J M, Dessaint A.纺织品的含氟化合物整理.国际纺织导报, 1997, (4): 73-77.
    [55] Fowkes, F.M. Calculation of work of adhesion by pair potential summation. Colloids and Surfaces, 1968, 28: 493-505.
    [56]杨栋梁.织物功能性整理技术的动态(中).染整科技, 1998, (6) : 29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700