新型有机磷化合物的合成及不饱和聚酯的阻燃性能与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不饱和聚酯(Unsaturated Polyester Resin, UPR)具有优异的机械性能、电性能和耐化学腐蚀性能等优点,UPR是增强复合材料领域中使用量最大的一种热固性树脂。然而,UPR的易燃性限制其广泛的应用。为此,需要对不饱和聚酯进行阻燃处理。随着人们对环境污染问题认识的深入,国际相关环保法规日益严格,UPR阻燃研究向环境友好的趋势发展。
     本论文在综述了阻燃不饱和聚酯最新研究进展的基础上,针对阻燃不饱和聚酯研究的局限和缺点,通过分子设计,合成含磷、氮、硅等阻燃元素的无卤阻燃单体和阻燃剂,通过“反应型”和“添加型”的方法将其引入至不饱和聚酯基体中;进一步研究将反应型的阻燃单体作为UPR稀释交联剂取代苯乙烯,并结合纳米复合技术,制备本质阻燃UPR及其纳米复合材料;研究阻燃单体及阻燃剂对UPR热稳定性、燃烧性能及阻燃性能等性能的影响,探讨无卤阻燃UPR的阻燃机理,主要的研究工作如下:
     1.通过分子设计,分别合成含磷、氮阻燃剂TRIPOD-DOPO和含磷、硅阻燃剂DOPO-VTS;并通过FTIR、1HNMR,31PNMR、MS等分析手段对合成的阻燃剂分子结构进行表征。TRIPOD-DOPO通过物理共混法直接添加到UPR中,制备阻燃UPR/TRIPOD-DOPO样品;DOPO-VTS通过溶胶-凝胶法添加到UPR中,制备含磷的UPR/SiO2有机无机杂化材料。通过TGA、MCC、LOI研究阻燃UPR的热稳性、燃烧性能和阻燃性能,结果表明:阻燃剂的加入,提高了UPR在高温区间内的热稳性和热氧化稳定性,且具有较高的残炭量,氧气能够促进TRIPOD-DOPO催化成炭性能;随着阻燃剂添加量的增加,阻燃UPR的LOI值增加且热释放速率峰值和总热释放量显著降低。此外,TG-IR结果表明:两类基于DOPO结构的阻燃剂不仅通过提高残炭量发挥凝聚相阻燃作用,而且通过捕捉H/OH活性自由基,抑制燃烧链式反应发挥气相阻燃作用。
     2.合成两种含丙烯酸双键的反应型阻燃单体ODOPB-AC和APBPE,通过自由基共聚的方法,将两种反应型单体引入至UPR分子链中,制备本质阻燃UPR。热重结果表明:反应型阻燃单体的引入降低了材料的起始热分解温度,ODOPB-AC的刚性分子结构抵消了部分起始热分解温度的降低,但是材料在高温阶段的热稳定性和热氧化稳定性得到提高,氧气能够促进ODOPB-AC的催化成炭性能。MCC和LOI结果表明:阻燃单体的引入能够降低材料的热释放速率峰值和总热释放量,提高材料的LOI值。ODOPB-AC和APBPE能够促进UPR高温热解成炭,阻止热量和质量在基体和燃烧区域间的传递,提高材料的阻燃性能。此外,APBPE主要在凝聚相发挥阻燃作用,而ODOPB-AC既能够在气相也能够在凝聚相发挥阻燃作用。
     3.合成了马来酰亚胺结构的反应型含磷阻燃剂SPDPC-HPM,通过自由基共聚反应,引入至UPR分子结构中,制备本质阻燃的UPR材料。SPDPC-HPM的引入,起始热分解温度和热稳定性得到提高,克服了传统有机磷阻燃剂降低材料的起始热分解温度的缺点;动态热力学分析结果表明:在SPDPC-HPM添加量为1wt%时,材料的储能模量得到提高,且阻燃的UPR仅有一个内耗峰,说明SPDPC-HPM与基体共聚性能良好;此外,MCC结果显示阻燃样品的热释放速率峰值和总热释放量均得到了降低;SPDPC-HPM添加量为10wt%时,可以使得UPR的氧指数达到26.0vol%; SPDPC-HPM的加入促进UPR高温热解成炭,形成的炭层结构更加致密,内部呈蜂窝状的结构,能够有效地隔绝热量和质量在基体和燃烧区域传递,保护基体。
     4.分别通过熔融法和溶液法制备UPR预聚体与层状无机物(OMMT和S-LDH)的预插层混合物,通过自由基原位聚合法,制备了UPR/层状无机物纳米复合材料。XRD和TEM结果表明:S-LDH在UPR基体中能够得到插层和插层-剥离的结构,分散性较好;此外,与熔融预插层法相比,溶液预插层法所制备的纳米复合材料具有较好的分散效果。层状无机物的引入提高了UPR的热稳定性和残炭量,并降低了UPR最大热失重速率,纳米复合材料具有更低的pHRR和THR。通过对比研究发现,溶液预插层法制备的UPR/S-LDH具有最好的分散效果,最高的热稳定性、最低的pHRR和THR。
     5.为了进一步提高UPR的阻燃性能,将APBPE和TAIC (1:1w/w)混合阻燃剂作为稀释交联剂取代UPR体系中的30wt%的苯乙烯,同时引入S-LDH,制备本质阻燃UPR及其纳米复合材料。XRD和TEM结果表明:S-LDH在阻燃UPR基体中高度分散,显示出剥离结构;TGA结果表明:阻燃单体APBPE的柔性分子结构和较弱化学键P-O-C造成UPR的起始热分解温度降低,S-LDH的引入,能够提高初始阶段UPR的热稳定性:阻燃单体及层状无机物的引入提高了UPR高温阶段的热稳定性,阻燃单体主要在凝聚相发挥阻燃作用,形成保护性的炭层;本质阻燃UPR/S-LDH纳米复合具有最低pHRR和THR,显示出优异的阻燃性能。
Typical unsaturated polyester resin (UPR) has excellent mechanical properties, electrical properties, chemical corrosion resistance and etc., is one of the largest amount of thermosetting resin used for reinforced composites. However, both very poor resistances to fire and high smoke densities associated during burning limit its application in some areas. Therefore, it is necessary to improve the flame retardancy of UPR. As the increasing pressure from rigorous legislation and environmental pollution problem, the research and development of flame retardant UPR switch to environmental friendly trend.
     Aiming at overcoming the limitations and shortcomings of the present study of flame retardant UPR, a series of phosphorus-, nitrogen-and silicon-containing novel compounds were synthesized and well characterized including additive and reactive types of flame retardants by the method of the molecular design, on the basis of the latest research progress on the halogen-free flame retardant polymers. The synthesized additive and reactive flame retardants were incorporated into UPR by physical blending and copolymerization methods, respectively. Furthermore, the reactive flame retardant monomers were used as both diluting and crosslinking agent to substitute30wt%styrene in UPR, combining with layered inorganic compounds such as montmorillonite (MMT) and Zn-Al layered double hydroxide (ZnAl-LDH), to prepare inherent flame retardant UPR and nanocomposites. The thermal degradation and flammability behaviors of UPR composites were investigated, and the flame retardant mechanism was clarified. The main research works of this dissertation were illustrated as follows:
     1. Two Kinds of additive flame retardants, including phosphorus-, nitrogen containing compound named TRIPOD-DOPO and phosphorus-, silicon-containing compound named DOPO-VTS were synthesized and well characterized using FTIR,1H NMR,31P NMR and mass. TRIPOD-DOPO was directly introduced into the UPR by the physical blending, and DOPO-VTS was introduced into the UPR matrix by Sol-Gel method to prepare a novel phosphorus-containing flame retardant UPR/SiO2hybrid materials. The thermal stability and flammability of samples were evaluated by TGA and MCC. TGA results showed that TRIPOD-DOPO and DOPO-VTS can contribute improved thermal and thermo-oxidative stability at high temperature region, as well as higher char yields to UPR matrix. Meanwhile much lower values of pHRR and THR were observed for the composites from MCC results with an increased LOI value, demonstrating a significant improvement in the flame retardancy to UPR. The TG-IR indicated that both TRIPOD-DOPO and DOPO-VTS acted in the gas phase through flame inhibition and in the condensed phase through formation of protective residual char.
     2. Based on the molecular design, two kinds of novel phosphorus containing reactive monomers named10-(2,5-diacrylicester phenyl)-9,10-dihydro-9-oxa-10-pho-sphaphenanthrene-10-oxide (ODOPB-AC) and acryloxyethyl phenoxy caged bicyclic phosphate ester (APBPE) were synthesized and copolymerized with unsaturated chemical bonds in UPR and styrene with different concentration to prepare flame retardant UPR. The TGA results revealed that the introduction of APBPE decreased the initial decomposition temperature, but UPR/ODOPB-AC composites showed slight reduction of initial decomposition temperature due to the rigid molecular structure of ODOPB-AC. However, both the APBPE and ODOPB-AC improved the thermal and thermo-oxidative stability at higher temperature region with the decreased MMLR as well as higher char yields. Most significant is the difference between air and nitrogen atmosphere observed for the residual char of UPR/ODOPB-AC composites, indicating that the presence of oxygen has a dramatic effect on the char formation. Moreover, the results demonstrated that both ODOPB-AC and APBPE could increase the LOI value and reduce the pHRR and THR values. This is believed to be attributed to that ODOPB-AC and APBPE catalyzed the degradation of UP to form the protective char layer based on the condensed phase flame retardant mechanism, which inhibited the heat and mass transfer between UPR matrix and gas phase, delayed the degradation of UPR, and thus improved the flame retardancy of UPR. Besides, ODOPB-AC also acted in the gas phase through flame inhibition based on the gas phase flame retardant mechanism.
     3. A phosphorus containing bismaleimide named SPDPC-HPM was synthesized and incorporated into backbone of UPR via polymerization. The introduction of SPDPC-HPM improved thermal stability of composites and promoted the formation of residual char. The initial thermal decomposition temperature was also increased due to the rigid maleimide group, which overcome the shortcoming of decreased initial thermal stability caused by phosphorus-containing flame retardant. Moreover, the flame retardant composites showed the reduced pHRR and THR due to the higher char yields and lower MMLR compared with the pure UPR. Furthermore, the composites exhibited higher LOI value, indicating the better flame retardancy because of protective residual char through the condensed phase mechanism, which can shield the underlying polymeric substrate from further burning.
     4. UPR/layered inorganic compounds nanocomposites with different layered inorganic compounds (OMMT and S-LDH) were successfully prepared by pre-intercalates of UPR pre-polymer into layered inorganic compounds followed by in situ polymerization. XRD and TEM results showed that the intercalated or intercalative-exfoliated structures were observed in UPR/S-LDH nanocomposites, but UPR was slightly intercalated by OMMT. The S-LDH dispersed better than OMMT in UPR matrix. Meanwhile the nanocomposites pre-intercalated by solution blending method also show better dispersion of layered inorganic compounds than melting blending method. The UPR/layered inorganic compounds nanocomposites possessed higher thermal stability with lower MMLR, and greater char yields at the higher temperature region from the TGA results. Among the nanocomposites, UPR/LDH-s showed the highest thermal stability and greatest char yields, as well as the lowest pHRR.
     5. In order to further improve the flame retardance of UPR, the flame retardant mixture of APBPE and TAIC (1:1w/w) was used to substitute30wt%of the styrene in the UPR as both diluting and crosslinking agent. Meanwhile the S-LDH was also introduced into the UPR to prepare the inherent flame retardant UPR nanocomposites. The nanocomposite exhibited almost exfoliated structure from XRD and TEM results. The incorporation of flame retardants decreased the thermal stability at the low temperature region due to the flexible molecular structure and weak P-O-C bond of APBPE, which can be improved by addition of S-LDH. The thermal stability was enhanced at the high temperature with the higher char yields, indicating that the flame retardants mainly acted in the condensed phase via char formation. The MCC results exhibited that the flame retardant nanocomposite possessed the lowest pHRR and THR, indicating that the formulation of APBPE/TAIC//S-LDH contributed the most effective flame retardance to the UPR.
引文
[1]胡源,宋磊,尤飞,钟茂华.2007火灾化学导论M].北京:化学工业出版社.
    [2]Irvine, D. J., McCluskey, J. A. and Robinson, I. M.2000 Fire hazards and some common polymers [J]. Polymer Degradation and Stability,67(3):383-396.
    [3]Price, D., Anthony, G. and Carty, P.2001 In:Horrocks AR, Price D, editors. Introduction: polymer combustion, condensed phase pyrolysis and smoke formation [M]. Cambridge: Woodhead Publishing Limited.
    [4]Levchik, S. V.2007 In:Morgan AB, Wilkie CA, editors. Introduciton to Flame Retardancy and Polymer Flammability [M]. Hoboken:John Wiely&Sons, Inc.
    [5]于波,孟令辉,朱岩.2003密闭体系下聚丙烯的热分解行为研究[J].河南化工,23(5):15-16.
    [6]Lan, T., Kavivatna, P. D. and Pinnavaia, T. J.1995 Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites [J]. Chemistry Materials,7(11):5144-2150.
    [7]Scudamore, M. J., Briggs, P. J. and Prager, F. H.1991 Cone calorimetry-a review of tests carried out on plastics for the association of plastic manufacturers in Europe [J]. Fire and Materials,15:65-84.
    [8]Delobel, R., Le Bras, M., Ouassou, N. and et al.1990 Thermal behaviours of Ammonium polyphosphate-Pentaerythritol and Ammonium Pyrophosphate-Pentaerythritol Intumescent Additives in Polypropylene Formulations [J]. Journal of Fire Science,8(2):85-108.
    [9]Chiu, S. H. and Wang, W. K.1998 Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives [J]. Polymer,39(10): 1951-1955.
    [10]Broadbent, J. R. A. and Hirschler, M. M.1984 Red phosphorus as a flame retardant for a thermoplastic nitrogen-containing polymer [J]. European Polymer Journal,20(11): 1087-1093.
    [11]Marosi, G., Marton, A., Anna, P. and et al.2002 Ceramic precursor in flame retardant systems [J]. Polymer Degradation and Stability,77(2):259-265.
    [12]Marosi, G., Anna, P., Marton, A. and et al.2002 Flame-retarded polyolefin systems of controlled interphase [J]. Polymers for Advanced Technologies,13(10-12):1103-1111.
    [13]Yang, W., Tang, G., Song, L. and et al.2011 Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites [J]. ThermochimicaActa,526(1-2):185-191.
    [14]欧育湘等.2002实用阻燃技术[M].北京:化学工业出版社,p.133-135.
    [15]王绪江.2013我国不饱和聚酯树脂(UPR)应用市场和产业前景分析[J].玻璃钢,2: 22-25.
    [16]Penczek, P., Czub, P. and Pielichowski, J.2005 Unsaturated polyester resins:chemistry and technology [J]. Crosslinking in Materials Science,184:1-95.
    [17]Koo, J. H., Venumbaka, S., Cassidy, P. E. and et al.2000 Flammability studies of thermally resistant polymers using cone calorimetry [J]. Fire and Materials,24(5):209-218.
    [18]Le Lay, F. and Gutierrez, J.1999 Improvement of the fire behavior of composite materials for naval application [J]. Polymer Degradation and Stability,64(3):397-401.
    [19]Scudamore, M. J.1994 Fire performance studies on glass-reinforced plastic laminates [J]. Fire and Materials,18:313-315.
    [20]Vijayakumar, C. T. and Fink, J. K.1983 Investigation on the mechanism of flame retardacny in HET acid containing unsaturated polyester resins-discussion of mass spectra of the flame retardants [J]. International Journal or Mass Spectrometry and Ion Physics,48:59-62.
    [21]Rajkumar, T., Vijayakumar, C. T., Sivasamy, P. and et al.2008 HET acid based oligoesters-TGA/FTIR studies [J]. European Polymer Journal,44(6):1865-1873.
    [22]Sivasmy, P., Vijayakumar, C. T. and Palaniandavar, M.1991 Flame-Retardant Polymers based on Hexolic Acid/Anhydride and Its derivatives [J]. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, C31(2-3):165-213.
    [23]Paama, L., R(o|")nkk(o|")m(a|")ki, H. and Per(a|")m(a|")ki, P.1997 Spectrochemical and thermal analysis of Al-tetrabromophthalate and tetrabromophthalic anhydride. A comparison of methods for determination of aluminium [J]. Talanta,45(1):35-38.
    [24]Cusack, P. A.1995 Tin-Based Flame Retardants and smoke Suppressants for Unsaturated Polyester Resins [J]. Polimery,40(11-12):650-657.
    [25]Cusack, P. A., Heer, M. S. and Monk, A. W.1991 Zinc hydroxystannate:a combined flame retardant and smoke suppressant for halogenated polyesters [J]. Polymer Degradation and Stability,32(2):177-190.
    [26]李宗剑,王立新,任丽.2008阻燃剂/不饱和聚酯/蒙脱土纳米复合材料的性能[J].高分子材料科学与工程,24(5):56-59.
    [27]Andre, F., Cusack, P. A., Monk, A. W. and et al.1993 The Effect of Zinc Hydroxystannate and Zinc Stannate on the Fire Properties of Polyester Resins Containing Additive-Type Halogenated Flame Retardants [J]. Polymer Degradation and Stability,40(2):267-273.
    [28]Weil, E. D. and Levchik, S. V.2004 Commercial flame retardancy of unsaturated polyester and vinyl resins:Review [J]. Journal of Fire Science,22(4):293-303.
    [29]Fernandes, V. J., Fernandes, N. S., Fonseca, V. M. and et al.2002 Kinetic evaluation of decabromodiphenil oxide as a flame retardant for unsaturated polyester [J]. Thermochimica Acta,388(1-2):283-288.
    [30]Yilmaz, M. C., Ezdesir, A., Ulutan, S. and et al.2013 Production of a Polymeric Composite Material Filled With Halogen-Free Flame Retardant [J]. Polymers & Polymer Composites, 21(3):133-138.
    [31]Fuzail, M., Shah, G. and Anwar, J.2010 Modification of Polyethylene and Incorporation of Al(OH)(3) for Improvement of Mechanical Properties, Burning Behaviour and Thermal Stability [J]. Iranian Polymer Journal,19(1):47-56.
    [32]Kong, Q. H., Hu, Y., Song, L. and et al.2009 Synergistic flammability and thermal stability of polypropylene/aluminum trihydroxide/Fe-montmorillonite nanocomposites [J]. Polymers for Advanced Technologies,20(4):404-409.
    [33]Ristolainen, N., Hippi, U., Seppala, J. and et al.2005 Properties of polypropylene/aluminum trihydroxide composites containing nanosized organoclay [J]. Polymer Engineering and Science,45(12):1568-1575.
    [34]Hapuarachchi, T. D. and Peijs, T.2009 Aluminium trihydroxide in combination with ammounium pholyphosphate as flame retardants for unsaturated polyester resin [J]. Express Polymer Letter,3:743-751.
    [35]Weil, E. D. and Levchik, S. V.2004 Commercial flame retardancy of unsaturated polyester and vinyl resins:review [J]. Journal of Fire Science,22(4):293-303.
    [36]王志强,吕秉玲,刘建平,等.2001沉淀法合成高纯超细氢氧化镁研究[J].无机盐工业,33(4):3-5.
    [37]柳学义,刘亚青,卫芝贤.2006超细氢氧化铝粉末的制备及其阻燃性能[J].化工进展,25(2):218-222.
    [38]Jimenez, M., Duquesne, S. and Bourbigot, S.2009 Kinetic analysis of the thermal degradation of an epoxy-based intumescent coating [J]. Polymer Degradation and Stability, 94(3):404-409.
    [39]Jimenez, M., Duquesne, S. and Bourbigot, S.2006 Characterization of the performance of an intumescent fire protective coating [J]. Surface & Coating Technology,201(3-4):979-987.
    [40]Zhou, S., Lu, H. D., Song, L. and et al.2009 Microencapsulated Ammonium Polyphosphate with Polyurethane Shell:Application to Flame Retarded Polypropylene/Ethylene-propylene Diene Terpolymer Blends [J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry,46(2):136-144.
    [41]Reti, C., Casetta, M., Duquesne, S. and et al.2008 Flammability properties of intumescent PLA including starch and lignin [J]. Polymers for Advanced Technologies,19(6):628-635.
    [42]Nie, S. B., Song, L., Guo, Y. Q. and et al.2009 Intumescent Flame Retardation of Starch Containing Polypropylene Semibiocomposites:Flame Retardancy and Thermal Degradation [J]. Industrial& Engineering Chemistry Research,48(24):10751-10758.
    [43]Wu, K., Hu, Y., Song, L. and et al.2009 Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Starch-Based Biodegradable Composites [J]. Industrial & Engineering Chemistry Research,48(6):3150-3157.
    [44]Zhang, P., Song, L., Lu, H. D. and et al.2009 Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system [J]. Polymer Degradation and Stabiltiy,94(2):201-207.
    [45]Zhang, P., Hu, Y., Song, L. and et al.2009 Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material [J]. Thermochimica Acta,487(1-2): 74-79.
    [46]Ricciardi, M. R., Antonucci, V., Giordano, M. and et al.2012 Thermal decomposition and fire behavior of glass fiber-reinforced polyester resin composites containing phosphate-based fire-retardant additives [J]. Journal of Fire Science,30(4):318-330.
    [47]Nazare, S., Kandola, B. K. and Horrocks, A. R.2006 Flame-retardant unsaturated polyester resin incorporating nanoclays [J]. Polymers for Advanced Technologies,17(4):294-303.
    [48]王建祺.2005无卤阻燃聚合物基础与应用[M].北京:科学出版社,p116-154.
    [49]游长江,方曼,冯建中等.2009不饱和聚酯/可膨胀石墨体系的结构与阻燃性能[J].高分子材料科学与工程,25(6):78-81.
    [50]Shih, Y. F., Wang, Y. T., Jeng, R. J. and et al.2004 Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy [J]. Polymer Degradation and Stability,86(2):339-348.
    [51]Shih, Y. F.2005 Expandable graphite systems for phosphorus-containing unsaturated polyester,2(a)-Kinetic study of degradation process [J]. Macromolecular Chemistry and Physics,206(3):383-392.
    [52]Levchik, S. V., Bright, D. A., Alessio, G. R. and et al.2002 Synergistic action between aryl phosphates and phenolic resin in PBT [J]. Polymer Degradation and Stability,77(2):267-272.
    [53]Pan, L. L., Li, G. Y., Su, Y. C. and et al.2012 Fire retardant mechanism analysis between ammonium polyphosphate and triphenyl phosphate in unsaturated polyester resin [J]. Polymer Degradation and Stability,97(9):1801-1806.
    [54]Zhang, C., Liu, S. M., Huang, J. Y. and et al.2009 Flame retardance and thermal properties of a novel phosphorus-containing unsaturated polyester resin/SiO2 hybrid nanocomposite [J]. e-Polymers,151:1-12.
    [55]Gao, F., Tong, L. F. and Fang, Z. P.2006 Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behavior of poly(butylenes terephthalate) [J]. Polymer Degradation and Stability,91(6):1295-1299.
    [56]王俊胜,刘云,王德义,等.2007一种新型阻燃剂的合成与性能[J].阻燃材料与技术,5:14-15.
    [57]张臣.2009无卤阻燃不饱和聚酯的制备研究.华南理工大学博士论文。
    [58]Chang, Y. L., Wang, Y. Z., Ban, D. M. and et al.2004 A Novel Phosphorus-Containing Polymer as a Highly Effective Flame Retardant [J]. Macromolecular Materials and Engineering,289(8):703-707.
    [59]Chen, D. Q., Wang, Y. Z., Hu, X. P. and et al.2005 Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics [J]. Polymer Degradation and Stability,88(2):249-356.
    [60]Deng, Y., Wang, Y. Z., Ban, D. M. and et al.2006 Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl polyphosphonate [J]. Journal of Analytical and Applied Pyrolysis,76(1-2):198-202.
    [61]Ban, D. M., Wang, Y. Z., Yang, B. and et al.2004 A novel non-dripping oligomeric flame retardant for polyethylene terephthalate [J]. European Polymer Journal,40(8):1909-1913.
    [62]Wang, D. Y., Ge, X. G., Wang, Y. Z. and et al.2006 A novel phosphorus-containing poly(ethylene terephthalate) nanocomposite with both flame retardancy and anti-dripping effects [J]. Macromolecular Materials and Engineering,291(6):638-645.
    [63]Ma, H. Y, Tong, L. F., Xu, Z. B. and et al.2007 A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polymer Degradation and Stability,92(4): 720-726.
    [64]郑玉斌,阎莉,郑楠.2008具有双环磷酸酯结构的聚磷酸酯阻燃剂的制备方法.CN101328269A.
    [65]Sacristan, M., Hull, T. R, Stec, A. A. and et al.2010 Cone calorimetry studies of flame retardant soybean-oil-based copolymers containing silicon or boron:Comparison of additive and reactive approaches [J]. Polymer Degradation and Stability,95(7):1269-1274.
    [66]Price, D., Pyrah, K., Hull, T. R. and et al.2000 Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds:comparison of an additive with a reactive approach [M]. Polermo, Italy:Elsevier Sci Ltd, p.441-447.
    [67]Kuan, J. F. and Lin, K. F.2004 Synthesis of Hexa-Allylamino-Cyclotriphosphazene as a Reactive Fire Retardant for Unsaturated Polyesters [J]. Journal of Applied Polymer Science, 91(2):697-702.
    [68]Dai, K., Song, L., Hu, Y. and et al.2013 Study of the flame retardancy and thermal properties of unsaturated polyester resin via incorporation of a reactive cyclic phosphorus-containing monomer [J]. High Performance Polymers,25(8):938-946.
    [69]Dai, K., Song, L., Yuen, R. K. K. and et al.2012 Enhanced Properties of the Incorporation of a Novel Reactive Phosphorus-and Sulfur-containing Flame-Retardant Monomer into Unsaturated Polyester Resin [J]. Industrial & Engineering Chemistry Research,51(49): 15918-15926.
    [70]Dai K.2013 Synthesis of novel phosphorus-containing comonomers and study of the flammability and mechanisms for flame-retardant unsaturated polyester resins. Ph.D. Thesis, City University of Hong Kong, Hong Kong.
    [71]Zhang, C., Liu, S. M., Huang, J. Y. and et al.2009 Synthesis of reactive flame-retardant unsaturated polyester resin with bis(hydroxyethyl) phenylphosphonate [J]. Petrochemical Technology,38(12):1286-1291.
    [72]Zhang, X. C., Wang, Y. F., Li, B. and et al.2002 The preparation of unsaturated polyester resin with reactive flame retardant [J]. Journal of Northeast Forestry University,30(6):61-64.
    [73]Zhang, C., Liu, S. M., Huang, J. Y. and et al.2009 Synthesis and curing kinetics of phosphorus-containing unsaturated polyester with reactive flame retardant [J]. Petrochemical Technology,38(5):515-520.
    [74]Zhang, C., Huang, J. Y, Liu, S. M. and Zhao, J. Q.2011 The synthesis and properties of a reactive flame-retardant unsaturated polyester resin from a phosphorus containing diacid [J]. Polymers for Advanced Technologies,22(12):1768-1777.
    [75]Ma, Z. L., Zhao, W. G., Liu, Y. F. and Shi, J. R.1997 Synthesis and properties of intumescent, phosphorus-containing, flame-retardant polyesters [J]. Journal of Applied Polymer Science, 63(12):1511-1515.
    [76]Zhang, C., Liu, S. M., Huang, J. Y. and Zhao, J. Q.2010 The synthesis and flame retardance of a high phosphorus-containing unsaturated polyester resin [J]. Chemistry Letters,39(12): 1270-1272.
    [77]Paul, D. R. and Robeson, L. M.2008 Polymer nanotechnology:Nanocomposites [J]. Polymer, 49(15):3187-3204.
    [78]Laoutid, F., Bonnaud, L., Alexandre, M. and et al.2009 New prospects in flame retardant polymer materials:From fundamentals to nanocomposites [J]. Materials Science & Engineering R-Reports,63(3):100-125.
    [79]Alexandre, M. and Dubois, P.2000 Polymer-layered silicate nanocomposites:preparation, properties, and uses of a new class of materials [J]. Materials Science & Engineering R-Reports,28(1-2):1-63.
    [80]Ding, P., Chen, W. and Qu, B. J.2006 Recent progress in polymer/layered double hydroxide nanocomposites [J]. Progress in Natural Science,16(6):573-579.
    [81]Ray, S. S. ad Okamoto, M.2003 Polymer/layered silicate nanocomposites:a review from preparation to processing [J]. Progress in Polymer Science,28(11):1539-1641.
    [82]Hussain, F., Hojjati, M., Okamoto, M. and et al.2006 Review article:Polymer-matrix nanocomposites, processing, manufacturing, and application:An overview [J]. Journal of Composite Materials,40(17):1511-1575.
    [83]Kiliaris, P. and Papaspyrides, C. D.2010 Polymer/layered silicate (clay) nanocomposites:An overview of flame retardancy [J]. Progress in Polymer Science,35(7):902-958.
    [84]Costa, F. R., Saphiannikova, M., Wagenknecht, U. and et al.2008 Layered double hydroxide based polymer nanocomposites. Berlin:Springer-Verlag Berlin [M], p.101-168.
    [85]Zou, H., Wu, S. S. and Shen, J.2008 Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles [J]. Langmuir,24(18): 10453-104761.
    [86]Nyambo, C., Kandare, E. and Wilkie, C. A.2009 Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid [J]. Polymer Degradation and Stability,94(4):513-520.
    [87]Mittal, V.2009 Polymer layered silicate nanocomposites:A Review. Materials,2,992-10461.
    [88]Nyambo, C. and Wilkie, C. A.2009 Layered double hydroxides intercalated with borate anions:Fire and thermal properties in ethylene vinyl acetate copolymer [J]. Polymer Degradation and Stability,94(4):506-512.
    [89]Manzi-Nshuti, C., Chen, D., Su, S. and et al.2009 Structure-property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum [J]. Polymer Degradation and Stability,94(8): 1290-1297.
    [90]Nyambo, C., Chen, D., Su, S. P. and et al.2009 Variation of benzyl anions in MgAl-layered double hydroxides:Fire and thermal properties in PMMA [J]. Polymer Degradation and Stability,94(4):496-505.
    [91]Zhao, X., Lv, L., Pan, B. C. and et al.2011 Polymer-supported nanocomposites for environmental application:A review [J]. Chemical Engineering Journal,170(2-3):381-394.
    [92]Solarski, S., Ferreira, M., Devaux, E. and et al.2008 Designing polylactide/clay nanocomposites for textile applications:Effect of processing conditions, spinning and characterization [J]. Journal of Applied Polymer Science,109(2):841-851.
    [93]Zhang, Z. J., Mei, X. J., Xu, C. H. and et al.2005 Polystyrene/LDHs hybrid nanocomposites prepared by emulsion polymerization [J]. Acta Polymerica Sinica, (4):589-593.
    [94]Song, L., Hu, Y., He, Q. L. and et al.2008 Study on crystallization, thermal and flame retardant properties of nylon 66/organoclay nanocomposites by in situ polymerization [J]. Journal of Fire Science,26(6):475-492.
    [95]Manzi-Nshuti, C., Wang, D. Y., Hossenlopp, J. M. and et al.2008 Aluminum-containing layered double hydroxides:the thermal, mechanical and fire properties of (nano)composites of poly(methyl methacrylate) [J]. Journal of Materials Chemistry,18(26):3091-3102.
    [96]Costache, M. C., Heidecker, M. J., Manias, E. and et al.2007 Benzimidazolium surfactants for modification of clays for use with styrenic polymers [J]. Polymer Degradation and Stability,92(10):1753-1762.
    [97]Nyambo, C., Wang, D. and Wilkie, C. A.2009 Will layered double hydroxides give nanocomposites with polar or non-polar polymers [J]? Polymers for Advanced Technologies, 20(3):332-340.
    [98]Manzi-Nshuti, C. and Wilkie, C. A.2007 Ferrocene and rerrocenium modified clays and their styrene and EVA composites [J]. Polymer Degradation and Stability,92(10):1803-1812.
    [99]Zheng, X. X., Jiang, D. D. and Wilie, C. A.2006 Polystyrene nanocomposites based on an oligomerically-modified clay containing maleic anhydride [J]. Polymer Degradation and Stability,91(1):108-113.
    [100]Pereira, C. M. C., Herrero, M., Labajos, F. M. and et al.2009 Preparation and properties of new flame retardant unsaturated polyester nanocomposites based on layered double hydroxides [J]. Polymer Degradation and Stability,94(6):939-946.
    [101]Wang, Z., Du, X. H., Yu, H. O. and et al.2009 Mechanism on flame retardancy of polystyrene/clay composites-The effect of surfactants and aggregate state of organoclay [J]. Polymer,50(24):5794-5802.
    [102]Gilman, J. W., Harris, R. H., Shields, J. R. and et al.2006 A study of flammability reduction mechanism of polystyrene-layered silicate nanocomposites:layered silicate reinforced carbonaceous char [J]. Polymers for Advanced Technologies,17(4):263-271.
    [103]Morgan, A. B., Harris, R. H., Kashiwagi, T. and et al.2002 Flambility of polystyrene silicate (clay) nanocomposites:Carbonaceous char formation [J]. Fire and Materials,26(6):247-253.
    [104]Gilman, J. W., Awad, W. H., Davis, R. D. and et al.2002 Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite [J]. Chemistry of Materials,14(9):3776-3785.
    [105]Bourbigot, S., Le Bras, M., Dabrowski, F. and et al.2000 PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations [J]. Fire and Materials,24(4):201-208.
    [106]Gilman, J. W., Kashiwagi, T., Nyden, M. and et al.1999 Flammability studies of polymer layered silicate nanocomposites:Polyolefin, epoxy and vinyl ester resin. Chemistry and technologies of polymer additives [M], p249-265.
    [107]Nazare, S., Kandola, B. K. and Horrocks, A. R.2006 Flame-retardant unsaturated polyester resin incorporating nanoclays [J]. Polymers for Advanced Technologies,17(4):294-303
    [1]Kandola, B. K., Horrocks, A. R., Myler, P. and Blair, D.2002 The effect of intumescents on the burning behavior of polyester-resin-containing composites [J]. Composites Part A:Applied Science and Manufacturing,33(6):805-817.
    [2]H(o|")rold, S.1999 Phosphorus flame retardants in thermoset resins [J]. Polymer Degradation and Stability,64(3):427-431.
    [3]Laoutid, F., Bonnaud, L., Alexandre, M. and et al.2009 New prospects in flame retardant polymer materials:From fundamentals to nanocomposites [J]. Materials Science & Engineering R-Reports,63(3):100-125.
    [4]Lu, S. Y. and Hamerton, I.2002 Recent developments in the chemistry of halogen-free flame retardant polymers [J]. Progress in Polymer Science,27(8):1661-1712.
    [5]Chen, X. L., Huo, L. L., Jiao, C. M. and Li, S. X.2013 TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials [J]. Journal of Analytical and Applied Prolysis,100:186-191.
    [6]Chen, H. B., Dong, X., Schiraldi, D. A. and et al.2013 Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenz<1,2> oxaphosphorin-6-yl)-1,4-hydroxythoxy phenylene:Synthesis, thermal degradation, combustion and pyrolysis behavior [J]. Journal of Analytical and Applied Prolysis,99:40-48.
    [7]Yang, C. Q. and He, Q. L.2011 Applications of micro-scale combustion calorimetry to the studies of cotton and nylon fabrics treated with organophosphorus flame retardants [J]. Journal of Analytical and Applied Prolysis,91(1):125-133.
    [8]Artner, J., Ciesielski, M., Walter, O. and et al.2012 A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems [J]. Macromolecular Materials and Engineering, 293(6):503-514.
    [9]Liu, Y. L.2012 Epoxy resins from novel monomers with a bis-(9,10-dihydro-9-oxa-10-oxide-10-phosphaphenanthrene-10-yl-) substituent [J]. Journal of Polymer Science Part A:Polymer Chemistry,40(3):359-368.
    [10]Perez, R. M., Sandler, J. K. W., Altstadt, V. and et al.2006 Effect of DOPO-based compounds on fire retardancy, thermal stability, and mechanical properties of DGEBA cured with 4,4'-DDS [J]. Journal of Materials Science,41:341-353.
    [11]Schartel, B., Balabanovich, A. I., Braun, U. and et al.2007 Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives [J]. Journal of Applied Polymer Science,104(4):2260-2269.
    [12]Perez, R. M., Sandler, J. K. W., Altstadt, V. and et al.2006 Effective halogen-free flame retardants for carbon fiber-reinforced epoxy composites [J]. Journal of Materials Science, 41(15):4981-4984.
    [13]Wu, C. S., Liu, Y. L. and Chiu, Y. S.2002 Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents [J]. Polymer,43(15):4277-4284.
    [14]Wang, X. D. and Zhang, Q.2004 Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance [J]. European Polymer Journal, 40(2):385-395.
    [15]Zhang, K., Shen, M. M., Wu, K. and et al.2011 Comparative study of flame retardancy and thermal degradation of phosphorus-and silicon-containing epoxy resin composites [J]. Journal of Polymer Research,18(6):2061-2070.
    [16]Zhong, H. F., Wei, P., Jiang, P. K. and et al.2007 Synthesis and characteristics of a novel silicon-containing flame retardant and its application in poly[2,2-propane-(biPhenol) carbonate]/acrylonitrile butadiene styrene [J]. Journal of Polymer Science Part B-Polymer Physics,45:1542-1551.
    [17]Li, Q., Jiang, P. K. and Wei, P.2005 Thermal degradation behavior of poly(propylene) with a novel silicon on-containing intumescent flame retardant [J]. Macromolecular Materials and Engineering,290(9):912-919.
    [18]Masatoshi, I. and Serizawa, S.1998 Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices [J]. Polymers for Advanced Technologies,9(10-11): 593-600.
    [19]Ravadits, I., Toth, A. and Marosi, G.2001 Organosilicon surface layer on polyolefins to achieve improved flame retardancy through an oxygen barrier effect [J]. Polymer Degradation and Stability,74(3):419-422.
    [20]Wang, L. C., Jiang, J. Q., Jiang, P. K. and Yu, J. H.2010 Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber [J]. Journal of Polymer Research,17(6):891-902.
    [21]Wen, J. Y. and Wilkes, G. L.1996 Organic/inorganic hybrid network materials by the sol-gel approach [J]. Chemistry of Materials,8(8):1667-1681.
    [22]Sanchez, C., Soler-lllia, G. J. De A. A., Ribot, F. and et al.2001 Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks [J]. Chemistry of Materials, 13(10):3061-3083.
    [23]Liu, Y. L. and Chou, C. I.2005 The effect of silicon sources on the mechanism of phosphorus-silicon synergism of flame retardation of epoxy resins [J]. Polymer Degradation and Stability,90(3):515-522.
    [24]Tahmassebi, D. C. and Sasaki, T.1994 Synthesis of a new trialdehyde template for molecular imprinting [J]. The Journal of Organic Chemistry,59(3):679-681.
    [25]Qian, X. D., Pan, H. F., Xing, W. Y. and et al.2012 Thermal Properties of Novel 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-Oxide-based Organic/Inorganic Hybrid Materials Prepared by Sol-Gel and UV-Curing Processes [J]. Industrial & Engineering Chemistry Research,51(1):85-94.
    [26]Kandare, E., Kandola, B.K., Price, D. and et al.2008 Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS [J]. Polymer Degradation and Stability,93(11):1996-2006.
    [27]Xing, W. Y., Song, L., Lv, P. and et al.2010 Preparation, flame retardancy and thermal behavior of a novel UV-curable coating containing phosphorus and nitrogen [J]. Materials Chemistry and Physics,123(2-3):481-486.
    [28]Perret, B., Schartel, B., St(o|")β, K. and et al.2011 A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phos-phaphenanthrene-10-oxide for Epoxy Resins and their Carbon Fiber Composites for the Automotive and Aviation Industries [J]. Macromolecular Materials and Engineering,296(1):14-30.
    [29]Yan, L., Zheng, Y. B., Liang, X. B. and Ma, Q.2010 Copolymerization of 1-Oxo-2,6,7-trioxa-l-phorsphabicyclo [2,2,2] oct-4-yl Methyl Acrylate and (10-Oxo-10-Hydro-9-Oxa-10-phosphaphenanthrene-10-yl) Methl Acrylate with styrene and their thermal degradation characteristics [J]. Journal of Applied Polymer Science,115(2): 1032-1038.
    [30]Chen, X. L., Hu, Y., Jiao, C. M. and Song, L.2007 Preparation and thermal properties of a novel flame-retardant coating [J]. Polymer Degradation and Stability,92(6):1141-1150.
    [31]Thangamani, R., Chinnaswamy, T. V., Palanichamy, S. and Charles, A. W.2008 HET acid based oligoesters-TGA/FTIR studies [J]. European Polymer Journal,44(6):1865-1873.
    [32]Zhang, H., Westmoreland, P. R., Farris, F. J. and et al.2002 Thermal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends [J]. Polymer,43(20):5463-5472.
    [33]Tripathy, A. R., Farris, F. and Macknight, W. J.2007 Novel fire resistant matrixes for composites from cyclic poly(butylenes terephthalate) [J]. Polymer Engineering and Science, 47:1536-1543.
    [34]Mosurkal, R., Samuelson, L. A., Smith, K. D. and et al.2008 Nanocomposites of TiO2 and siloxane copolymers as environmentally safe flame-retardant materials [J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry,45(11):942-946.
    [35]Zhang, H. Q., Farris, R. J. and Westmoreland, P. R.2003 Low flammability and thermal decomposition behavior of poly (3,3'-dihydroxybiphenylisophthalamide) and its derivatives [J]. Macromolecules,36(11):3944-3954.
    [36]Jimenez, M., Duquesne, S. and Bourbigot, S.2006 Multiscale experimental approach for developing high-performance intumescent coatings [J]. Industrial & Engineering Chemistry Research,45(13):4500-4508.
    [1]Liu, Y. Y., Wang, S. J., Xiao, M. and et al.2007 Halogen-free polymeric flame retardants for common resins [J]. Research Journal of Chemistry and Environment,11(2):84-103.
    [2]Drehe, M., Simulescu, V. and Ilia, G.2008 Progress in the development of flame retardants [J]. Reviews in Chemical Engineering,24(6):23-302.
    [3]Lu, S. Y. and Hamerton, I.2002 Recent developments in the chemistry of halogen-free flame retardant polymers [J]. Progress in Polymer Science,27(8):1661-1712.
    [4]Chattopadhyay, D. K. and Webster, D. C.2009 Thermal stability and flame retardancy of polyurethanes [J]. Progress in Polymer Science,34(10):1608-1133.
    [5]Chen, L. and Wang, Y. Z.2010 A review on flame retardant technology in China. Part I: development of flame retardants [J]. Polymers for Advanced Technologies,21:1-26.
    [6]Chen, M. J., Shao, Z. B., Wang, X. L. and et al.2012 Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant [J]. Industrial & Engineering Chemistry Research,51(29):9769-9776.
    [7]Dai, K., Song, L., Yuen, K. K. and et al.2012 Enhanced properties of the incorporation of a novel reactive phosphorus-and sulfur-containing flame retardant monomer into unsaturated polyester resin [J]. Industrial & Engineering Chemistry Research,51(49):15918-15926.
    [8]Tai, Q. L., Song, L., Lv, X. Q. and et al.2012 Flame-retarded polystyrene with phosphorus-and nitrogen-containing oligomer:preparation and thermal properties [J]. Journal of Applied Polymer Science,123(2):770-778.
    [9]Deng, Y, Wang, Y. Z., Ban, D. M. and et al.2006 Burning behavior and pyrolysis products of flame retardant PET containing sulfur-containing aryl polyphosphonate [J]. Journal of Analytical and Applied Pyrolysis,76(1-2):198-202.
    [10]Chang, Y. L., Wang, Y. Z., Ban, D. M. and et al.2004 A novel phosphorus-containing polymer as highly effective flame retardant [J]. Macromolecular Materials and Engineering, 289(8):703-707.
    [11]Pan, L. L., Li, G. Y, Su, Y. C. and Lian, J. S.2012 Fire retardant mechanism analysis between ammonium polyphosphate and triphenyl phosphate in unsaturated polyester resin [J]. Polymer Degradation and Stability,97(9):1801-1806.
    [12]Zhang, C., Huang, J. Y, Liu, S. M. and Zhao, J. Q.2011 The synthesis and properties of a reactive flame-retardant unsaturated polyester resin from a phosphorus-containing diacid [J]. Polymers for Advanced Technologies,22(12):1768-1777.
    [13]Wang, X., Hu, Y, Song, L. and et al.2010 Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer [J]. Polymer,51(11):2435-2445.
    [14]Xie, F., Wang, Y. Z., Yang, B. and Liu, Y.2006 A novel intumescent flame-retardant polyethylene system [J]. Macromolecular Materials and Engineering,291(3):247-253.
    [15]Halpem, Y, Mott, D. M. and Nlswander, R. H. Fire retardancy of thermoplastic materials by intumescence [J]. Industrial and Engineering Chemistry Product Research and Development, 1984,23(2):233-238.
    [16]Liu, Y. L.2001 Flame-retardant epoxy resins from novel phosphorus-containing novolac [J]. Polymer,42(8):3445-3454.
    [17]Chen, X. L., Hu, Y, Jiao, C. M. and Song, L.2007 Preparation and thermal properties of a novel flame-retardant coating [J]. Polymer Degradation and Stability,92(6):1141-1150.
    [18]Lin, C. H., Lin, H. T., Chang, S. L. and et al.2009 Benzoxazines with tolyl, p-hydroxyphenyl or p-carboxyphenyl linkage and the structure-properties relationship of resulting thermosets [J]. Polymer,50(10):2264-2272.
    [19]Vankrevelen, D. W.1975 Some basic aspects of flame resistance of polymeric materials [J]. Polymer,16(8):615-620.
    [20]Camino, G., Costa, L. and Dicortemiglia, M. P. L.1991 Overview of fire retardant mechanisms [J]. Polymer Degradation and Stability,33(2):131-154.
    [21]Babrauskas, V. and Peacock, R. D.1992 Heat Release Rate:The single most important variable in fire hazard [J]. Fire safety Journal,18(3):255-261.
    [22]Rajkumar, T., Vijayakumar, C. T., Sivasamy, P. and Wilkie, C. A.2008 HET acid based oligoesters-TGA/FTIR studies [J]. European Polymer Journal,44(6):1865-1873.
    [23]Perret, B., Scharter, B., Stob, K. and et al.2011 A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide [J]. Macromolecular Materials and Engineering,296(1):14-30.
    [24]Wang, X., Song, L., Yang, H. Y and et al.2011 Synergistic effect of grapheme on antidripping and fire resistance of intumescent flame retardant poly (butylenes succinate) composites [J]. Industrial & Engineering Chemistry Research,50:5376-5383.
    [25]Wawrzyn, E., Schartel, B., Seefeldt, H. and et al.2012 What Reacts with what in bisphenol A polycarbonate/silicon rubberb/bisphenol A Bis (diphenyl phosphate) during pyrolysis and fire behavior? [J]. Industrial & Engineering Chemistry Research,51:1244-1255.
    [26]Setnescu, R., Jipa, S., Setnescu, T. and et al.1999 IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile [J]. Carbon,37(1):1-6.
    [27]Bugajny, M., Bourbigot, S., Le Bras M. and Delobel, R.1999 The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750 [J]. Polymer, International,48(4):264-270.
    [28]Bourbigot, S., LeBras, M., Delobel, R. and Tremillon, J. M.1996 Synergistic effect of zeolite in an intumescence process-Study of the interactions between the polymer and the additives [J]. Journal of the Chemical Society-Faraday Transactions,92(18):3435-3444.
    [29]Xing, W. Y., Song, L., Hu, Y. and et al.2009 Thermal properties and combustion behaviors of a novel UV-cured flame retarded coating containing silicon and phosphorus [J]. Polymer Degradation and Stability,94:1503-1508
    [1]Weil, E. D. and Levchik, S. V.2007 Flame retardants for polystyrene in commercial use or development [J]. Journal of Fire Science,25(3):241-265.
    [2]Levchik, S. V., Dashevsky, S. and Bright, D. A.2000 Studies on the mode of fire retardant action of aryl phosphates in engineering resins [J]. In:Recent advances in flame retardancy of polymeric materials,11:164-178.
    [3]Balabanovich, A. I. and Prokophovich, V. P.2005 Ammonium polyphosphate fire retardance in HIPS:the effect of 2-methyl-1,2-oxaphospholan-5-one 2-oxide [J]. Journal of Fire Science, 23(5):417-428.
    [4]Chen, Y. J., Guo, Z. H. and Fang, Z. P.2010 Effect of styrene-maleic anhydride as a reactive compatibilizer on the mechanical properties and flammability of intumescent flame retardant polystyrene [J]. Journal of Applied Polymer Science,118(1):152-158.
    [5]Wang, J. and Cai, X. F.2012 Synergistic effect of a novel charring agent with ammonium polyphosphate on flame retardancy and thermal degradation of acrylonitrile-butadiene-styrene copolymer [J]. Polymer International,61(5):703-710.
    [6]Wang, X., Hu, Y., Song, L. and et al.2010 Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer [J]. Polymer,51(11):2435-2245.
    [7]Hoang, D. Q. and Kim, J. W.2008 Synthesis and applications of biscyclic phosphorus flame retardants [J]. Polymer Degradation and Stability,93(1):36-42.
    [8]Chen, D. Q., Wang, Y. Z., Hu, X. P. and et al.2005 Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment poly(ethylene terephthalate) fabrics [J]. Polymer Degradation and Stability,88(2):349-356.
    [9]Ma, Z. L., Zhao, W. G., Liu, Y. F. and Shi, J. R.1997 Synthesis and properties of intumescent, phosphorus-containing, flame retardant polyesters [J]. Journal of Applied Polymer Science, 63(12):1511-1515.
    [10]Wang, C. S. and Lin, C. H.1999 Synthesis and properties of phosphorus containing copoly(bismaleimide) [J]. Polymer,40(20):5665-5673.
    [11]Wilkinson, S. P., Ward, T. C. and McGrath, J. E.1993 Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials [J]. Polymer,34(4):870-884.
    [12]Li, Y, Feng, L. and Zhang, L. C.2006 Mechanical, thermal, and morphological properties of bismaleimide/unsaturated polyester copolymers [J]. Journal of Applied Polymer Science, 100(1):593-598.
    [13]Gawazik, B., Matynia, T. and Chmielewska, E.2001 Modification of unsaturated polyester resin with bismaleimide [J]. Journal of Applied Polymer Science,82(8):2003-2007.
    [14]Dinakaran, K. and Alagar, M.2002 Preparation and characterization of bismaleimide (N,N'-bismaleimido-4,4'-diphenyl methane)-vinyl ester oligomer-modified unsaturated polyester interpenetrating matrices for advanced composites [J]. Journal of Applied Polymer Science,86(10):2502-2508.
    [15]Wu, C. S., Liu, Y. L. and Chiu, Y. S.2002 Synthesis and characterization of new organosoluble polyaspartimides containing phosphorus [J]. Polymer,43(6):1773-1779.
    [16]Kumar, S. A. and Denchev, Z.2009 Development and characterization of phosphorus-containing siliconized epoxy resin coatings [J]. Progress in Organic Coating, 66(1):1-7.
    [17]Jeng, R. J., Lo, G. S., Chen, C. P. and et al. Enhanced thermal properties and flame retardancy from a thermosetting blend of a phosphorus-containing bismaleimide and epoxy resins [J]. Polymers for Advanced Technologies,14(2):147-156.
    [18]Shau, M., Tsai, P. F., Teng, W. Y. and Hsu, W. H.2006 Novel bismaleimide containing cyclic phosphine oxide and an epoxy unit:synthesis, characterization, thermal and flame properties [J]. European Polymer Journal,42(8):1899-1907.
    [19]Hao, J. J., Jiang, L. X. and Cai, X. X.1996 Investigation on bismaleimide bearing polysiloxane (BPS) toughening of 4,4'-bismaleimido diphenylmethane (BMI) matrix-synthesis, characterization and toughness [J]. Polymer,37(16):3721-3727.
    [20]Rao, B. S.1988 Novel bismaleimides via epoxy-carboxy addition-reaction-synthesis characterization and thermal-stability [J]. Journal of Polymer Science Part C-Polymer Letters, 26(1):3-10.
    [21]Tobolsky, A. V.1960 Properties and structure of polymers [J]. Journal of the Electrochemical Society,107:243C.
    [22]Xiong, M. N., Wu, L. M., Zhou, S. X. and You, B.2002 Preparation and characterization of acrylic latex/nano-SiO2 composites [J]. Polymer International,51(8):693-698
    [23]Jimenez, M., Duquesne, S. and Bourbigot, S.2000 Multiscale experimental approach for developing high-performance intumescent coatings [J]. Industrial & Engineering Chemistry Research,45(13):4500-4508
    [1]Zhang, L. D.2000 Nanomaterials [M], Chemical Industry Press.
    [2]Zhu, J. and et al.2003 Nano-materialsand Nano-device [M], Tsinghua University Press.
    [3]Bao, C. L., Guo, Y. Q., Yuan, B. H. and et al.2012 Functionalized graphene oxide for fire safety application of polymers:a combination of condensed phase flame retardant strategies [J]. Journal of Materials Chemistry,22(43):23057-23063.
    [4]Shan, X. Y, Song, L., Xing, W. Y. and et al.2012 Effect of Nickel-Containing Layered Double Hydroxides and Cyclophosphazene Compound on the Thermal Stability and Flame Reatardancy of Poly(lactic acid) [J]. Industrial & Engineering Chemistry Research,51(40): 13037-13045.
    [5]Morgan, A. B.2006 Flame retarded polymer layered silicate nanocomposites:a review of commercial and open literature systems [J]. Polymers for Advanced Technologies,17(4): 206-217.
    [6]Jang, B. N., Wang, D. Y. and Wilkiie, C. A.2005 Relationship between the solubility parameter of polymers and the clay dispersion in polymer/clay nanocomposites and the role of the surfactant [J]. Macromolecules,38(15):6533-6543.
    [7]Gilman, J. W., Jackson, C. L., Morgan, A. B. and et al.2000 Flammability properties of polymer-layered-silicate nanocomposites [J], Polypropylene and polystyrene nanocomposites. Chemistry of Materials,12(7):1866-1873.
    [8]Chen, K., Wilkie, C. A. and Vyazovkin, S.2007 Revealing nano-confinement in degradation and relaxation studies of two structurally different polystyrene-clay systems [J]. Journal of Physical Chemistry B,111(4):12685-12692.
    [9]Costache, M. C., Heidecker, M. J., Manias, E. and et al.2007 The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene [J]. Polymer,48(22):6532-6545.
    [10]Evora, V. M. F. and Shukla, A. F.2003 Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites [J]. Materials Science and Engineering:A,361(1-2): 358-366.
    [11]Sen, S.2010 Effect of Both Silane-Grafted and Ion-Exchanged Organophilic Clay in Structural, Thermal, and Mechanical Properties of Unsaturated Polyester Nanocomposites [J]. Polymer Composites,31(3):482-490.
    [12]Jo, B. W., Park, S. K. and Kim, D. K.2008 Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete [J]. Construction and Building Materials,22(1): 14-20.
    [13]Oilier, R., Rodriguez, E. and Alvarez, V.2013 Unsaturated polyester/bentonite nanocomposites:Influence of clay modification on final performance [J]. Composites Part a-Applied Science and Manufacturing,48:137-143.
    [14]Al-Khanbashi, A., El-Gamal, M. and Moet, A.2005 Reduced shrinkage polyester-montmorillonite nanocomposite [J]. Journal of Applied Polymer Science,98(2): 767-773.
    [15]Kim, H. G., Oh, D. H., Lee, H. B. and Min, K. E.2004 Effect of reactive diluents on properties of unsaturated polyester/montmorillonite nanocomposites [J]. Journal of Applied Polymer Science,92(1):238-242.
    [16]Kandola, B. K., Nazare, S., Horrocks, A. R. and Myler, P.2006 Effect of layered silicate nanocomposites on burning behavior of conventionally flame-retarded unsaturated polyesters [J]. Fire and Polymers Iv:Materials and Concepts for Hazard Prevention,922:155-171.
    [17]Lu, P. F.2010 The Polymerization of Unsaturated Polyester and Silane-Functionalized Layered Double Hydroxides [J]. Polymer-Plastics Technology and Engineering,49(14): 1450-1457.
    [18]Xie, X. L., Wang, L. J. and Zhang, G. W.2012 Preparation and flame retardancy of unsaturated polyester resin containing p-toluenesulfonate-pillared layered double hydroxide [J]. New Materials, Applications and Processes, Pts 1-3,399-401:1372-1375.
    [19]Pereira, C. M. C., Herrero, M., Labajos, F. M. and et al.2009 Preparation and properties of new flame retardant unsaturated polyester nanocomposites based on layered double hydroxides [J]. Polymer Degradation and Stability,94(6):939-946.
    [20]Sorenson, W. R. and Campbell, T. W.1968 Preparative method of polymer chemistry [M], Interscience, New York,65-78.
    [21]Curtis, L. G., Edwards, D. L., Simons, R. M. and et al.1964 Investigation of Maleate-Fumarate Isomerization in Unsaturated Polyesters by Nuclear Magnetic Resonance [J]. Industrial & Engineering Chemistry Product Research and Development,3(3):218-221.
    [22]Suh, D. J., Lim, Y. Y. and Park, O. O.2000 The property and formation mechanism of unsaturated polyester-layered silicate nanocomposite depending on the fabrication methods [J]. Polymer,41(24):8557-8563.
    [1]Sadafule, D. S. and Panda, S. P.1979 Photocrosslinkable unsaturated polyesters [J]. Journal of Applied Polymer Science,24(2):511-521.
    [2]Kandola, B. K., Horrocks, A. R., Myler, P. and Blair, D.2002 The effect of intumescents on the burning behavior of polyester-resin-containing composites [J]. Composites Part a-Applied Science and Manufacturing,33(6):805-817.
    [3]HSrold, S.1999 Phosphorus flame retardants in thermoset resins [J]. Polymer Degradation and Stability,64(3):427-431.
    [4]Penczek, P., Czub, P. and Pielichowski, J.2005 Unsaturated polyester resins:chemistry and technology [J]. Advances in Polymer Science,184:1-95.
    [5]Pack, S., Si, M., Koo, J. and et al.2009 Mode-of-action of self-extinguishing polymer blends containing organoclays [J]. Polymer Degradation and Stability,94(3):306-326.
    [6]Hu, Y., Tang, Y., Song, L. and et al.2006 Poly(propylene)/caly nanocomposites and their application in flame retardancy [J]. Polymers for Advanced Technologies,17(4):235-245.
    [7]Lu, H. D., Hu, Y, Li, M. and et al.2008 Effects of charring agents on the thermal and flammability properties of intumescent flame-retardant HDPE-based clay nanocomposites [J]. Polymer-Plastics Technology and Engineering,47(2):152-156.
    [8]Wang, S. F., Hu, Y, Zong, R. W. and et al.2004 Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite [J]. Applied Clay Science,25(1-2):49-55.
    [9]Tang, Y, Hu, Y, Wang, S. F. and et al.2003 Intumescent flame retardant-montmorillonite synergism in polypropylene-layered silicate nanocomosites [J]. Polymer International,52(8): 1396-1400.
    [10]Manzi-Nshuti, C., Hossenlopp, J. M. and Wilkie, C. A.2008 Fire retardancy of melamine and zinc aluminum layered double hydroxide in poly(methyl methacrylate) [J]. Polymer Degradation and Stability,93(10):1855-1863.
    [11]Nyambo, C., Kandare, E., Wang, D. Y. and et al. Flame-retarded polystyrene:Investigating chemical interactions between ammonium polyphosphate and MgAl layered double hydroxide [M]. Birmingham, ENGLAND:Elsevier Sci Ltd,2007. P.1656-1663.
    [12]Nazare, S., Kandola, B. K. and Horrocks, A. R.2006 Flame-retardant unsaturated polyester resin incorporating nanoclays [J]. Polymers for Advanced Technologies,17(4):294-303.
    [13]Faravelli, T., Pinciroli, M., Pisano, F. and et al.2001 Thermal degradation of polystyrene [J]. Journal of Analytical and Applied Pyrolysis,60(1):103-121.
    [14]Jang, B. N. and Wilkie, C. A.2005 The thermal degradation of polystyrene nanocomposites [J]. Polymer,46(9):2933-2942.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700