用户名: 密码: 验证码:
纳米免疫微球的制备、表征及在免疫层析检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米微球胶体金和胶乳颗粒作为功能性载体材料已广泛的应用于细胞生物学、生命科学、临床医学、免疫诊断等领域,其与靶标物质免疫技术、侧向层析微流控技术联合形成的免疫层析诊断技术及产品,具有反应迅速、操作简单、灵敏度高及稳定性好等优点,被广泛应用于靶向研究及临床、家庭诊断产品中。但基于纳米金和纳米胶乳微球的免疫层析技术也存在灵敏度不高(假阴)及特异性(假阳)问题,以及灵敏度和特异性如何平衡及根本原因不清楚等问题。所以,研究纳米免疫微球制备及应用过程中发生的各种变化及其影响因素,探索假阴和假阳现象的本质原因,对于促进纳米微球及免疫层析技术的进一步应用显得至关重要。
     本研究选取两类纳米微球材料胶体金和胶乳颗粒,与目标抗体蛋白通过吸附或共价偶联制备对应的免疫微球,通过透射电镜、Zeta电位及动态光散射等分析方法对免疫微球的稳定性进行比较分析,结果表明:胶体金免疫微球(最适pH值为5.0、最佳蛋白浓度为20μg/mL)及胶乳免疫微球(以EDC/NHS为活化剂、活化时间15min、采用pH6.0MES缓冲反应体系、偶联时间2h和抗体蛋白浓度为800μg/mL)在上述条件下,电镜观察显示免疫胶体金和免疫胶乳复合物形成,Zeta电位变化结果表明两类微球与抗体蛋白作用后都处于较稳定的状态,动态光散射结果显示免疫胶体金微球的水合粒径随着pH值的增加而逐渐减小,而免疫胶乳微球的水合粒径随着抗体蛋白浓度的增加而逐渐增加。
     采用傅立叶变换红外光谱技术对不同结合条件下制备的免疫胶体金和免疫胶乳上抗体蛋白二级结构的变化进行表征,利用计算机辅助分析技术发现,pH值的升高,微球浓度的增加,抗体蛋白浓度的增加,都可以使抗体蛋白的有序结构含量增加。
     利用荧光光谱法对两类免疫微球中微球与抗体之间的相互作用机理进行了探讨,结果表明:两类免疫微球对抗体蛋白的内源荧光有显著的猝灭作用,猝灭机制均为静态猝灭;胶体金与抗体蛋白的结合是一个自发的物理吸附过程,主要通过疏水作用力和氢键结合,胶乳颗粒-抗体蛋白复合物则主要是静电相互作用。这些相互作用力使抗体蛋白的三级结构发生变化,其抗体分子上的氨基酸处于更为疏水的环境中,从而导致抗体蛋白表面疏水性也发生相应的变化。
     利用纳米金和纳米胶乳颗粒两种微球分别研制免疫层析检测方法及产品,并对两类免疫微球上抗体蛋白的分子结构与灵敏度、特异性的关系进行了研究,结果表明:免疫胶体金和免疫胶乳上抗体蛋白的分子结构与灵敏度和特异性间有显著的关系,一定条件下有序结构含量的增加及无序结构含量的减少会使抗体蛋白的灵敏度和特异性都升高。
In recent years, nanospheres colloidal gold and latex as the functional carrier materialare widely used in cell biology, life sciences, clinical medicine, immune diagnosis and otherfields. The immunochromatographic diagnostic technology and related products came out forthe combination of nanospheres, target substance immunoassay and lateral flow microfluidictechnology. It has the advantage of quick response, simple operation, high sensitivity andgood stability, and has widely used in targeted research and clinical, home-version diagnostickits. However, the deficiencies such as low sensitivity(false negative), specific problems(falsepositive), the problems of how to balance the relationship between sensitivity and specificity,and what was the root cause of the appearance of false negative and false positivephenomenon, which showed adverse impact in the application of immunochromatographicassay. Therefore, in order to promote the further application of nanospheres andimmunochromatographic assay, it is very important to research the preparation ofnano-immunomicrosphere, to study various changes in the process of application and itsinfluential factors, to explore the nature of false negative and false positive phenomenon.
     In this paper, two kinds of nanospheres material, colloidal gold and latex, were selectedto react with target protein. Immune colloidal gold and immunolatex were prepared by themethods of physical adsorption and covalent coupling, respectively. The stability ofimmunomicrospheres were also studied by transmission electron microscope, Zeta potentialand dynamic light scattering. Results showed that immune colloidal gold (the optimum pHvalue5.0and the optimal protein concentration20μg/mL) and immunolatex (activatorEDC/NHS, active time15min, the reaction buffer pH value6.0MES, coupling time2.5h,and the antibody concentration800μg/mL) complex could be clearly observed by electronmicroscopy. Zeta potential results showed that the colloidal gold and latex microspheres werein a relatively stable state after they were coupled with antibody protein. Dynamic lightscattering showed that the hydrated particle size of immune colloidal gold graduallydecreased as the pH increased, and the hydrated particle size of immunolatex increased as theantibody protein concentration gradually increased.
     The secondary structure of antibody protein on nano-immunomicrospheres, prepared in different conditions, was detailed using FTIR combining with computer aided analysistechnology. Results showed that the content of ordered structure of antibody protein increasedalong with the increase of pH value, microspheres concentration and antibody proteinconcentration.
     The interaction mechanism between nanospheres and antibody protein was revealed byfluorescence spectrum technology. Results showed that colloidal gold and latex nanosphereshad a significant quenching effect on the intrinsic fluorescence of antibody protein. Thequenching mechanisms were all static quenching. However, the interaction force between thetwo kinds of nanospheres and antibody protein were different. The binding process ofcolloidal gold and antibody protein was a physical spontaneous adsorption process, in whichhydrophobic force and hydrogen bonds played a major role. The main interaction betweenlatex nanospheres and antibody protein was electrostatic interaction. These interaction forceschanged the tertiary structure of antibody protein to some extent, the hydrophobicity of themicroenvironment around the amino acids residues increased, and made a significant changein the hydrophobicity of antibody protein.
     The colloidal gold and latex immunochromatographic assay strips were prepared by thetwo kinds of nanospheres, and the relationship between the structure of antibody protein andsensitivity and specificity were detailed. Results showed that the structure of antibody proteincombined with nanospheres had a significant relationship with the sensitivity and specificityof the test strips, which were enhanced when the content of ordered structure of antibodyprotein increased.
引文
[1] Gleiter H. Nanostructured materials: basic concepts and microstructure [J]. Actamaterialia,2000,48(1):1-29.
    [2]林章碧,苏星光,张家骅,等.纳米粒子在生物分析中的应用[J].分析化学,2002,30(2):237-241.
    [3] Han M., Gao X., Su J.Z., et al. Quantum-dot-tagged microbeads for multiplexed opticalcoding of biomolecules [J]. Nature biotechnology,2001,19(7):631-635.
    [4] H rm H., Soukka T., L vgren T. Europium nanoparticles and time-resolvedfluorescence for ultrasensitive detection of prostate-specific antigen [J]. Clinicalchemistry,2001,47(3):561-568.
    [5] afa K I., afa K ová M. Use of magnetic techniques for the isolation of cells [J].Journal of Chromatography B: Biomedical Sciences and Applications,1999,722(1-2):33-53.
    [6] Leutwyler W.K., Bürgi S.L., Burgl H. Semiconductor clusters, nanocrystals, andquantum dots [J]. Science,1996,271:933.
    [7] Aubin-Tam M.E., Hamad-Schifferli K. Structure and function of nanoparticle–proteinconjugates [J]. Biomedical Materials,2008,3(3):034001.
    [8] Paek S.H., Lee S.H., Cho J.H., et al. Development of rapid one-stepimmunochromatographic assay [J]. Methods,2000,22(1):53-60.
    [9] Liu G., Lin Y.Y., Wang J., et al. Disposable electrochemical immunosensor diagnosisdevice based on nanoparticle probe and immunochromatographic strip [J]. Analyticalchemistry,2007,79(20):7644-7653.
    [10] Yonezawa T., Yasui K., Kimizuka N. Controlled formation of smaller gold nanoparticlesby the use of four-chained disulfide stabilizer [J]. Langmuir,2001,17(2):271-273.
    [11] Mallick K., Wang Z., Pal T. Seed-mediated successive growth of gold particlesaccomplished by UV irradiation: a photochemical approach for size-controlled synthesis[J]. Journal of Photochemistry and Photobiology A: Chemistry,2001,140(1):75-80.
    [12] Kondo T., Aoshima S., Honda K., et al. Fabrication of covalent SAM/Aunanoparticle/boron-doped diamond configurations with a sequential self-assemblymethod [J]. The Journal of Physical Chemistry C,2007,111(34):12650-12657.
    [13] Esumi K., Kameo A., Suzuki A., et al. Preparation of gold nanoparticles using2-vinylpyridine telomers possessing multi-hydrocarbon chains as stabilizer [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2001,176(2):233-237.
    [14] Mafuné F., Kohno J.Y., Takeda Y., et al. Formation of gold nanoparticles by laserablation in aqueous solution of surfactant [J]. The Journal of Physical Chemistry B,2001,105(22):5114-5120.
    [15] Daniel M.C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology [J]. Chemical reviews,2004,104(1):293-346.
    [16] Shekarchi I., Fuccillo D., Sever J, et al. Avidin-biotin latex agglutination assay fordetection of antibodies to viral antigens [J]. Journal of clinical microbiology,1988,26(5):954-956.
    [17] Prather T., Grande J., Keese C., et al. An agglutination assay using emulsified oils [J].Journal of immunological methods,1986,87(2):211-215.
    [18]宋乐新,郭子建.氨基酸,多肽的环糊精化学[J].无机化学学报,2001,17(4):457-470.
    [19] Lundqvist M., Sethson I., Jonsson B.H. Protein adsorption onto silica nanoparticles:conformational changes depend on the particles' curvature and the protein stability [J].Langmuir,2004,20(24):10639-10647.
    [20] Shang L., Wang Y., Jiang J., et al. pH-dependent protein conformational changes inalbumin: gold nanoparticle bioconjugates: a spectroscopic study [J]. Langmuir,2007,23(5):2714-2721.
    [21] Aubin-Tam M.E., Hamad-Schifferli K. Gold nanoparticle-cytochrome c complexes: theeffect of nanoparticle ligand charge on protein structure [J]. Langmuir,2005,21(26):12080-12084.
    [22]沈星灿,刘新艳,梁宏,等.牛血红蛋白与银纳米粒子相互作用的光谱研究[J].化学学报,2006,64(6):469-474.
    [23]袁琦. Cu (Ⅱ), Mn (Ⅱ)与血清白蛋白的竞争结合平衡研究及血清白蛋白与银纳米粒子结合的紫外光谱研究[D];广西师范大学,2002.
    [24] Jiang X., Jiang J., Jin Y., et al. Effect of colloidal gold size on the conformationalchanges of adsorbed cytochrome c: probing by circular dichroism, UV-visible, andinfrared spectroscopy [J]. Biomacromolecules,2005,6(1):46-53.
    [25]王荷蕾,高原,张涛,等.动态光散射法测定纳米材料粒度的比对实验[J].中国测试ISTIC,2011,37(6):17-20.
    [26] Delfino I., Cannistraro S. Optical investigation of the electron transfer proteinazurin–gold nanoparticle system [J]. Biophysical chemistry,2009,139(1):1-7.
    [27] Xiao Q., Huang S., Qi Z.D., et al. Conformation, thermodynamics and stoichiometry ofHSA adsorbed to colloidal CdSe/ZnS quantum dots [J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics,2008,1784(7):1020-1027.
    [28] Jans H., Liu X., Austin L., et al. Dynamic light scattering as a powerful tool for goldnanoparticle bioconjugation and biomolecular binding studies [J]. Analytical chemistry,2009,81(22):9425-9432.
    [29] Rezwan K., Studart A., V r s J., et al. Change of ζ potential of biocompatible colloidaloxide particles upon adsorption of bovine serum albumin and lysozyme [J]. The Journalof Physical Chemistry B,2005,109(30):14469-14474.
    [30] Lundqvist M., Stigler J., Elia G., et al. Nanoparticle size and surface propertiesdetermine the protein corona with possible implications for biological impacts [J].Proceedings of the National Academy of Sciences,2008,105(38):14265-14270.
    [31] Wang H.D., Niu C.H., Yang Q., et al. Study on protein conformation and adsorptionbehaviors in nanodiamond particle–protein complexes [J]. Nanotechnology,2011,22(14):145703.
    [32]阎隆飞,孙之荣.蛋白质分子结构[M].清华大学出版社,1999.
    [33] Kong J., Yu S. Fourier transform infrared spectroscopic analysis of protein secondarystructures [J]. Acta Biochimica et Biophysica Sinica,2007,39(8):549-559.
    [34] Dong A., Huang P., Caughey W.S. Protein secondary structures in water fromsecond-derivative amide I infrared spectra [J]. Biochemistry,1990,29(13):3303-3308.
    [35] Lees J.G., Miles A.J., Wien F., et al. A reference database for circular dichroismspectroscopy covering fold and secondary structure space [J]. Bioinformatics,2006,22(16):1955-1962.
    [36] Shaw R., Buchko G., Wang G., et al. Infrared spectroscopy of human apolipoproteinfragments in SDS/D2O: relative lipid-binding affinities and a novel amide I assignment[J]. Biochemistry,1997,36(47):14531-14538.
    [37] Jiang M., N lting B., Stayton P.S., et al. Surface-linked molecular monolayers of anengineered myoglobin: structure, stability, and function [J]. Langmuir,1996,12(5):1278-1283.
    [38] Shi X., Li D., Xie J., et al. Spectroscopic investigation of the interactions between goldnanoparticles and bovine serum albumin [J]. Chinese Science Bulletin,2012,57(10):1109-1115.
    [39] Shao Q., Wu P., Gu P., et al. Electrochemical and spectroscopic studies on theconformational structure of hemoglobin assembled on gold nanoparticles [J]. TheJournal of Physical Chemistry B,2011,115(26):8627-8637.
    [40]李莎莎.蛋白质吸附的拉曼光谱研究[D];天津大学,2008.
    [41]骆智训,方炎.表面增强拉曼散射光谱的应用进展[J].光谱学与光谱分析,2006,26(2):358-364.
    [42] Iosin M., Toderas F., Baldeck P., et al. Study of protein–gold nanoparticle conjugates byfluorescence and surface-enhanced Raman scattering [J]. Journal of Molecular Structure,2009,924:196-200.
    [43]沈星灿,何锡文,郭俊怀,等.表面增强Raman光谱研究血清白蛋白与Ag纳米粒子的界面作用[J].广西师范大学学报(自然科学版),2003,21(2):33.
    [44]仇立群,蒋芸,李淑瑾,等.表面增强拉曼光谱对免疫球蛋白IgG分子与银基底作用的研究[J].光散射学报,2003,15(3):149-153.
    [45]许潇,李娜,李克安.荧光相关光谱的原理,技术及应用[J].现代仪器,2008,14(5):1-5.
    [46] Li L., Mu Q., Zhang B., et al. Analytical strategies for detecting nanoparticle–proteininteractions [J]. Analyst,2010,135(7):1519-1530.
    [47] Zhou H., Mu Q., Gao N., et al. A nano-combinatorial library strategy for the discoveryof nanotubes with reduced protein-binding, cytotoxicity, and immune response [J]. Nanoletters,2008,8(3):859-865.
    [48] You C.C., Miranda O.R., Gider B., et al. Detection and identification of proteins usingnanoparticle–fluorescent polymer ‘chemical nose’sensors [J]. Nature Nanotechnology,2007,2(5):318-323.
    [49]尹燕霞,向本琼,佟丽.荧光光谱法在蛋白质研究中的应用[J].实验技术与管理,2010,27(2):33-36.
    [50] Pompa P., Chiuri R., Manna L., et al. Fluorescence resonance energy transfer induced byconjugation of metalloproteins to nanoparticles [J]. Chemical physics letters,2006,417(4):351-357.
    [51] Wangoo N., Suri C., Shekhawat G. Interaction of gold nanoparticles with protein: aspectroscopic study to monitor protein conformational changes [J]. Applied PhysicsLetters,2008,92(13):133103-133104.
    [52] Casanova D., Giaume D., Moreau M., et al. Counting the number of proteins coupled tosingle nanoparticles [J]. Journal of the American Chemical Society,2007,129(42):12592-12593.
    [53] Yang W., Sun L., Weng J., et al. Probing the interaction of bovine haemoglobin withgold nanoparticles [J]. IET nanobiotechnology,2012,6(1):26-32.
    [54] Gao D., Tian Y., Bi S., et al. Studies on the interaction of colloidal gold and serumalbumins by spectral methods [J]. Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy,2005,62(4):1203-1208.
    [55] Zhao X., Liu R., Chi Z., et al. New insights into the behavior of bovine serum albuminadsorbed onto carbon nanotubes: comprehensive spectroscopic studies [J]. The Journalof Physical Chemistry B,2010,114(16):5625-5631.
    [56] Klajnert B., Stanis awska L., Bryszewska M., et al. Interactions between PAMAMdendrimers and bovine serum albumin [J]. Biochimica et Biophysica Acta(BBA)-Proteins&Proteomics,2003,1648(1):115-126.
    [57]丁晓岚,高红旗.圆二色光谱技术应用和实验方法[J].实验技术与管理,2008,25(10):48-52.
    [58]张树政,孟广震,何忠效,等.酶学研究技术:上册[M].科学出版社,1987.
    [59]廖延彪.偏振光学[M].科学出版社,2003.
    [60]沈星灿,梁宏,何锡文,等.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394.
    [61] Greenfield N.J., Fasman G.D. Computed circular dichroism spectra for the evaluation ofprotein conformation [J]. Biochemistry,1969,8(10):4108-4116.
    [62]韩振为,钟成,王昌秀.圆二色性测定蛋白质在超细粒子上吸附的构象变化[J].分析测试学报,2004,23(2):27-30.
    [63] Shimizu M., Kobayashi K., Morii H., et al. Secondary structure analyses of protein filmson gold surfaces by circular dichroism [J]. Biochemical and biophysical researchcommunications,2003,310(2):606-611.
    [64]易薇,胡一桥.差示扫描量热法在蛋白质热变性研究中的应用[J].中国药学杂志,2004,39(6):401-403.
    [65]施蕴渝,吴季辉.核磁共振波谱应用于结构生物学的研究进展[J].生物物理学报,2007,23(4):240-245.
    [66] Stayton P.S., Drobny G.P., Shaw W.J., et al. Molecular recognition at theprotein-hydroxyapatite interface [J]. Critical Reviews in Oral Biology&Medicine,2003,14(5):370-376.
    [67] Cedervall T., Lynch I., Foy M., et al. Detailed identification of plasma proteins adsorbedon copolymer nanoparticles [J]. Angewandte Chemie International Edition,2007,46(30):5754-5756.
    [68] Stolnik S., Daudali B., Arien A., et al. The effect of surface coverage and conformationof poly (ethylene oxide)(PEO) chains of poloxamer407on the biological fate of modelcolloidal drug carriers [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2001,1514(2):261-279.
    [69] Valkirs G.E., Barton R. ImmunoConcentration--a new format for solid-phaseimmunoassays [J]. Clinical chemistry,1985,31(9):1427-1431.
    [70] Spielberg F., Ryder R., Harris J., et al. Field testing and comparative evaluation of rapid,visually read screening assays for antibody to human immunodeficiency virus [J]. TheLancet,1989,333(8638):580-584.
    [71] Guo A., Sheng H., Zhang M., et al. Development and Evaluation of a Colloidal GoldImmunochromatography Strip for Rapid Detection of Vibrio parahaemolyticus in Food[J]. Journal of Food Quality,2012,35(5):366-371.
    [72] Peng Y., Wu J., Liu X., et al. Evaluation of Wondfo influenza A&B fast test based onimmunochromatography assay for rapid diagnosis of influenza A H1N1[J]. TheBrazilian Journal of Infectious Diseases,2013,17(2):247-250.
    [73] Adamcová M., těrba M., im nek T., et al. Myocardial regulatory proteins and heartfailure [J]. European journal of heart failure,2006,8(4):333-342.
    [74] Li D., Wei S., Yang H., et al. A sensitive immunochromatographic assay using colloidalgold–antibody probe for rapid detection of pharmaceutical indomethacin in watersamples [J]. Biosensors and Bioelectronics,2009,24(7):2277-2280.
    [75] Peng Y., Wu J., Wang J., et al. Study and evaluation of Wondfo rapid diagnostic kitbased on nano-gold immunochromatography assay for diagnosis of Plasmodiumfalciparum [J]. Parasitology research,2012,110(4):1421-1425.
    [76]蔡强,吴维明,陈裕泉.纳米金的电检测方法与免疫检测中的应用[J].传感技术学报,2003,6(2):124-127.
    [77] Tang H., Chen J., Nie L., et al. A label-free electrochemical immunoassay forcarcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) andnonconductive polymer film [J]. Biosensors and Bioelectronics,2007,22(6):1061-1067.
    [78] Hu S.Q., Xie J.W., Xu Q.H., et al. A label-free electrochemical immunosensor based ongold nanoparticles for detection of paraoxon [J]. Talanta,2003,61(6):769-777.
    [79]陆晓荣,吴钢,郝渭滨,等.胶乳增强免疫比浊法在甲胎蛋白测定的方法学评价[J].国际检验医学杂志ISTIC,2011,32(10):1106-1107.
    [80]郁新.乳胶增强免疫比浊法测定血清Lp(a)[J].江西医学检验,2007,25(5):433-434.
    [81]金亚平,秦光明,张松照.血清高敏C-反应蛋白在心血管病变中的表达特性[J].中华检验医学杂志,2002,25(6):357-359.
    [82]程艳杰,曹华军,王旭,等.乳胶增强法检测Cystatin C评价肾小球滤过率的临床应用[J].中国医学检验杂志,2002,3(4):243-245.
    [83]杨晶.甲型流感病毒胶乳免疫层析试剂的研制[D];暨南大学,2011.
    [84]崔浩,陈耀强,唐勇,等.莱克多巴胺荧光胶乳颗粒免疫层析检测法的建立[J].分析测试学报,2011,30(7):764-768.
    [85]樊爱萍.基于金纳米微粒的化学发光免疫分析和特定序列DNA分析[D];复旦大学,2009.
    [86] Li Z.P., Wang Y.C., Liu C.H., et al. Development of chemiluminescence detection ofgold nanoparticles in biological conjugates for immunoassay [J]. Analytica chimica acta,2005,551(1):85-91.
    [87] H rm H., Soukka T., L nnberg S., et al. Zeptomole detection sensitivity of prostate‐specific antigen in a rapid microtitre plate assay using time‐resolved fluorescence [J].Luminescence,2000,15(6):351-355.
    [88] Chun P. Colloidal gold and other labels for lateral flow immunoassays [M]. Lateral FlowImmunoassay. Springer.2009:1-19.
    [89] Conde J., Rosa J., Lima J.C., et al. Nanophotonics for molecular diagnostics and therapyapplications [J]. International Journal of Photoenergy,2011,2012.
    [90]顾健,张燕,陆义超.一步法胶体金快速诊断法与ELISA检测猪瘟抗体的比较[J].上海畜牧兽医通讯,2010,1:64.
    [91] Paciotti G.F., Myer L., Weinreich D., et al. Colloidal gold: a novel nanoparticle vectorfor tumor directed drug delivery [J]. Drug delivery,2004,11(3):169-183.
    [92] Bergen J.M., Von Recum H.A., Goodman T.T., et al. Gold nanoparticles as a versatileplatform for optimizing physicochemical parameters for targeted drug delivery [J].Macromolecular bioscience,2006,6(7):506-516.
    [93] Santos R., Forcada J. Acetal-functionalized polymer particles useful for immunoassays.III: Preparation of latex-protein complexes and their applications [J]. Journal ofMaterials Science: Materials in Medicine,2001,12(2):173-180.
    [94] Lucas L.J., Han J.H., Yoon J.Y. Using highly carboxylated microspheres to simplifyimmunoassays and enhance diffusional mixing in a microfluidic device [J]. Colloids andSurfaces B: Biointerfaces,2006,49(2):106-111.
    [95]路苹,于同泉,王淑英,等.蛋白质测定方法评价[J].北京农学院学报,2006,21(2):65-68.
    [96] Frens G. Controlled nucleation for the regulation of the particle size in monodispersegold suspensions [J]. Nature,1973,241(105):20-22.
    [97]吴明珲,姜玲黎,曾凡波,等.磁性免疫微球在人血清白蛋白纯化中的应用[J].药学学报,2006,41(7):608-614.
    [98] Haiss W., Thanh N.T., Aveyard J., et al. Determination of size and concentration of goldnanoparticles from UV-vis spectra [J]. Analytical chemistry,2007,79(11):4215-4221.
    [99] Huang S., Minami K., Sakaue H., et al. Optical spectroscopic studies of the dispersibilityof gold nanoparticle solutions [J]. Journal of applied physics,2002,92(12):7486-7490.
    [100] Jiang Z., Feng Z., Li T., et al. Resonance scattering spectroscopy of gold nanoparticle[J]. Science in China Series B: Chemistry,2001,44(2):175-181.
    [101]凌黎.纳米粒子与蛋白相互作用及环糊精与氨基酸包合作用的研究[D];扬州大学,2007.
    [102]章莉娟,郑忠.胶体与界面化学[M].华南理工大学出版社,2006.
    [103] Hunter R.J. Zeta potential in colloid science: principles and applications [M].Academic press London,1981.
    [104] Brewer S.H., Glomm W.R., Johnson M.C., et al. Probing BSA binding to citrate-coatedgold nanoparticles and surfaces [J]. Langmuir,2005,21(20):9303-9307.
    [105] Yoon J.Y., Park H.Y., Kim J.H., et al. Adsorption of BSA on highly carboxylatedmicrospheres—quantitative effects of surface functional groups and interaction forces[J]. Journal of colloid and interface science,1996,177(2):613-620.
    [106] Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: recentadvances and perspectives [J]. Chemical Society Reviews,2012,41(6):2256-2282.
    [107] Dykman L., Sumaroka M., Staroverov S., et al. Immunogenic properties of colloidalgold [J]. Biology Bulletin of the Russian Academy of Sciences,2004,31(1):75-79.
    [108] Tanaka R., Yuhi T., Nagatani N., et al. A novel enhancement assay forimmunochromatographic test strips using gold nanoparticles [J]. Analytical andbioanalytical chemistry,2006,385(8):1414-1420.
    [109] Ross P.D., Subramanian S. Thermodynamics of protein association reactions: forcescontributing to stability [J]. Biochemistry,1981,20(11):3096-3102.
    [110] Haynes C.A., Norde W. Structures and stabilities of adsorbed proteins [J]. Journal ofcolloid and interface science,1995,169(2):313-328.
    [111] Kondo A., Oku S., Higashitani K. Structural changes in protein molecules adsorbed onultrafine silica particles [J]. Journal of colloid and interface science,1991,143(1):214-221.
    [112] Molina-Bolivar J., Galisteo-González F., Hidalgo-Alvarez R. Colloidal stability ofprotein-polymer systems: A possible explanation by hydration forces [J]. PhysicalReview E,1997,55(4):4522.
    [113] Peng Z., Hidajat K., Uddin M. Conformational change of adsorbed and desorbedbovine serum albumin on nano-sized magnetic particles [J]. Colloids and Surfaces B:Biointerfaces,2004,33(1):15-21.
    [114] Tsai D.H., Davila-Morris M., Delrio F.W., et al. Quantitative determination ofcompetitive molecular adsorption on gold nanoparticles using attenuated totalreflectance–Fourier transform infrared spectroscopy [J]. Langmuir,2011,27(15):9302-9313.
    [115] Greenfield N.J. Using circular dichroism spectra to estimate protein secondarystructure [J]. Nature protocols,2007,1(6):2876-2890.
    [116] Whitmore L., Wallace B.A. Protein secondary structure analyses from circulardichroism spectroscopy: methods and reference databases [J]. Biopolymers,2008,89(5):392-400.
    [117] Royer C.A. Probing protein folding and conformational transitions with fluorescence[J]. Chemical reviews,2006,106(5):1769-1784.
    [118] Wishart D., Sykes B., Richards F. The chemical shift index: a fast and simple methodfor the assignment of protein secondary structure through NMR spectroscopy [J].Biochemistry,1992,31(6):1647-1651.
    [119] Lamba O.P., Borchman D., Sinha S., et al. Estimation of the secondary structure andconformation of bovine lens crystallins by infrared spectroscopy: quantitative analysisand resolution by Fourier self-deconvolution and curve fit [J]. Biochimica etBiophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1993,1163(2):113-123.
    [120]张雨琴,张友玉,叶敏,等.光度法研究L-半胱氨酸修饰的ZnS纳米粒子与牛血红蛋白的作用[J].应用化学,2008,25(9):1011-1016.
    [121]邵倩.纳米结构对蛋白质构象影响的电化学及谱学研究[D];南京师范大学,2012.
    [122]蔡锡兰.红外差谱技术用于混合安眠药的鉴定[J].光谱学与光谱分析,2000,20(3):329-332.
    [123] Amendola V., Meneghetti M. Size Evaluation of Gold Nanoparticles by UV visSpectroscopy [J]. The Journal of Physical Chemistry C,2009,113(11):4277-4285.
    [124] Naveenraj S., Anandan S., Kathiravan A., et al. The interaction of sonochemicallysynthesized gold nanoparticles with serum albumins [J]. Journal of pharmaceutical andbiomedical analysis,2010,53(3):804-810.
    [125] Kamnev A.A., Dykman L.A., Tarantilis P.A., et al. Spectroimmunochemistry usingcolloidal gold bioconjugates [J]. Bioscience reports,2002,22(5-6):541-547.
    [126] Joshi P., Chakraborty S., Dey S., et al. Binding of chloroquine–conjugated goldnanoparticles with bovine serum albumin [J]. Journal of colloid and interface science,2011,355(2):402-409.
    [127] He Y.Q., Liu S.P., Kong L., et al. A study on the sizes and concentrations of goldnanoparticles by spectra of absorption, resonance Rayleigh scattering and resonancenon-linear scattering [J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2005,61(13):2861-2866.
    [128] Kato A., Nakai S. Hydrophobicity determined by a fluorescence probe method and itscorrelation with surface properties of proteins [J]. Biochimica et Biophysica Acta(BBA)-Protein Structure,1980,624(1):13-20.
    [129] Lakowicz J.R. Protein fluorescence [M]. Principles of fluorescence spectroscopy.Springer.1999:445-486.
    [130] Eftink M.R. Fluorescence quenching reactions [M]. Biophysical and biochemicalaspects of fluorescence spectroscopy. Springer.1991:1-41.
    [131] Lapshina E., Zavodnik I. Microcalorimetric and fluorescent studies of pH-inducedtransitions in erythrocyte membranes [J]. Biologicheskie Membrany,1993,10(2):170-178.
    [132] Mátyus L., Sz ll si J., Jenei A. Steady-state fluorescence quenching applications forstudying protein structure and dynamics [J]. Journal of Photochemistry andPhotobiology B: Biology,2006,83(3):223-236.
    [133] Ware W.R. Oxygen quenching of fluorescence in solution: an experimental study of thediffusion process [J]. The Journal of Physical Chemistry,1962,66(3):455-458.
    [134] Cui Y., Wei Q., Park H., et al. Nanowire nanosensors for highly sensitive and selectivedetection of biological and chemical species [J]. Science,2001,293(5533):1289-1292.
    [135] Iosin M., Canpean V., Astilean S. Spectroscopic studies on pH-and thermally inducedconformational changes of Bovine Serum Albumin adsorbed onto gold nanoparticles[J]. Journal of Photochemistry and Photobiology A: Chemistry,2011,217(2):395-401.
    [136] Uruakpa F., Arntfield S. Surface hydrophobicity of commercial canola proteins mixedwith κ-carrageenan or guar gum [J]. Food chemistry,2006,95(2):255-263.
    [137]黄曼,卞科.蛋白质疏水性测定方法研究进展[J].粮油食品科技,2004,12(2):31-32.
    [138] Nakai S. Structure-function relationships of food proteins: with an emphasis on theimportance of protein hydrophobicity [J]. Journal of Agricultural and Food Chemistry,1983,31(4):676-683.
    [139] Kato A., Tsutsui N., Matsudomi N., et al. Effects of partial denaturation on surfaceproperties of ovalbumin and lysozyme [J]. Agricultural and Biological Chemistry,1981,45(12):2755-2760.
    [140] Pei Z., Anderson H., Myrskog A., et al. Optimizing immobilization on two-dimensionalcarboxyl surface: pH dependence of antibody orientation and antigen binding capacity[J]. Analytical biochemistry,2010,398(2):161-168.
    [141]孔繁德,黄印尧,赖清金.免疫胶体金技术及其发展前景[J].福建畜牧兽医,2002,24(7):42-45.
    [142]王继华.彩色胶乳层析法诊断试纸条及其制备方法[P].中国:200410027293.9,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700